1
|
Zumbi CN, Choi HHT, Huang HS, Panyod S, Wang TW, Huang SJ, Tsou HH, Ho CT, Sheen LY. Amino acid metabolites profiling in unpredictable chronic mild stress-induced depressive rats and the protective effects of Gastrodia elata Blume and gastrodin. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118906. [PMID: 39395763 DOI: 10.1016/j.jep.2024.118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Major depressive disorder (MDD) is a prevalent condition that affects approximately 350 million people worldwide. Several studies have identified changes in amino acids in the blood of MDD patients, suggesting their potential as biomarkers to better understand their role in depression. Gastrodia elata Blume (GEB) and its active compound gastrodin (GAS) are recognized for their antidepressant properties. However, their effects on amino acid profiles and their potential role in alleviating depression remain poorly understood. Understanding how GEB and GAS influence amino acid metabolism may offer novel insights into their mechanisms in alleviating depression, potentially leading to more targeted therapeutic strategies. AIM OF THE STUDY This study aimed to investigate the potential role of supplementing GEB and its active compound GAS to reverse altered amino acid profiles in depressed rats. MATERIALS AND METHODS To achieve this, six-week-old SD rats were induced depressive-like behaviors by the UCMS rat model for 5 weeks. Groups receiving GEB or GAS were administered orally via gavage daily within the UCMS model. Serum samples were collected and analyzed using a targeted metabolomics approach employing LC-MS for amino acid profiling. RESULTS A total of 38 amino acid metabolites were identified, 17 of which were significantly altered following UCMS. UCMS rats exhibited perturbed arginine biosynthesis, arginine and proline metabolism pathways. Changes in key amino acids in these metabolic pathways were reversed following supplementation with GEB and GAS, which also alleviated depressive symptoms. CONCLUSIONS In conclusion, UCMS-induced depression in rats causes changes in some amino acid metabolites similar to those found in human depression, validating its relevance as a model for studying depression. Additionally, the research suggests that GEB and GAS may exert antidepressant effects by regulating amino acid metabolism.
Collapse
Affiliation(s)
- Crystal Ngofi Zumbi
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Hailey Hei Tung Choi
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Tse-Wen Wang
- Metabolomics Core Laboratory, KimForest Enterprise Co., LTD., New Taipei, Taiwan.
| | - Shyh-Jer Huang
- Department of Biomedical Big Data R&D, KimForest Enterprise Co., LTD., New Taipei, Taiwan.
| | - Han-Hsing Tsou
- Metabolomics Core Laboratory, KimForest Enterprise Co., LTD., New Taipei, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, NJ, USA.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan; National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Balasubramanian R, Shutta KH, Guasch-Ferre M, Huang T, Jha SC, Zhu Y, Shadyab AH, Manson JE, Corella D, Fitó M, Hu FB, Rexrode KM, Clish CB, Hankinson SE, Kubzansky LD. Metabolomic profiles of chronic distress are associated with cardiovascular disease risk and inflammation-related risk factors. Brain Behav Immun 2023; 114:262-274. [PMID: 37557964 PMCID: PMC11450778 DOI: 10.1016/j.bbi.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Chronic psychological distress is associated with increased risk of cardiovascular disease (CVD) and investigators have posited inflammatory factors may be centrally involved in these relationships. However, mechanistic evidence and molecular underpinnings of these processes remain unclear, and data are particularly sparse among women. This study examined if a metabolite profile linked with distress was associated with increased CVD risk and inflammation-related risk factors. METHODS A plasma metabolite-based distress score (MDS) of twenty chronic psychological distress-related metabolites was developed in cross-sectional, 1:1 matched case-control data comprised of 558 women from the Nurses' Health Study (NHS; 279 women with distress, 279 controls). This MDS was then evaluated in two other cohorts: the Women's Health Initiative Observational Cohort (WHI-OS) and the Prevención con Dieta Mediterránea (PREDIMED) trial. We tested the MDS's association with risk of future CVD in each sample and with levels of C-reactive protein (CRP) in the WHI-OS. The WHI-OS subsample included 944 postmenopausal women (472 CHD cases; mean time to event = 5.8 years); the PREDIMED subsample included 980 men and women (224 CVD cases, mean time to event = 3.1 years). RESULTS In the WHI-OS, a 1-SD increase in the plasma MDS was associated with a 20% increased incident CHD risk (odds ratio [OR] = 1.20, 95% CI: 1.04 - 1.38), adjusting for known CVD risk factors excluding total and HDL cholesterol. This association was attenuated after including total and HDL cholesterol. CRP mediated an average 12.9% (95% CI: 4.9% - 28%, p < 10-15) of the total effect of MDS on CHD risk when adjusting for matching factors. This effect was attenuated after adjusting for known CVD risk factors. Of the metabolites in the MDS, tryptophan and threonine were inversely associated with incident CHD risk in univariate models. In PREDIMED, each one SD increase in the MDS was associated with an OR of 1.19 (95% CI: 1.00 - 1.41) for incident CVD risk, after adjusting all risk factors. Similar associations were observed in men and women. Four metabolites in the MDS were associated with incident CVD risk in PREDIMED in univariate models. Biliverdin and C36:5 phosphatidylcholine (PC) plasmalogen had inverse associations; C16:0 ceramide and C18:0 lysophosphatidylethanolamine(LPE) each had positive associations with CVD risk. CONCLUSIONS Our study points to molecular alterations that may underlie the association between chronic distress and subsequent risk of cardiovascular disease in adults.
Collapse
Affiliation(s)
- Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Katherine H Shutta
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, United States of America; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Marta Guasch-Ferre
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Shaili C Jha
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Yiwen Zhu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, United States of America
| | - JoAnn E Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Dolores Corella
- Department of Preventive Medicine and Public Health. University of Valencia, Valencia Spain and CIBEROBN, Madrid, Spain
| | - Montserrat Fitó
- Epidemiology and Public Health program. Hospital del Mar Research Institute, Barcelona, Spain and CIBEROBN, Madrid, Spain
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Kathryn M Rexrode
- Harvard Medical School, Boston, MA, United States of America; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, the United States of America
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States of America
| | - Susan E Hankinson
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| |
Collapse
|