1
|
Wang L, Wang C, Huang C, Zhou Z, Yang R, Huang Y, Chen Z, Zhang Y, Wang S, Feng K. Role of microRNAs in diabetic foot ulcers: Mechanisms and possible interventions. Diabetes Res Clin Pract 2024; 217:111858. [PMID: 39284457 DOI: 10.1016/j.diabres.2024.111858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024]
Abstract
Diabetic foot ulcer (DFU) is a common and serious complication among diabetic patients, and its incidence and difficulty in treatment have placed large burdens on patient health and quality of life. Diabetic foot tissue typically exhibits chronic wounds, ulcers, or necrosis that are difficult to heal, are prone to infection, and, in severe cases, may even lead to amputation. Recent studies have shown that microRNAs (miRNAs) play key roles in the development and healing of DFUs. miRNAs are a class of short noncoding RNA molecules that regulate gene expression to affect cellular functions and physiological processes. miRNAs may be involved in the development of DFUs by regulating cell growth, proliferation, differentiation and apoptosis. miRNAs can also participate in the healing and recovery of DFUs by regulating key steps, such as inflammation, angiogenesis, cell migration and proliferation, tissue repair and matrix remodeling. Therefore, altering the pathological processes of diabetic foot by modulating the expression of miRNAs could improve the recovery and treatment outcomes of patients. This review provides new insights and perspectives for the treatment of DFUs by summarizing the roles of miRNAs in the development and healing of DFUs and the mechanisms.
Collapse
Affiliation(s)
- Lin Wang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, Guangdong, China
| | - Cong Wang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, Guangdong, China
| | - Caiyan Huang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, Guangdong, China
| | - Zhongyu Zhou
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, Guangdong, China
| | - Ruihong Yang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, Guangdong, China
| | - Ying Huang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, Guangdong, China
| | - Zhuangsen Chen
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, Guangdong, China
| | - Yanrong Zhang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, Guangdong, China
| | - Shanshan Wang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, Guangdong, China
| | - Kun Feng
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, Guangdong, China.
| |
Collapse
|
2
|
Yu X, Bu C, Yang X, Jiang W, He X, Sun R, Guo H, Shang L, Ou C. Exosomal non-coding RNAs in colorectal cancer metastasis. Clin Chim Acta 2024; 556:117849. [PMID: 38417779 DOI: 10.1016/j.cca.2024.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Colorectal cancer (CRC) is a type of gastrointestinal cancer with high morbidity and mortality rates, and is often accompanied by distant metastases. Metastasis is a major cause of shortened survival time and poor treatment outcomes for patients with CRC. However, the molecular mechanisms underlying the metastasis of CRC remain unclear. Exosomes are a class of small extracellular vesicles that originate from almost all human cells and can transmit biological information (e.g., nucleic acids, lipids, proteins, and metabolites) from secretory cells to target recipient cells. Recent studies have revealed that non-coding RNAs (ncRNAs) can be released by exosomes into the tumour microenvironment or specific tissues, and play a pivotal role in tumorigenesis by regulating a series of key molecules or signalling pathways, particularly those involved in tumour metastasis. Exosomal ncRNAs have potential as novel therapeutic targets for CRC metastasis, and can also be used as liquid biopsy biomarkers because of their specificity and sensitivity. Therefore, further investigations into the biological function and clinical value of exosomal ncRNAs will be of great value for the prevention, early diagnosis, and treatment of CRC metastasis.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chiwen Bu
- Department of General Surgery, People's Hospital of Guanyun County, Lianyungang 222200, Jiangsu, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wenying Jiang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ru Sun
- Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Xichang 637000, Sichuan, China
| | - Hongbin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Li Shang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
3
|
Qin B, Peng Q, Dong H, Lei L, Wu S. Non-coding RNAs in diabetic foot ulcer- a focus on infected wounds. Diabetes Metab Res Rev 2024; 40:e3740. [PMID: 37839046 DOI: 10.1002/dmrr.3740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Diabetes mellitus is associated with a wide range of neuropathies, vasculopathies, and immunopathies, resulting in many complications. More than 30% of diabetic patients risk developing diabetic foot ulcers (DFUs). Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play essential roles in various biological functions in the hyperglycaemic environment that determines the development of DFU. Ulceration results in tissue breakdown and skin barrier scavenging, thereby facilitating bacterial infection and biofilm formation. Many bacteria contribute to diabetic foot infection (DFI), including Staphylococcus aureus (S. aureus) et al. A heterogeneous group of "ncRNAs," termed small RNAs (sRNAs), powerfully regulates biofilm formation and DFI healing. Multidisciplinary foot care interventions have been identified for nonhealing ulcers. With an appreciation of the link between disease processes and ncRNAs, a novel therapeutic model of bioactive materials loaded with ncRNAs has been developed to prevent and manage diabetic foot complications.
Collapse
Affiliation(s)
- Boquan Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Peng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxian Dong
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shizhou Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Anuradha U, Mehra NK, Khatri DK. Understanding molecular mechanisms and miRNA-based targets in diabetes foot ulcers. Mol Biol Rep 2024; 51:82. [PMID: 38183502 DOI: 10.1007/s11033-023-09074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/21/2023] [Indexed: 01/08/2024]
Abstract
In today's culture, obesity and overweight are serious issues that have an impact on how quickly diabetes develops and how it causes complications. For the development of more effective therapies, it is crucial to understand the molecular mechanisms underlying the chronic problems of diabetes. The most prominent effects of diabetes are microvascular abnormalities such as retinopathy, nephropathy, and neuropathy, especially diabetes foot ulcers, as well as macrovascular abnormalities such as heart disease and atherosclerosis. MicroRNAs (miRNAs), which are highly conserved endogenous short non-coding RNA molecules, have been implicated in several physiological functions recently, including the earliest stages of the disease. By binding to particular messenger RNAs (mRNAs), which cause mRNA degradation, translation inhibition, or even gene activation, it primarily regulates posttranscriptional gene expression. These molecules exhibit considerable potential as diagnostic biomarkers for disease and are interesting treatment targets. This review will provide an overview of the latest findings on the key functions that miRNAs role in diabetes and its complications, with an emphasis on the various stages of diabetic wound healing.
Collapse
Affiliation(s)
- Urati Anuradha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Hyderabad, Telangana , 500037, India.
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
5
|
Priyadarshini A, Madan R, Das S. Genetics and epigenetics of diabetes and its complications in India. Hum Genet 2024; 143:1-17. [PMID: 37999799 DOI: 10.1007/s00439-023-02616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Diabetes mellitus (DM) has become a significant health concern with an increasing rate of morbidity and mortality worldwide. India ranks second in the number of diabetes cases in the world. The increasing burden of DM can be explained by genetic predisposition of Indians to type 2 diabetes mellitus (T2DM) coupled with rapid urbanization and socio-economic development in the last 3 decades leading to drastic changes in lifestyle. Environment and lifestyle changes contribute to T2DM development by altering epigenetic processes such as DNA methylation, histone post-translational modifications, and long non-coding RNAs, all of which regulate chromatin structure and gene expression. Although the genetic predisposition of Indians to T2DM is well established, how environmental and genetic factors interact and lead to T2DM is not well understood. In this review, we discuss the prevalence of diabetes and its complications across different states in India and how various risk factors contribute to its pathogenesis. The review also highlights the role of genetic predisposition among the Indian population and epigenetic factors involved in the etiology of diabetes. Lastly, we review current treatments and emphasize the knowledge gap with respect to genetic and epigenetic factors in the Indian context. Further understanding of the genetic and epigenetic determinants will help in risk prediction and prevention as well as therapeutic interventions, which will improve the clinical management of diabetes and associated macro- and micro-vascular complications.
Collapse
Affiliation(s)
- Ankita Priyadarshini
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Riya Madan
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Sadhan Das
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India.
| |
Collapse
|
6
|
Li J, Jiang C, Xia J. The role of programmed cell death in diabetic foot ulcers. Int Wound J 2023; 21:e14399. [PMID: 37736955 PMCID: PMC10824602 DOI: 10.1111/iwj.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Diabetic foot ulcer, is a chronic complication afflicting individuals with diabetes, continue to increase worldwide, immensely burdening society. Programmed cell death, which includes apoptosis, autophagy, ferroptosis, necroptosis and pyroptosis, has been increasingly implicated in the pathogenesis of diabetic foot ulcer. This review is based on an exhaustive examination of the literature on 'programmed cell death' and 'diabetic foot ulcers' via PubMed. The findings revealed that natural bioactive compounds, noncoding RNAs and certain proteins play crucial roles in the healing of diabetic foot ulcers through various forms of programmed cell death, including apoptosis, autophagy, ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Juncheng Li
- Department of OrthopedicsThe First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang UniversityNanchangChina
- Medical Department of Graduate SchoolNanchang UniversityNanchangChina
| | - Chengli Jiang
- Department of OrthopedicsThe First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang UniversityNanchangChina
- Medical Department of Graduate SchoolNanchang UniversityNanchangChina
| | - Jian Xia
- Department of OrthopedicsThe First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang UniversityNanchangChina
- Medical Department of Graduate SchoolNanchang UniversityNanchangChina
| |
Collapse
|
7
|
Rastmanesh R, Krishnia L, Kashyap MK. The Influence of COVID-19 in Endocrine Research: Critical Overview, Methodological Implications and a Guideline for Future Designs. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231189073. [PMID: 37529301 PMCID: PMC10387761 DOI: 10.1177/11795514231189073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/14/2023] [Indexed: 08/03/2023] Open
Abstract
The COVID-19 pandemic has changed many aspects of people's lives, including not only individual social behavior, healthcare procedures, and altered physiological and pathophysiological responses. As a result, some medical studies may be influenced by one or more hidden factors brought about by the COVID-19 pandemic. Using the literature review method, we are briefly discussing the studies that are confounded by COVID-19 and facemask-induced partiality and how these factors can be further complicated with other confounding variables. Facemask wearing has been reported to produce partiality in studies of ophthalmology (particularly dry eye and related ocular diseases), sleep studies, cognitive studies (such as emotion-recognition accuracy research, etc.), and gender-influenced studies, to mention a few. There is a possibility that some other COVID-19 related influences remain unrecognized in medical research. To account for heterogeneity, current and future studies need to consider the severity of the initial illness (such as diabetes, other endocrine disorders), and COVID-19 infection, the timing of analysis, or the presence of a control group. Face mask-induced influences may confound the results of diabetes studies in many ways.
Collapse
Affiliation(s)
| | - Lucky Krishnia
- Amity Centre of Nanotechnology, Amity University Haryana, Panchgaon, Haryana, India
| | - Manoj Kumar Kashyap
- Amity Medical School, Amity Stem Cell Institute, Amity University Haryana, Panchgaon, Haryana, India
- Clinical Biosamples & Research Services (CBRS), Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Sakshi S, Jayasuriya R, Sathish Kumar RC, Umapathy D, Gopinathan A, Balamurugan R, Ganesan K, Ramkumar KM. MicroRNA-27b Impairs Nrf2-Mediated Angiogenesis in the Progression of Diabetic Foot Ulcer. J Clin Med 2023; 12:4551. [PMID: 37445586 DOI: 10.3390/jcm12134551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) is a stress-activated transcription factor regulating antioxidant genes, and a deficiency thereof, slowing lymphangiogenesis, has been reported in diabetic foot ulcer (DFU). The mode of Nrf2 regulation in DFU has been less explored. Emerging studies on miRNA-mediated target regulation show miRNA to be the leading player in the pathogenesis of the disease. In the present study, we demonstrated the role of miR-27b in regulating Nrf2-mediated angiogenesis in DFU. A lower expression of mRNA targets, such as Nrf2, HO-1, SDF-1α, and VEGF, was observed in tissue biopsied from chronic DFU subjects, which was in line with miR-27b, signifying a positive correlation with Nrf2. Similarly, we found significantly reduced expression of miR-27b and target mRNAs Nrf2, HO-1, SDF-1α, and VEGF in endothelial cells under a hyperglycemic microenvironment (HGM). To confirm the association of miR-27b on regulating Nrf2-mediated angiogenesis, we inhibited its expression through RNA interference-mediated knockdown and observed disturbances in angiogenic signaling with reduced endothelial cell migration. In addition, to explore the role of miR-27b and angiogenesis in the activation of Nrf2, we pretreated the endothelial cells with two well-known pharmacological compounds-pterostilbene and resveratrol. We observed that activation of Nrf2 through these compounds ameliorates impaired angiogenesis on HGM-induced endothelial cells. This study suggests a positive role of miR-27b in regulating Nrf2, which seems to be decreased in DFU and improves on treatment with pterostilbene and resveratrol.
Collapse
Affiliation(s)
- Shukla Sakshi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Rajappan Chandra Sathish Kumar
- Interdisciplinary Institute of Indian System and Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Dhamodharan Umapathy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Athira Gopinathan
- SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ramachandran Balamurugan
- SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
9
|
Wang KX, Zhao LL, Zheng LT, Meng LB, Jin L, Zhang LJ, Kong FL, Liang F. Accelerated Wound Healing in Diabetic Rat by miRNA-185-5p and Its Anti-Inflammatory Activity. Diabetes Metab Syndr Obes 2023; 16:1657-1667. [PMID: 37309505 PMCID: PMC10257917 DOI: 10.2147/dmso.s409596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/12/2023] [Indexed: 06/14/2023] Open
Abstract
Aim Addressing both inflammation and epithelialization during the treatment of diabetic foot ulcers is an important step, but current treatment options are limited. MiRNA has important prospects in the treatment of diabetic foot refractory wound ulcers. Previous studies have reported that miR-185-5p reduces hepatic glycogen production and fasting blood glucose levels. We herein hypothesized that miR-185-5p might play an important role in the field of diabetic foot wounds. Materials and Methods MiR-185-5p in skin tissue samples from patients with diabetic ulcers and diabetic rats were measured using quantitative real-time PCR (qRT-PCR). The streptozotocin-induced diabetes rat model (male Sprague-Dawley rats) for diabetic wound healing was conducted. The therapeutic potential was observed by subcutaneous injection of miR-185-5p mimic into diabetic rat wounds. The anti-inflammation roles of miR-185-5p on human dermal fibroblast cells were analyzed. Results We found that miR-185-5p is significantly downregulated in diabetic skin (people with DFU and diabetic rats) compared to controls. Further, in vitro upregulation of miR-185-5p decreased the inflammatory factors (IL-6, TNF-α) and intercellular adhesion molecule 1 (ICAM-1) of human skin fibroblasts under advanced glycation end products (AGEs). Meanwhile, the increase of miR-185-5p promoted cell migration. Our results also confirmed that the topical increase of miR-185-5p decreases diabetic wound p-nuclear factor-κB (p-NF-κB), ICAM-1, IL-6, TNF-α, and CD68 expression in diabetic wounds. MiR-185-5p overexpression boosted re-epithelization and expedited wound closure of diabetic rats. Conclusion MiR-185-5p accelerated wound healing of diabetic rats, reepithelization, and inhibited the inflammation of diabetic wounds in the healing process, a potentially new and valid treatment for refractory diabetic foot ulcers.
Collapse
Affiliation(s)
- Kui-Xiang Wang
- Department of Orthopaedics, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Li-Li Zhao
- Department of Orthopaedics, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Ling-Tao Zheng
- Department of Endocrinology, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Li-Bin Meng
- Department of Orthopaedics, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Liang Jin
- Department of Hand and Foot Surgery, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Long-Jun Zhang
- Department of Plastic and Burn, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Fan-Lei Kong
- Department of Orthopaedics, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Fang Liang
- Department of Endocrinology, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| |
Collapse
|
10
|
The use of innovative targeted angiogenic therapies for ischemic diabetic foot ulcer repair: From nanomedicine and microRNAs toward hyperbaric oxygen therapy. Porto Biomed J 2023; 8:e187. [DOI: 10.1097/j.pbj.0000000000000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/10/2023] Open
|
11
|
Chen G, Chen H, Zeng X, Zhu W. Stem cell-derived exosomal transcriptomes for wound healing. Front Surg 2022; 9:933781. [PMID: 36034367 PMCID: PMC9417542 DOI: 10.3389/fsurg.2022.933781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Wound healing is a complex and integrated process of the interaction of various components within the injured tissue. Accumulating evidence suggested that stem cell-derived exosomal transcriptomes could serve as key regulatory molecules in wound healing in stem cell therapy. Stem cell-derived exosomal transcriptomes mainly consist of long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs) and messenger RNAs (mRNAs). In this article we presented a brief introduction on the wound repair process and exosomal transcriptomes. Meanwhile, we summarized our current knowledge of the involvement of exosomal transcriptomes in physiological and pathological wound repair process including inflammation, angiogenesis, and scar formation.
Collapse
Affiliation(s)
- Guiling Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- National Institute of Stem Cell Clinical Research, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Hankun Chen
- Research and Development Department, Guangzhou Qinglan Biotechnology Company Limited, Guangzhou, China
| | - Xiang Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- National Institute of Stem Cell Clinical Research, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Correspondence: Xiang Zeng Wei Zhu
| | - Wei Zhu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Correspondence: Xiang Zeng Wei Zhu
| |
Collapse
|