1
|
Munch MM, Strenk SM, Srinivasan S, Fiedler TL, Proll S, Fredricks DN. Gardnerella Species and Their Association With Bacterial Vaginosis. J Infect Dis 2024; 230:e171-e181. [PMID: 39052736 PMCID: PMC11272073 DOI: 10.1093/infdis/jiae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Bacterial vaginosis (BV) is a condition marked by high vaginal bacterial diversity. Gardnerella vaginalis has been implicated in BV but is also detected in healthy women. The Gardnerella genus has been expanded to encompass 6 validly named species and several genomospecies. We hypothesized that particular Gardnerella species may be more associated with BV. METHODS Quantitative polymerase chain reaction (PCR) assays were developed targeting the cpn60 gene of species groups including G. vaginalis, G. piotii/pickettii, G. swidsinskii/greenwoodii, and G. leopoldii. These assays were applied to vaginal swabs from individuals with (n = 101) and without BV (n = 150) attending a sexual health clinic in Seattle, Washington. Weekly swabs were collected from 42 participants for up to 12 weeks. RESULTS Concentrations and prevalence of each Gardnerella species group were significantly higher in participants with BV; 91.1% of BV-positive participants had 3 or more Gardnerella species groups detected compared to 32.0% of BV-negative participants (P < .0001). BV-negative participants with 3 or more species groups detected were more likely to develop BV within 100 days versus those with fewer (60.5% vs 3.7%, P < .0001). CONCLUSIONS These results suggest that BV reflects a state of high Gardnerella species diversity. No Gardnerella species group was a specific marker for BV.
Collapse
Affiliation(s)
- Matthew M Munch
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Susan M Strenk
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tina L Fiedler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sean Proll
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - David N Fredricks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Berman HL, Goltsman DSA, Anderson M, Relman DA, Callahan BJ. Gardnerella diversity and ecology in pregnancy and preterm birth. mSystems 2024; 9:e0133923. [PMID: 38752784 PMCID: PMC11338264 DOI: 10.1128/msystems.01339-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/08/2024] [Indexed: 06/19/2024] Open
Abstract
The vaginal microbiome has been linked to negative health outcomes including preterm birth. Specific taxa, including Gardnerella spp., have been identified as risk factors for these conditions. Historically, microbiome analysis methods have treated all Gardnerella spp. as one species, but the broad diversity of Gardnerella has become more apparent. We explore the diversity of Gardnerella clades and genomic species in the vaginal microbiome of pregnant women and their associations with microbiome composition and preterm birth. Relative abundance of Gardnerella clades and genomic species and other taxa was quantified in shotgun metagenomic sequencing data from three distinct cohorts of pregnant women. We also assessed the diversity and abundance of Gardnerella variants in 16S rRNA gene amplicon sequencing data from seven previously conducted studies in differing populations. Individual microbiomes often contained multiple Gardnerella variants, and the number of clades was associated with increased microbial load, or the ratio of non-human reads to human reads. Taxon co-occurrence patterns were largely consistent across Gardnerella clades and among cohorts. Some variants previously described as rare were prevalent in other cohorts, highlighting the importance of surveying a diverse set of populations to fully capture the diversity of Gardnerella. The diversity of Gardnerella both across populations and within individual vaginal microbiomes has long been unappreciated, as has been the intra-species diversity of many other members of the vaginal microbiome. The broad genomic diversity of Gardnerella has led to its reclassification as multiple species; here we demonstrate the diversity of Gardnerella found within and between vaginal microbiomes.IMPORTANCEThe present study shows that single microbiomes can contain all currently known species of Gardnerella and that multiple similar species can exist within the same environment. Furthermore, surveys of demographically distinct populations suggest that some species appear more commonly in certain populations. Further studies in broad and diverse populations will be necessary to fully understand the ecological roles of each Gardnerella sp., how they can co-exist, and their distinct impacts on microbial communities, preterm birth, and other health outcomes.
Collapse
Affiliation(s)
- Hanna L. Berman
- Department of
Population Health and Pathobiology, North Carolina State
University, Raleigh,
North Carolina, USA
| | - Daniela S. Aliaga Goltsman
- Department of
Microbiology and Immunology, Stanford University School of
Medicine, Stanford,
California, USA
- Department of
Medicine, Stanford University School of
Medicine, Stanford,
California, USA
| | - Megan Anderson
- Department of
Population Health and Pathobiology, North Carolina State
University, Raleigh,
North Carolina, USA
| | - David A. Relman
- Department of
Microbiology and Immunology, Stanford University School of
Medicine, Stanford,
California, USA
- Department of
Medicine, Stanford University School of
Medicine, Stanford,
California, USA
- Infectious Diseases
Section, Veterans Affairs Palo Alto Health Care
System, Palo Alto,
California, USA
| | - Benjamin J. Callahan
- Department of
Population Health and Pathobiology, North Carolina State
University, Raleigh,
North Carolina, USA
- Bioinformatics
Research Center, North Carolina State
University, Raleigh,
North Carolina, USA
| |
Collapse
|
3
|
Sobel J. Achieving Effective Probiotic Therapy in Bacterial Vaginosis-Still an Unanswered Priority? Sex Transm Dis 2024; 51:441-443. [PMID: 38733974 DOI: 10.1097/olq.0000000000001967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Affiliation(s)
- Jack Sobel
- From the Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
4
|
Holm JB, France MT, Gajer P, Ma B, Brotman RM, Shardell M, Forney L, Ravel J. Integrating compositional and functional content to describe vaginal microbiomes in health and disease. MICROBIOME 2023; 11:259. [PMID: 38031142 PMCID: PMC10688475 DOI: 10.1186/s40168-023-01692-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/07/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND A Lactobacillus-dominated vaginal microbiome provides the first line of defense against adverse genital tract health outcomes. However, there is limited understanding of the mechanisms by which the vaginal microbiome modulates protection, as prior work mostly described its composition through morphologic assessment and marker gene sequencing methods that do not capture functional information. To address this gap, we developed metagenomic community state types (mgCSTs) which use metagenomic sequences to describe and define vaginal microbiomes based on both composition and functional potential. RESULTS MgCSTs are categories of microbiomes classified using taxonomy and the functional potential encoded in their metagenomes. MgCSTs reflect unique combinations of metagenomic subspecies (mgSs), which are assemblages of bacterial strains of the same species, within a microbiome. We demonstrate that mgCSTs are associated with demographics such as age and race, as well as vaginal pH and Gram stain assessment of vaginal smears. Importantly, these associations varied between mgCSTs predominated by the same bacterial species. A subset of mgCSTs, including three of the six predominated by Gardnerella vaginalis mgSs, as well as mgSs of L. iners, were associated with a greater likelihood of bacterial vaginosis diagnosed by Amsel clinical criteria. This L. iners mgSs, among other functional features, encoded enhanced genetic capabilities for epithelial cell attachment that could facilitate cytotoxin-mediated cell lysis. Finally, we report a mgSs and mgCST classifier for which source code is provided and may be adapted for use by the microbiome research community. CONCLUSIONS MgCSTs are a novel and easily implemented approach to reduce the dimension of complex metagenomic datasets while maintaining their functional uniqueness. MgCSTs enable the investigation of multiple strains of the same species and the functional diversity in that species. Future investigations of functional diversity may be key to unraveling the pathways by which the vaginal microbiome modulates the protection of the genital tract. Importantly, our findings support the hypothesis that functional differences between vaginal microbiomes, including those that may look compositionally similar, are critical considerations in vaginal health. Ultimately, mgCSTs may lead to novel hypotheses concerning the role of the vaginal microbiome in promoting health and disease, and identify targets for novel prognostic, diagnostic, and therapeutic strategies to improve women's genital health. Video Abstract.
Collapse
Affiliation(s)
- Johanna B Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael T France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle Shardell
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Plummer EL, Sfameni AM, Vodstrcil LA, Danielewski JA, Murray GL, Fehler G, Fairley CK, Garland SM, Chow EPF, Hocking JS, Bradshaw CS. Prevotella and Gardnerella Are Associated With Treatment Failure Following First-line Antibiotics for Bacterial Vaginosis. J Infect Dis 2023; 228:646-656. [PMID: 37427495 PMCID: PMC10469350 DOI: 10.1093/infdis/jiad261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Bacterial vaginosis (BV) is a common vaginal dysbiosis that often recurs following first-line antibiotics. We investigated if vaginal microbiota composition was associated with BV recurrence. METHODS We analyzed samples and data from 121 women who participated in 3 published trials evaluating novel interventions for improving BV cure, including concurrent antibiotic treatment of regular sexual partners (RSPs). Women diagnosed with BV received first-line antibiotics and self-collected vaginal swabs pretreatment and the day after finishing antibiotics (immediately posttreatment). 16S rRNA gene sequencing was performed on vaginal samples. Logistic regression explored associations between BV recurrence and features of the vaginal microbiota pre- and posttreatment. RESULTS Sixteen women (13% [95% confidence interval {CI}, 8%-21%]) experienced BV recurrence within 1 month of treatment. Women with an untreated RSP were more likely to experience recurrence than women with no RSP (P = .008) or an RSP who received treatment (P = .011). A higher abundance of Prevotella pretreatment (adjusted odds ratio [AOR], 1.35 [95% CI, 1.05-1.91]) and Gardnerella immediately posttreatment (AOR, 1.23 [95% CI, 1.03-1.49]) were associated with increased odds of BV recurrence. CONCLUSIONS Having specific Prevotella spp prior to recommended treatment and persistence of Gardnerella immediately posttreatment may contribute to the high rates of BV recurrence. Interventions that target these taxa are likely required to achieve sustained BV cure.
Collapse
Affiliation(s)
- Erica L Plummer
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
| | - Amelia M Sfameni
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
| | - Lenka A Vodstrcil
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer A Danielewski
- Molecular Microbiology, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Women's Centre for Infectious Diseases, The Royal Women's Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Gerald L Murray
- Molecular Microbiology, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Women's Centre for Infectious Diseases, The Royal Women's Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Glenda Fehler
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
| | - Christopher K Fairley
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
| | - Suzanne M Garland
- Molecular Microbiology, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Women's Centre for Infectious Diseases, The Royal Women's Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Eric P F Chow
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jane S Hocking
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Catriona S Bradshaw
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Muzny CA, Sobel JD. Understanding and Preventing Recurring Bacterial Vaginosis: Important Considerations for Clinicians. Int J Womens Health 2023; 15:1317-1325. [PMID: 37581202 PMCID: PMC10423565 DOI: 10.2147/ijwh.s383333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023] Open
Abstract
Bacterial vaginosis (BV) is the most common vaginal infection worldwide. It is associated with an increased risk of acquisition of HIV and other sexually transmitted infections (STIs) as well as pelvic inflammatory disease and adverse birth outcomes. During BV, a polymicrobial biofilm forms on the surface of the vaginal mucosa. However, the exact etiology of BV remains controversial which has impeded significant advances in diagnosis, treatment, and prevention. Despite 30-day cure rates approaching 80% in BV-infected women treated with 7 days of oral metronidazole, recurrence within 12 months is common. This article provides a current review of the epidemiology, pathogenesis, diagnosis, and treatment of recurrent BV for practicing clinicians who commonly see women with this recurrent vaginal infection. Regarding management, we focus primarily on antimicrobial measures that may be effective. Future areas of research in this field are also discussed.
Collapse
Affiliation(s)
- Christina A Muzny
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jack D Sobel
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
7
|
Shvartsman E, Hill JE, Sandstrom P, MacDonald KS. Gardnerella Revisited: Species Heterogeneity, Virulence Factors, Mucosal Immune Responses, and Contributions to Bacterial Vaginosis. Infect Immun 2023; 91:e0039022. [PMID: 37071014 PMCID: PMC10187134 DOI: 10.1128/iai.00390-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Gardnerella species are associated with bacterial vaginosis (BV) and have been investigated as etiological agents of the condition. Nonetheless, the isolation of this taxon from healthy individuals has raised important questions regarding its etiological role. Recently, using advanced molecular approaches, the Gardnerella genus was expanded to include several different species that exhibit differences in virulence potential. Understanding the significance of these different species with respect to mucosal immunity and the pathogenesis and complications of BV could be crucial to solving the BV enigma. Here, we review key findings regarding the unique genetic and phenotypic diversity within this genus, virulence factors, and effects on mucosal immunity as they stand. We also comment on the relevance of these findings to the proposed role of Gardnerella in BV pathogenesis and in reproductive health and identify key gaps in knowledge that should be explored in the future.
Collapse
Affiliation(s)
- Elinor Shvartsman
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Manitoba, Canada
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paul Sandstrom
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Manitoba, Canada
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kelly S. MacDonald
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Manitoba, Canada
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Holm JB, France MT, Gajer P, Ma B, Brotman RM, Shardell M, Forney L, Ravel J. High-resolution functional description of vaginal microbiomes in health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.533147. [PMID: 36993583 PMCID: PMC10055360 DOI: 10.1101/2023.03.24.533147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background A Lactobacillus-dominated vaginal microbiome provides the first line of defense against numerous adverse genital tract health outcomes. However, there is limited understanding of the mechanisms by which the vaginal microbiome modulates protection, as prior work mostly described its composition through morphologic assessment and marker gene sequencing methods that do not capture functional information. To address this limitation, we developed metagenomic community state types (mgCSTs) which uses metagenomic sequences to describe and define vaginal microbiomes based on both composition and function. Results MgCSTs are categories of microbiomes classified using taxonomy and the functional potential encoded in their metagenomes. MgCSTs reflect unique combinations of metagenomic subspecies (mgSs), which are assemblages of bacterial strains of the same species, within a microbiome. We demonstrate that mgCSTs are associated with demographics such as age and race, as well as vaginal pH and Gram stain assessment of vaginal smears. Importantly, these associations varied between mgCSTs predominated by the same bacterial species. A subset of mgCSTs, including three of the six predominated by Gardnerella mgSs, as well as a mgSs of L. iners, were associated with a greater likelihood of Amsel bacterial vaginosis diagnosis. This L. iners mgSs, among other functional features, encoded enhanced genetic capabilities for epithelial cell attachment that could facilitate cytotoxin-mediated cell lysis. Finally, we report a mgSs and mgCST classifier as an easily applied, standardized method for use by the microbiome research community. Conclusions MgCSTs are a novel and easily implemented approach to reducing the dimension of complex metagenomic datasets, while maintaining their functional uniqueness. MgCSTs enable investigation of multiple strains of the same species and the functional diversity in that species. Future investigations of functional diversity may be key to unraveling the pathways by which the vaginal microbiome modulates protection to the genital tract. Importantly, our findings support the hypothesis that functional differences between vaginal microbiomes, including those that may look compositionally similar, are critical considerations in vaginal health. Ultimately, mgCSTs may lead to novel hypotheses concerning the role of the vaginal microbiome in promoting health and disease, and identify targets for novel prognostic, diagnostic, and therapeutic strategies to improve women's genital health.
Collapse
Affiliation(s)
- Johanna B. Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle Shardell
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Toh E, Xing Y, Gao X, Jordan SJ, Batteiger TA, Batteiger BE, Van Der Pol B, Muzny CA, Gebregziabher N, Williams JA, Fortenberry LJ, Fortenberry JD, Dong Q, Nelson DE. Sexual behavior shapes male genitourinary microbiome composition. Cell Rep Med 2023; 4:100981. [PMID: 36948151 PMCID: PMC10040456 DOI: 10.1016/j.xcrm.2023.100981] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/21/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
The origin, composition, and significance of the distal male urethral microbiome are unclear, but vaginal microbiome dysbiosis is linked to new sex partners and several urogynecological syndromes. We characterized 110 urethral specimens from men without urethral symptoms, infections, or inflammation using shotgun metagenomics. Most urethral specimens contain characteristic lactic acid bacteria and Corynebacterium spp. In contrast, several bacteria associated with vaginal dysbiosis were present only in specimens from men who reported vaginal intercourse. Sexual behavior, but not other evaluated behavioral, demographic, or clinical variables, strongly associated with inter-specimen variance in urethral microbiome composition. Thus, the male urethra supports a simple core microbiome that is established independent of sexual exposures but can be re-shaped by vaginal sex. Overall, the results suggest that urogenital microbiology and sexual behavior are inexorably intertwined, and show that the male urethra harbors female urogenital pathobionts.
Collapse
Affiliation(s)
- Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yue Xing
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Xiang Gao
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Stephen J Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresa A Batteiger
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Byron E Batteiger
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Barbara Van Der Pol
- Department of Medicine, Division of Infectious Diseases, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christina A Muzny
- Department of Medicine, Division of Infectious Diseases, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Netsanet Gebregziabher
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James A Williams
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lora J Fortenberry
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Dennis Fortenberry
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qunfeng Dong
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA; Center for Biomedical Informatics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
10
|
Lima A, França A, Muzny CA, Taylor CM, Cerca N. DNA extraction leads to bias in bacterial quantification by qPCR. Appl Microbiol Biotechnol 2022; 106:7993-8006. [PMID: 36374332 PMCID: PMC10493044 DOI: 10.1007/s00253-022-12276-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Quantitative PCR (qPCR) has become a widely used technique for bacterial quantification. The affordability, ease of experimental design, reproducibility, and robustness of qPCR experiments contribute to its success. The establishment of guidelines for minimum information for publication of qPCR experiments, now more than 10 years ago, aimed to mitigate the publication of contradictory data. Unfortunately, there are still a significant number of recent research articles that do not consider the main pitfalls of qPCR for quantification of biological samples, which undoubtedly leads to biased experimental conclusions. qPCR experiments have two main issues that need to be properly tackled: those related to the extraction and purification of genomic DNA and those related to the thermal amplification process. This mini-review provides an updated literature survey that critically analyzes the following key aspects of bacterial quantification by qPCR: (i) the normalization of qPCR results by using exogenous controls, (ii) the construction of adequate calibration curves, and (iii) the determination of qPCR reaction efficiency. It is primarily focused on original papers published last year, where qPCR was applied to quantify bacterial species in different types of biological samples, including multi-species biofilms, human fluids, and water and soil samples. KEY POINTS: • qPCR is a widely used technique used for absolute bacterial quantification. • Recently published papers lack proper qPCR methodologies. • Not including proper qPCR controls significantly affect experimental conclusions.
Collapse
Affiliation(s)
- Angela Lima
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Angela França
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology & Microbial Genomics Resource Group, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal.
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
11
|
Zhou R, Lu J, Wang J, Xiao B. Vaginal Lactobacillus iners abundance is associated with outcome in antibiotic treatment of bacterial vaginosis and capable of inhibiting Gardnerella. Front Cell Infect Microbiol 2022; 12:1033431. [PMID: 36483454 PMCID: PMC9723143 DOI: 10.3389/fcimb.2022.1033431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial vaginosis is characterized as a polymicrobial dysbiosis with the loss of Lactobacillus spp. and growth of multiple anerobic bacteria, including Gardnerella, Prevotella and Atopobium ranked as the top three most abundant. A total of nine Gardnerella genomospecies have been identified, yet the association between their distribution or any exact Lactobacillus species with BV occurrence or prognosis remains controversial. A total of 308 patients and 62 healthy women who sought annual examinations were recruited, with 130 BV patients and 41 healthy women who met our inclusion criteria finally included. Vaginal samples were used for microscopic examination, 16S rRNA sequencing, bacterial culture and isolation. Isolates of Gardnerella vaginalis, Fannyhessae vaginae (used to be called Atopobium vaginae) and Lactobacillus iners were used for competition tests. We found that the relative abundances of Gardnerella, Prevotella and Atopobium were elevated in BV patients compared to healthy people (p<0.0001), yet no significant differences were found among patients with different clinical outcomes (p>0.05). Seven out of nine Gardnerella genomospecies were present in both BV patients and healthy women, and the relative abundances of all detected genomospecies were higher in BV patients (p<0.05). Cured patients possessed higher GS03 than intermediate and failed patients (p=0.005, 0.0337). L. iners was significantly higher in cured patients than in the other two groups (p=0.0021, p<0.0001), and its ability to inhibit the growth of G. vaginalis and F. vaginae was validated. In summary, seven Gardnerella genomospecies were detected in Chinese BV patients, but no association of its distribution and BV occurrence or prognosis was found. The relative abundance of L. iners was higher in cured patients, and its antimicrobial activity against G. vaginalis and F. vaginae was validated through in vitro inhibition experiment. L. iners could become a predictive indicator of clinical outcomes of BV patients, and its antimicrobial function might be beneficial to BV patients.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jingjing Lu
- Chinese Academy of Science (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- Chinese Academy of Science (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Jun Wang, ; Bingbing Xiao,
| | - Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China,*Correspondence: Jun Wang, ; Bingbing Xiao,
| |
Collapse
|
12
|
Vaginom- und „Endometriom“-Diagnostik bei Kinderwunsch. GYNAKOLOGISCHE ENDOKRINOLOGIE 2022. [DOI: 10.1007/s10304-022-00466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
ZusammenfassungDie molekulare Diagnostik der Vaginal- und Endometriumflora ermöglicht neue Einblicke in die physiologische Besiedlung des weiblichen Genitaltrakts. Wesentlich ist hierbei eine Dominanz von bestimmten Laktobazillenarten bei gleichzeitig geringer Artenvielfalt. Die Bildung von D‑Laktat ist eine entscheidende Voraussetzung für die Abwehr von sexuell übertragbaren Erkrankungen, den Erfolg einer In-vitro-Fertilisation sowie einen ungestörten Schwangerschaftsverlauf. Eine Störung der Flora durch pathogene Bakterienarten mit der Folge des Auftretens einer bakteriellen Vaginose oder einer chronischen Endometritis kann zu Implantationsversagen, Aborten und Frühgeburtsbestrebungen führen. Bei wiederholtem Implantationsversagen ermöglicht eine Mikrobiomdiagnostik – im Gegensatz zur klassischen Kultur, den Amsel-Kriterien oder dem Nugent-Score – einen sehr viel detaillierteren Einblick in die Pathophysiologie, da sich entscheidende Bakterienarten nur schwer oder gar nicht anzüchten lassen. Dies erlaubt eine sehr viel bessere Planung der Therapie zur Wiederherstellung physiologischer Verhältnisse.
Collapse
|
13
|
Mollin A, Katta M, Sobel JD, Akins RA. Association of key species of vaginal bacteria of recurrent bacterial vaginosis patients before and after oral metronidazole therapy with short- and long-term clinical outcomes. PLoS One 2022; 17:e0272012. [PMID: 35901180 PMCID: PMC9333308 DOI: 10.1371/journal.pone.0272012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial vaginosis (BV) is associated with a state of vaginal dysbiosis typically involving depletion of otherwise dominant populations of Lactobacillus. The causes of this microbial succession are not known; there may be multiple causes. Standard treatment includes oral metronidazole, which typically restores Lactobacillus species to dominance. However, recurrence rates are high; recurrent BV patients recur 3–4 times annually and are often refractory to treatment. Our previous qPCR-based study of recurrent BV patients pointed to putatively more virulent species of Gardnerella that were associated with refractory responses to oral metronidazole, and less robust recovery of Lactobacillus species associated with recurrence after an initial period of remission. However, these associations did not account for outcomes in all patients, suggesting that other bacterial species were involved. In this follow-up study, we sequenced the V4 domain of 16S rRNA sequences of 41of these same patients pre- and posttreatment. Overall compositions among pretreatment clinical outcome groups were not different, although alpha diversity significantly decreased: refractory > recurrent > remission. Combinations of key species were associated with and prognostic for outcome. Higher pretreatment abundance of Megasphaera lornae together with lower abundance of Gardnerella Gsp07 and Finegoldia magna predicted long term remission after oral metronidazole. Furthermore, a subset of refractory patients that did not have high levels of Gardnerella Gsp07, instead had elevated levels of alternative species including Atopobium vaginae, Mageeibacillus indolicus (BVAB3), and Prevotella timonensis. Patients who recurred after transient remission had elevated abundance of species including Atopobium vaginae, Gardnerella, and Aerococcus christensenii, compared to long-term remission patients. Core bacterial species among refractory patients did not change in abundance after metronidazole, suggesting resistance or tolerance, in contrast to the loss in abundance of the same species among recurrent or remission patients. These findings have potential prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Ashomathi Mollin
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Mounika Katta
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jack D. Sobel
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Robert A. Akins
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
14
|
Qin H, Xiao B. Research Progress on the Correlation Between Gardnerella Typing and Bacterial Vaginosis. Front Cell Infect Microbiol 2022; 12:858155. [PMID: 35402309 PMCID: PMC8990036 DOI: 10.3389/fcimb.2022.858155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial vaginosis (BV) is the most common infectious disease of the reproductive tract in women of childbearing age. It often manifests as an imbalance in the vaginal microbiome, including a decrease in Lactobacillus and an increase in anaerobic bacteria. While Gardnerella spp. are considered a major cause of BV, they are also detected in the vaginal microbiome of healthy women. G. vaginalis was the only recognized species of Gardnerella until a recent study characterized three new species, G. leopoldii, G. piotii, and G. swidsinskii. This review describes the different types and genetic diversity of Gardnerella, as well as new findings on the correlation between different Gardnerella spp. and BV.
Collapse
|
15
|
Astodrimer sodium and bacterial vaginosis: a mini review. Arch Gynecol Obstet 2022; 306:101-108. [PMID: 35246717 PMCID: PMC9300565 DOI: 10.1007/s00404-022-06429-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Bacterial vaginosis (BV) is the most common vaginal infection affecting women of childbearing age, and is associated with a substantial burden on women’s physical, emotional, sexual and social lives, as well as being linked to a number of gynaecological and obstetrical complications and adverse pregnancy outcomes. Antibiotics, such as metronidazole or clindamycin, are recommended as first-line treatment for BV, but may be associated with antibiotic resistance, high rates of recurrence and poor patient treatment satisfaction. Astodrimer sodium gel is a novel, non-antibiotic treatment for BV that is not systemically absorbed. It prevents pathogenic bacteria from adhering to the vaginal wall, and disrupts and inhibits the formation of pathogenic bacterial biofilms. Clinical cure rates of 50–57% were observed in patients with BV treated with astodrimer sodium compared with 17–21% treated with placebo (p < 0.001) in Phase 3 trials. In a separate Phase 3 trial, recurrence of BV occurred in 44% of patients treated with astodrimer sodium compared with 54% of patients who received placebo (p = 0.015). Astodrimer sodium is well tolerated, with vulvovaginal candidosis being the only treatment-related adverse event reported to occur more often than with placebo. The availability of astodrimer sodium, a well-tolerated, convenient, non-antibiotic treatment for BV, represents significant progress in the treatment of this burdensome condition.
Collapse
|