1
|
Celma-Miralles A, Seeberg AB, Haumann NT, Vuust P, Petersen B. Experience with the cochlear implant enhances the neural tracking of spectrotemporal patterns in the Alberti bass. Hear Res 2024; 452:109105. [PMID: 39216335 DOI: 10.1016/j.heares.2024.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cochlear implant (CI) users experience diminished music enjoyment due to the technical limitations of the CI. Nonetheless, behavioral studies have reported that rhythmic features are well-transmitted through the CI. Still, the gradual improvement of rhythm perception after the CI switch-on has not yet been determined using neurophysiological measures. To fill this gap, we here reanalyzed the electroencephalographic responses of participants from two previous mismatch negativity studies. These studies included eight recently implanted CI users measured twice, within the first six weeks after CI switch-on and approximately three months later; thirteen experienced CI users with a median experience of 7 years; and fourteen normally hearing (NH) controls. All participants listened to a repetitive four-tone pattern (known in music as Alberti bass) for 35 min. Applying frequency tagging, we aimed to estimate the neural activity synchronized to the periodicities of the Alberti bass. We hypothesized that longer experience with the CI would be reflected in stronger frequency-tagged neural responses approaching the responses of NH controls. We found an increase in the frequency-tagged amplitudes after only 3 months of CI use. This increase in neural synchronization may reflect an early adaptation to the CI stimulation. Moreover, the frequency-tagged amplitudes of experienced CI users were significantly greater than those of recently implanted CI users, but still smaller than those of NH controls. The frequency-tagged neural responses did not just reflect spectrotemporal changes in the stimuli (i.e., intensity or spectral content fluctuating over time), but also showed non-linear transformations that seemed to enhance relevant periodicities of the Alberti bass. Our findings provide neurophysiological evidence indicating a gradual adaptation to the CI, which is noticeable already after three months, resulting in close to NH brain processing of spectrotemporal features of musical rhythms after extended CI use.
Collapse
Affiliation(s)
- Alexandre Celma-Miralles
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark.
| | - Alberte B Seeberg
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Niels T Haumann
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Peter Vuust
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Bjørn Petersen
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| |
Collapse
|
2
|
Engler BH, Zamm A, Møller C. Spontaneous rates exhibit high intra-individual stability across movements involving different biomechanical systems and cognitive demands. Sci Rep 2024; 14:14876. [PMID: 38937553 PMCID: PMC11211469 DOI: 10.1038/s41598-024-65788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Spontaneous rhythmic movements are part of everyday life, e.g., in walking, clapping or music making. Humans perform such spontaneous motor actions at different rates that reflect specific biomechanical constraints of the effector system in use. However, there is some evidence for intra-individual consistency of specific spontaneous rates arguably resulting from common underlying processes. Additionally, individual and contextual factors such as musicianship and circadian rhythms have been suggested to influence spontaneous rates. This study investigated the relative contributions of these factors and provides a comprehensive picture of rates among different spontaneous motor behaviors, i.e., melody production, walking, clapping, tapping with and without sound production, the latter measured online before and in the lab. Participants (n = 60) exhibited high intra-individual stability across tasks. Task-related influences included faster tempi for spontaneous production rates of music and wider ranges of spontaneous motor tempi (SMT) and clapping rates compared to walking and music making rates. Moreover, musicians exhibited slower spontaneous rates across tasks, yet we found no influence of time of day on SMT as measured online in pre-lab sessions. Tapping behavior was similar in pre-lab and in-lab sessions, validating the use of online SMT assessments. Together, the prominent role of individual factors and high stability across domains support the idea that different spontaneous motor behaviors are influenced by common underlying processes.
Collapse
Affiliation(s)
- Ben H Engler
- Department of Psychology, Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, Salzburg, Austria.
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| | - Anna Zamm
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus, Denmark
| | - Cecilie Møller
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
3
|
Etani T, Miura A, Kawase S, Fujii S, Keller PE, Vuust P, Kudo K. A review of psychological and neuroscientific research on musical groove. Neurosci Biobehav Rev 2024; 158:105522. [PMID: 38141692 DOI: 10.1016/j.neubiorev.2023.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
When listening to music, we naturally move our bodies rhythmically to the beat, which can be pleasurable and difficult to resist. This pleasurable sensation of wanting to move the body to music has been called "groove." Following pioneering humanities research, psychological and neuroscientific studies have provided insights on associated musical features, behavioral responses, phenomenological aspects, and brain structural and functional correlates of the groove experience. Groove research has advanced the field of music science and more generally informed our understanding of bidirectional links between perception and action, and the role of the motor system in prediction. Activity in motor and reward-related brain networks during music listening is associated with the groove experience, and this neural activity is linked to temporal prediction and learning. This article reviews research on groove as a psychological phenomenon with neurophysiological correlates that link musical rhythm perception, sensorimotor prediction, and reward processing. Promising future research directions range from elucidating specific neural mechanisms to exploring clinical applications and socio-cultural implications of groove.
Collapse
Affiliation(s)
- Takahide Etani
- School of Medicine, College of Medical, Pharmaceutical, and Health, Kanazawa University, Kanazawa, Japan; Graduate School of Media and Governance, Keio University, Fujisawa, Japan; Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Japan.
| | - Akito Miura
- Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Satoshi Kawase
- The Faculty of Psychology, Kobe Gakuin University, Kobe, Japan
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Peter E Keller
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark/The Royal Academy of Music Aarhus/Aalborg, Denmark; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - Peter Vuust
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark/The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Kazutoshi Kudo
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Mårup SH, Kleber BA, Møller C, Vuust P. When direction matters: Neural correlates of interlimb coordination of rhythm and beat. Cortex 2024; 172:86-108. [PMID: 38241757 DOI: 10.1016/j.cortex.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/11/2023] [Accepted: 11/09/2023] [Indexed: 01/21/2024]
Abstract
In a previous experiment, we found evidence for a bodily hierarchy governing interlimb coordination of rhythm and beat, using five effectors: 1) Left foot, 2) Right foot, 3) Left hand, 4) Right hand and 5) Voice. The hierarchy implies that, during simultaneous rhythm and beat performance and using combinations of two of these effectors, executing the task by performing the rhythm with an effector that has a higher number than the beat effector is significantly easier than vice versa. To investigate the neural underpinnings of this proposed bodily hierarchy, we here scanned 46 professional musicians using fMRI as they performed a rhythmic pattern with one effector while keeping the beat with another. The conditions combined the voice and the right hand (V + RH), the right hand and the left hand (RH + LH), and the left hand and the right foot (LH + RF). Each effector combination was performed with and against the bodily hierarchy. Going against the bodily hierarchy increased tapping errors significantly and also increased activity in key brain areas functionally associated with top-down sensorimotor control and bottom-up feedback processing, such as the cerebellum and SMA. Conversely, going with the bodily hierarchy engaged areas functionally associated with the default mode network and regions involved in emotion processing. Theories of general brain function that hold prediction as a key principle, propose that action and perception are governed by the brain's attempt to minimise prediction error at different levels in the brain. Following this viewpoint, our results indicate that going against the hierarchy induces stronger prediction errors, while going with the hierarchy allows for a higher degree of automatization. Our results also support the notion of a bodily hierarchy in motor control that prioritizes certain conductive and supportive tapping roles in specific effector combinations.
Collapse
Affiliation(s)
- Signe H Mårup
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, Aarhus C, Denmark.
| | - Boris A Kleber
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, Aarhus C, Denmark.
| | - Cecilie Møller
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, Aarhus C, Denmark.
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, Aarhus C, Denmark.
| |
Collapse
|
5
|
Criscuolo A, Schwartze M, Henry MJ, Obermeier C, Kotz SA. Individual neurophysiological signatures of spontaneous rhythm processing. Neuroimage 2023; 273:120090. [PMID: 37028735 DOI: 10.1016/j.neuroimage.2023.120090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
When sensory input conveys rhythmic regularity, we can form predictions about the timing of upcoming events. Although rhythm processing capacities differ considerably between individuals, these differences are often obscured by participant- and trial-level data averaging procedures in M/EEG research. Here, we systematically assessed neurophysiological variability displayed by individuals listening to isochronous (1.54Hz) equitone sequences interspersed with unexpected (amplitude-attenuated) deviant tones. Our approach aimed at revealing time-varying adaptive neural mechanisms for sampling the acoustic environment at multiple timescales. Rhythm tracking analyses confirmed that individuals encode temporal regularities and form temporal expectations, as indicated in delta-band (1.54Hz) power and its anticipatory phase alignment to expected tone onsets. Zooming into tone- and participant-level data, we further characterized intra- and inter-individual variabilities in phase-alignment across auditory sequences. Further, individual modelling of beta-band tone-locked responses showed that a subset of auditory sequences was sampled rhythmically by superimposing binary (strong-weak; S-w), ternary (S-w-w) and mixed accentuation patterns. In these sequences, neural responses to standard and deviant tones were modulated by a binary accentuation pattern, thus pointing towards a mechanism of dynamic attending. Altogether, the current results point toward complementary roles of delta- and beta-band activity in rhythm processing and further highlight diverse and adaptive mechanisms to track and sample the acoustic environment at multiple timescales, even in the absence of task-specific instructions.
Collapse
Affiliation(s)
- A Criscuolo
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - M Schwartze
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - M J Henry
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany; Department of Psychology, Toronto Metropolitan University, Canada
| | - C Obermeier
- BG Klinikum Bergmannstrost Halle, Halle 06112, Germany; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - S A Kotz
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.
| |
Collapse
|
6
|
Mårup SH, Møller C, Vuust P. Coordination of voice, hands and feet in rhythm and beat performance. Sci Rep 2022; 12:8046. [PMID: 35577815 PMCID: PMC9110414 DOI: 10.1038/s41598-022-11783-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/25/2022] [Indexed: 11/11/2022] Open
Abstract
Interlimb coordination is critical to the successful performance of simple activities in everyday life and it depends on precisely timed perception–action coupling. This is particularly true in music-making, where performers often use body-movements to keep the beat while playing more complex rhythmic patterns. In the current study, we used a musical rhythmic paradigm of simultaneous rhythm/beat performance to examine how interlimb coordination between voice, hands and feet is influenced by the inherent figure-ground relationship between rhythm and beat. Sixty right-handed participants—professional musicians, amateur musicians and non-musicians—performed three short rhythmic patterns while keeping the underlying beat, using 12 different combinations of voice, hands and feet. Results revealed a bodily hierarchy with five levels (1) left foot, (2) right foot, (3) left hand, (4) right hand, (5) voice, i.e., more precise task execution was observed when the rhythm was performed with an effector occupying a higher level in the hierarchy than the effector keeping the beat. The notion of a bodily hierarchy implies that the role assigned to the different effectors is key to successful interlimb coordination: the performance level of a specific effector combination differs considerably, depending on which effector holds the supporting role of the beat and which effector holds the conducting role of the rhythm. Although performance generally increased with expertise, the evidence of the hierarchy was consistent in all three expertise groups. The effects of expertise further highlight how perception influences action. We discuss the possibility that musicians’ more robust metrical prediction models make it easier for musicians to attenuate prediction errors than non-musicians. Overall, the study suggests a comprehensive bodily hierarchy, showing how interlimb coordination is influenced by hierarchical principles in both perception and action.
Collapse
|