1
|
Newar SL, Schneiderová I, Hughes B, Bowman J. Ultrasound and ultraviolet: crypsis in gliding mammals. PeerJ 2024; 12:e17048. [PMID: 38549780 PMCID: PMC10977092 DOI: 10.7717/peerj.17048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/13/2024] [Indexed: 04/02/2024] Open
Abstract
Gliding is only present in six extant groups of mammals-interestingly, despite divergent evolutionary histories, all mammalian gliders are strictly nocturnal. Gliding mammals also seem to have relatively high rates of ultrasound use and ultraviolet-induced photoluminescence (UVP) in contrast with their close relatives. Therefore, we hypothesized that, despite diverging lineages, gliding mammals use similar modes of cryptic communication compared to their non-gliding counterparts. We developed two datasets containing the vocal range (minimum-maximum of the dominant harmonic; kHz) and UVP of 73 and 82 species, respectively; we report four novel vocal repertoires and 57 novel observations of the presence or absence of UVP. We complemented these datasets with information about body size, diel activity patterns, habitat openness, and sociality to explore possible covariates related to vocal production and UVP. We found that the maximum of the dominant harmonic was significant higher in gliding mammals when vocalizing than their non-gliding relatives. Additionally, we found that nocturnality was the only significant predictor of UVP, consistent with the previous hypothesis that luminophores primarily drive UVP in mammal fur. In contrast, however, we did not find UVP ubiquitous in nocturnal mammals, suggesting that some unknown process may contribute to variation in this trait.
Collapse
Affiliation(s)
- Sasha L. Newar
- Environmental and Life Sciences, Trent University, Peterborough, ON, Canada
| | | | - Bryan Hughes
- Faculty of Biology, Laurentian University, Sudbury, ON, Canada
| | - Jeff Bowman
- Environmental and Life Sciences, Trent University, Peterborough, ON, Canada
- Ontario Ministry of Natural Resources and Foresty, Peterborough, ON, Canada
| |
Collapse
|
2
|
Reinhold LM, Rymer TL, Helgen KM, Wilson DT. Photoluminescence in mammal fur: 111 years of research. J Mammal 2023; 104:892-906. [PMID: 37545668 PMCID: PMC10399922 DOI: 10.1093/jmammal/gyad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/04/2023] [Indexed: 08/08/2023] Open
Abstract
Photoluminescence in the pelage of mammals, a topic that has gained considerable recent research interest, was first documented in the 1700s and reported sporadically in the literature over the last century. The first detailed species accounts were of rabbits and humans, published 111 years ago in 1911. Recent studies have largely overlooked this earlier research into photoluminescent mammalian taxa and their luminophores. Here we provide a comprehensive update on existing research on photoluminescence in mammal fur, with the intention of drawing attention to earlier pioneering research in this field. We provide an overview on appropriate terminology, explain the physics of photoluminescence, and explore pigmentation and the ubiquitous photoluminescence of animal tissues, before touching on the emerging debate regarding visual function. We then provide a chronological account of research into mammalian fur photoluminescence, from the earliest discoveries and identification of luminophores to the most recent studies. While all mammal fur is likely to have a general low-level photoluminescence due to the presence of the protein keratin, fur glows luminously under ultraviolet light if it contains significant concentrations of tryptophan metabolites or porphyrins. Finally, we briefly discuss issues associated with preserved museum specimens in studies of photoluminescence. The study of mammal fur photoluminescence has a substantial history, which provides a broad foundation on which future studies can be grounded.
Collapse
Affiliation(s)
- Linda M Reinhold
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
| | - Tasmin L Rymer
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
| | - Kristofer M Helgen
- Australian Museum Research Institute, 1 William Street, Sydney, New South Wales 2010, Australia
| | - David T Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia
| |
Collapse
|
3
|
Nummert G, Ritson K, Nemvalts K. Photoluminescence in the Garden dormouse (Eliomys quercinus). ZOOLOGY 2023; 157:126075. [PMID: 36758427 DOI: 10.1016/j.zool.2023.126075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Every year, more and more discoveries of photoluminescence in different mammal species are made. The more recent cases thus far have been in duck-billed platypus (Ornithorhyncus anatinus), New World squirrels (Glaucomys spp.) and springhare (Pedetidae). Now we can add another species to the list: the garden dormouse (Eliomys quercinus), an endemic rodent to Europe, currently categorized as Near Threatened (NT) by the IUCN. The fluorescence was described and compared qualitatively in museum specimens, deceased and hibernating animals. The feet and nose of the hibernating dormouse displayed greenish-blue photoluminescence under UV light through a yellow filter, whereas the fur was bright red. The live animal had more vivid red colouring than the museum specimen. The fading and changing of the colour and brightness of photoluminescence was observed in a recently deceased animal and even more strongly in museum specimens.
Collapse
Affiliation(s)
- Grete Nummert
- Species Conservation Research Center, Tallinn Zoo, Ehitajate tee 150, 13522 Tallinn, Estonia.
| | - Karmel Ritson
- Species Conservation Research Center, Tallinn Zoo, Ehitajate tee 150, 13522 Tallinn, Estonia
| | - Kristel Nemvalts
- Species Conservation Research Center, Tallinn Zoo, Ehitajate tee 150, 13522 Tallinn, Estonia
| |
Collapse
|
4
|
Toussaint SLD, Ponstein J, Thoury M, Métivier R, Kalthoff DC, Habermeyer B, Guilard R, Bock S, Mortensen P, Sandberg S, Gueriau P, Amson E. Fur glowing under ultraviolet: in situ analysis of porphyrin accumulation in the skin appendages of mammals. Integr Zool 2023; 18:15-26. [PMID: 35500584 DOI: 10.1111/1749-4877.12655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Examples of photoluminescence (PL) are being reported with increasing frequency in a wide range of organisms from diverse ecosystems. However, the chemical basis of this PL remains poorly defined, and our understanding of its potential ecological function is still superficial. Among mammals, recent analyses have identified free-base porphyrins as the compounds responsible for the reddish ultraviolet-induced photoluminescence (UV-PL) observed in the pelage of springhares and hedgehogs. However, the localization of the pigments within the hair largely remains to be determined. Here, we use photoluminescence multispectral imaging emission and excitation spectroscopy to detect, map, and characterize porphyrinic compounds in skin appendages in situ. We also document new cases of mammalian UV-PL caused by free-base porphyrins in distantly related species. Spatial distribution of the UV-PL is strongly suggestive of an endogenous origin of the porphyrinic compounds. We argue that reddish UV-PL is predominantly observed in crepuscular and nocturnal mammals because porphyrins are photodegradable. Consequently, this phenomenon may not have a specific function in intra- or interspecific communication but rather represents a byproduct of potentially widespread physiological processes.
Collapse
Affiliation(s)
- Séverine L D Toussaint
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Jasper Ponstein
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,AG Paläobiologie und Evolution, Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Mathieu Thoury
- IPANEMA, CNRS, ministère de la Culture, UVSQ, MNHN, USR3461, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rémi Métivier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette, France
| | - Daniela C Kalthoff
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Roger Guilard
- ICMUB, UMR CNRS 6302, Université de Bourgogne Franche-Comté, France
| | - Steffen Bock
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Peter Mortensen
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Sverre Sandberg
- Norwegian Porphyria Centre (NAPOS), Haukeland University Hospital, Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), and Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Norway
| | - Pierre Gueriau
- IPANEMA, CNRS, ministère de la Culture, UVSQ, MNHN, USR3461, Université Paris-Saclay, Gif-sur-Yvette, France.,Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Sobral G, Souza-Gudinho F. Fluorescence and UV-visible reflectance in the fur of several Rodentia genera. Sci Rep 2022; 12:12293. [PMID: 35853976 PMCID: PMC9296623 DOI: 10.1038/s41598-022-15952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/01/2022] [Indexed: 12/05/2022] Open
Abstract
Mammals are generally brown in colour, but recent publications are showing that they may not be as uniform as once assumed. Monotremes, marsupials, and a handful of eutherians reflect various colours when lit with UV light, mostly purple. Because of these still scarce records, we aimed to explore UV reflectance among rodent genera, the most diverse mammalian group, and the group of eutherians with the most common records of biofluorescence. Here we report structures like nails and quills reflected green, but for most genera, it was faded. However, Hystrix, Erethizon, and Ctenomys showed intense and contrasting green glow, while Chaetomys presented a vivid orange anogenital. The main available explanation of fluorescence in mammals relies on porphyrin. This explanation applies to the cases like Chaetomys, where specimens showed anogenital orange biofluorescence, but does not apply to the green biofluorescence we observed. In our sample, because the structures that reflected green were all keratinized, we have reasons to believe that biofluorescence results from keratinization and is a structurally-based colouration. However, not all spines/quills equally biofluoresced, so we cannot rule out other explanations. Since Rodentia is the most common mammalian group with reports on biofluorescence, this trait likely serves various functions that match the species diversity of this group.
Collapse
Affiliation(s)
- Gisela Sobral
- Setor de Mamíferos, Departamento de Vertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista s/n, São Cristóvão, Rio de Janeiro, RJ, CEP: 20940-040, Brazil.
| | - Filipe Souza-Gudinho
- Setor de Mamíferos, Departamento de Vertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista s/n, São Cristóvão, Rio de Janeiro, RJ, CEP: 20940-040, Brazil
| |
Collapse
|