1
|
Radomska D, Czarnomysy R, Szymanowska A, Radomski D, Chalecka M, Surazynski A, Domínguez-Álvarez E, Bielawska A, Bielawski K. Di- and Triselenoesters-Promising Drug Candidates for the Future Therapy of Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:7764. [PMID: 39063006 PMCID: PMC11277004 DOI: 10.3390/ijms25147764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is a major malignancy among women, characterized by a high mortality rate. The available literature evidence indicates that selenium, as a trace element, has chemopreventive properties against many types of cancer; as such, compounds containing it in their structure may potentially exhibit anticancer activity. Accordingly, we have undertaken a study to evaluate the effects of novel selenoesters (EDAG-1, -7, -8, -10) on MCF-7 and MDA-MB-231 breast cancer cells. Our analysis included investigations of cell proliferation and viability as well as cytometric determinations of apoptosis/autophagy induction, changes in mitochondrial membrane polarity (ΔΨm), caspase 3/7, 8, and 9 activities, and Bax, Bcl-2, p53, Akt, AMPK, and LC3A/B proteins. The obtained data revealed that the tested derivatives are highly cytotoxic and inhibit cell proliferation even at nanomolar doses (0.41-0.79 µM). Importantly, their strong proapoptotic properties (↑ caspase 3/7) are attributable to the effects on both the extrinsic (↑ caspase 8) and intrinsic (↓ ΔΨm and Bcl-2, ↑ Bax, p53, and caspase 9) pathways of apoptosis. Moreover, the tested compounds are autophagy activators (↓ Akt, ↑ autophagosomes and autolysosomes, AMPK, LC3A/B). In summary, the potent anticancer activity suggests that the tested compounds may be promising drug candidates for future breast cancer therapy.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dominik Radomski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Magda Chalecka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG-CSIC), Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
2
|
Forma A, Grunwald A, Zembala P, Januszewski J, Brachet A, Zembala R, Świątek K, Baj J. Micronutrient Status and Breast Cancer: A Narrative Review. Int J Mol Sci 2024; 25:4968. [PMID: 38732186 PMCID: PMC11084730 DOI: 10.3390/ijms25094968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer is one of the most common cancers worldwide, at the same time being one of the most prevalent causes of women's death. Many factors such as alcohol, weight fluctuations, or hormonal replacement therapy can potentially contribute to breast cancer development and progression. Another important factor in breast cancer onset includes micronutrient status. In this narrative review, we analyzed 23 micronutrients and their possible influence on breast cancer onset and progression. Further, the aim of this study was to investigate the impact of micronutrient status on the prevention of breast cancer and its possible influence on various therapeutic pathways. We researched meta-analyses, systemic and narrative reviews, retrospective studies, as well as original studies on human and animal models. The results of these studies indicate a possible correlation between the different levels of micronutrients and a decreased risk of breast cancer as well as a better survival rate. However, further studies are necessary to establish adequate doses of supplementation of the chosen micronutrients and the exact mechanisms of micronutrient impact on breast cancer therapy.
Collapse
Affiliation(s)
- Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Arkadiusz Grunwald
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Patryk Zembala
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Roksana Zembala
- Faculty of Medicine, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Kamila Świątek
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| |
Collapse
|
3
|
Jotshi A, Sukla KK, Haque MM, Bose C, Varma B, Koppiker CB, Joshi S, Mishra R. Exploring the human microbiome - A step forward for precision medicine in breast cancer. Cancer Rep (Hoboken) 2023; 6:e1877. [PMID: 37539732 PMCID: PMC10644338 DOI: 10.1002/cnr2.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The second most frequent cancer in the world and the most common malignancy in women is breast cancer. Breast cancer is a significant health concern in India with a high mortality-to-incidence ratio and presentation at a younger age. RECENT FINDINGS Recent studies have identified gut microbiota as a significant factor that can have an influence on the development, treatment, and prognosis of breast cancer. This review article aims to describe the influence of microbial dysbiosis on breast cancer occurrence and the possible interactions between oncobiome and specific breast cancer molecular subtypes. The review further also discusses the role of epigenetics and diet/nutrition in the regulation of the gut and breast microbiome and its association with breast cancer prevention, therapy, and recurrence. Additionally, the recent technological advances in microbiome research, including next-generation sequencing (NGS) technologies, genome sequencing, single-cell sequencing, and microbial metabolomics along with recent advances in artificial intelligence (AI) have also been reviewed. This is an attempt to present a comprehensive status of the microbiome as a key cancer biomarker. CONCLUSION We believe that correlating microbiome and carcinogenesis is important as it can provide insights into the mechanisms by which microbial dysbiosis can influence cancer development and progression, leading to the potential use of the microbiome as a tool for prognostication and personalized therapy.
Collapse
Affiliation(s)
- Asmita Jotshi
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| | | | | | - Chandrani Bose
- Life Sciences R&D, TCS Research, Tata Consultancy Services LimitedPuneIndia
| | - Binuja Varma
- TCS Genomics Lab, Tata Consultancy Services LimitedNew DelhiIndia
| | - C. B. Koppiker
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
- Prashanti Cancer Care Mission, Pune, India and Orchids Breast Health Centre, a PCCM initiativePuneIndia
| | - Sneha Joshi
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| | - Rupa Mishra
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| |
Collapse
|
4
|
Guo CH, Wang SY, Chung CH, Shih MY, Li WC, Chen PC, Lee SY, Hsia S. Selenium modulates AR/IGF-1R/EGFR and TROP2 signaling pathways and improves anticancer efficacy in murine mammary carcinoma 4T1. J Nutr Biochem 2023; 120:109417. [PMID: 37482256 DOI: 10.1016/j.jnutbio.2023.109417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The micronutrient selenium (Se) has been shown to exert potential anticancer properties. This study aimed to evaluate the effects of Se (in Se yeast form) on the selenoproteins (SELENO), AR/IGF-1R/EGFR, PI3K/Akt/mTOR and Ras/Raf/ERK cascades, and immune checkpoint blockade in TNBC murine 4T1 cells. We also assessed the effects of combination treatment with chemotherapeutic doxorubicin and Se on trophoblast cell surface antigen 2 (TROP2) levels. Compared with the control groups, cells incubated with Se (0.25, 0.5, 0.75, 1.0, 1.5 µg Se/mL) have lower viability, raised intracellular Se concentrations and SELENO expression, and higher malondialdehyde products in a dose-dependent manner. Se induced the inactivation of AR/IGF-1R/EGFR and downregulation of the PI3K/Akt/mTOR and Ras/Raf/ERK signaling molecules. Se-treated cells also exhibited decreased mitochondrial membrane potential, reduced levels of the cell cycle regulatory protein cyclin D1, cancer stemness, metastatic and EMT-related markers, and increased apoptosis. Subsequently, Se treatment significantly suppressed PD-1/PD-L1 and CTLA-4 mRNA levels and proteins. Doxorubicin decreased 4T1 cell viability and TROP2 expression levels, but the addition of Se to doxorubicin contributed to further reductions. Similar responses to Se treatment were also observed in the human MDA-MB-231 and MCF-7 breast cancer cells. These results show that Se upregulates SELENO and anti-AR/IGF-1R/EGFR signaling in TNBC cells, thus inducing oxidative stress-dependent apoptosis and cell cycle arrest, stemness, EMT, and metastasis, as well as blocking the immune checkpoint molecules. TROP2 down-regulation with Se is also a potential anti-TNBC therapeutic target.
Collapse
Affiliation(s)
- Chih-Hung Guo
- Micronutrition and Biomedical Nutrition Laboratories, Institute of Biomedical Nutrition, Hung-Kuang University, Taichung, Taiwan; Taiwan Nutraceutical Association, Taipei, Taiwan.
| | - Shiou-Yue Wang
- Micronutrition and Biomedical Nutrition Laboratories, Institute of Biomedical Nutrition, Hung-Kuang University, Taichung, Taiwan; Taiwan Nutraceutical Association, Taipei, Taiwan
| | | | - Min-Yi Shih
- Taiwan Nutraceutical Association, Taipei, Taiwan
| | - Wen-Chin Li
- Taiwan Nutraceutical Association, Taipei, Taiwan
| | | | - Shih-Yu Lee
- Biotechnology, Health, and Innovation Research Center, Hung-Kuang University, Taichung, Taiwan
| | - Simon Hsia
- Taiwan Nutraceutical Association, Taipei, Taiwan.
| |
Collapse
|
5
|
Kieliszek M, Serrano Sandoval SN. The importance of selenium in food enrichment processes. A comprehensive review. J Trace Elem Med Biol 2023; 79:127260. [PMID: 37421809 DOI: 10.1016/j.jtemb.2023.127260] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Selenium is an essential element that determines the proper life functions of human and animal organisms. The content of selenium in food varies depending on the region and soil conditions. Therefore, the main source is a properly selected diet. However, in many countries, there are shortages of this element in the soil and local food. Too low an amount of this element in food can lead to many adverse changes in the body. The consequence of this may also be the occurrence of numerous potentially life-threatening diseases. Therefore, it is very important to properly introduce methods that condition the supplementation of the appropriate chemical form of this element, especially in areas with deficient selenium content. This review aims to summarize the published literature on the characterization of different types of selenium-enriched foods. At the same time, legal regulations and prospects for the future related to the production of food enriched with this element are presented. It should be noted that there are limitations and concerns with the production of such food due to the narrow safety range between the necessary and the toxic dose of this element. Therefore, selenium has been treated with special care for a very long time. For this reason, the presented mechanisms of production processes related to increasing the scale of selenium supplementation should be constantly monitored. Appropriate monitoring and development of the technological process for the production of selenium-enriched food is very important. Such food should ensure consumer safety and repeatability of the obtained product. Understanding the mechanisms and possibilities of selenium accumulation by plants and animals is one of the most important directions in the development of modern bromatology and the science of supplementation. This is particularly important in the case of rational nutrition and supplementing the human diet with an essential element such as selenium. Food technology is facing these challenges today.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Sayra N Serrano Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico
| |
Collapse
|
6
|
A Randomized, Double-Blind, Placebo-Controlled Investigation of Selenium Supplementation in Women at Elevated Risk for Breast Cancer: Lessons for Re-Emergent Interest in Selenium and Cancer. Biomedicines 2022; 11:biomedicines11010049. [PMID: 36672557 PMCID: PMC9855926 DOI: 10.3390/biomedicines11010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Damage to cellular macromolecules such as DNA and lipid, induced via reactive oxygen species, and indicators of cell proliferation potential such as insulin-like growth factor (IGF) metabolic status are intermediate biomarkers of breast cancer risk. Based on reports that selenium status can affect these markers, a randomized, placebo-controlled, double-blind experiment was conducted to investigate the potential of selenium supplementation to modulate breast cancer risk. Using a placebo tablet or a tablet containing 200 μg selenium provided as high-selenium yeast daily for one year, concentrations of the biomarkers in blood or urine were assessed at baseline and after 6 and 12 months of intervention. The selenium intervention used in this study is presumed to mediate its effect via the induction of glutathione peroxidase activity and the consequential impact of the active form of this protein on oxidative damage. We found no evidence to support this hypothesis or to indicate that systemic IGF metabolic status was affected. Critical knowledge gaps must be addressed for the resurgence of interest in selenium and cancer to garner clinical relevance. Those knowledge gaps include the identification of a specific, high-affinity selenium metabolite and the cellular target(s) to which it binds, and the demonstration that the cellular determinant that the selenium metabolite binds plays a critical role in the initiation, promotion, or progression of a specific type of cancer.
Collapse
|
7
|
Morán-Serradilla C, Angulo-Elizari E, Henriquez-Figuereo A, Sanmartín C, Sharma AK, Plano D. Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses? Metabolites 2022; 12:874. [PMID: 36144278 PMCID: PMC9504997 DOI: 10.3390/metabo12090874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se activity is related to multiple factors, such as its chemical form, dose, and its metabolism. The understanding of its complex biochemistry is necessary as it has been demonstrated that the metabolites of the Se molecules used to be the ones that exert the biological activity. Therefore, the aim of this review is to summarize the recent information about its most remarkable metabolites of acknowledged biological effects: hydrogen selenide (HSe-/H2Se) and methylselenol (CH3SeH). In addition, special attention is paid to the main seleno-containing precursors of these derivatives and their role in different pathologies.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Eduardo Angulo-Elizari
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
8
|
Kadkhoda J, Tarighatnia A, Tohidkia MR, Nader ND, Aghanejad A. Photothermal therapy-mediated autophagy in breast cancer treatment: Progress and trends. Life Sci 2022; 298:120499. [DOI: 10.1016/j.lfs.2022.120499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
|
9
|
Shahverdi M, Hajiasgharzadeh K, Sorkhabi AD, Jafarlou M, Shojaee M, Jalili Tabrizi N, Alizadeh N, Santarpia M, Brunetti O, Safarpour H, Silvestris N, Baradaran B. The regulatory role of autophagy-related miRNAs in lung cancer drug resistance. Biomed Pharmacother 2022; 148:112735. [DOI: 10.1016/j.biopha.2022.112735] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
|
10
|
Kim SJ, Choi MC, Park JM, Chung AS. Antitumor Effects of Selenium. Int J Mol Sci 2021; 22:11844. [PMID: 34769276 PMCID: PMC8584251 DOI: 10.3390/ijms222111844] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Functions of selenium are diverse as antioxidant, anti-inflammation, increased immunity, reduced cancer incidence, blocking tumor invasion and metastasis, and further clinical application as treatment with radiation and chemotherapy. These functions of selenium are mostly related to oxidation and reduction mechanisms of selenium metabolites. Hydrogen selenide from selenite, and methylselenol (MSeH) from Se-methylselenocyteine (MSeC) and methylseleninicacid (MSeA) are the most reactive metabolites produced reactive oxygen species (ROS); furthermore, these metabolites may involve in oxidizing sulfhydryl groups, including glutathione. Selenite also reacted with glutathione and produces hydrogen selenide via selenodiglutathione (SeDG), which induces cytotoxicity as cell apoptosis, ROS production, DNA damage, and adenosine-methionine methylation in the cellular nucleus. However, a more pronounced effect was shown in the subsequent treatment of sodium selenite with chemotherapy and radiation therapy. High doses of sodium selenite were effective to increase radiation therapy and chemotherapy, and further to reduce radiation side effects and drug resistance. In our study, advanced cancer patients can tolerate until 5000 μg of sodium selenite in combination with radiation and chemotherapy since the half-life of sodium selenite may be relatively short, and, further, selenium may accumulates more in cancer cells than that of normal cells, which may be toxic to the cancer cells. Further clinical studies of high amount sodium selenite are required to treat advanced cancer patients.
Collapse
Affiliation(s)
- Seung Jo Kim
- Sangkyungwon Integrate Medical Caner Hospital, Yeoju 12616, Gyeonggido, Korea;
| | - Min Chul Choi
- Comprehensive Gynecological Cancer Center, CHA Bundang Medical Center, Seongnam 13497, Gyeonggido, Korea;
| | - Jong Min Park
- Oriental Medicine, Daejeon University, Daejeon 34520, Korea;
| | - An Sik Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and technology, Daejeon 34141, Korea
| |
Collapse
|