1
|
Liu DX, Hao SL, Yang WX. Crosstalk Between β-CATENIN-Mediated Cell Adhesion and the WNT Signaling Pathway. DNA Cell Biol 2023; 42:1-13. [PMID: 36399409 DOI: 10.1089/dna.2022.0424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion and stable signaling regulation are fundamental ways of maintaining homeostasis. Among them, the Wnt/β-CATENIN signaling plays a key role in embryonic development and maintenance of body dynamic homeostasis. At the same time, the key signaling molecule β-CATENIN in the Wnt signaling can also function as a cytoskeletal linker protein to regulate tissue barriers, cell migration, and morphogenesis. Dysregulation of the balance between Wnt signaling and adherens junctions can lead to disease. How β-CATENIN maintains the independence of these two functions, or mediates the interaction and balance of these two functions, has been explored and debated for a long time. In this study, we will focus on five aspects of β-CATENIN chaperone molecules, phosphorylation of β-CATENIN and related proteins, epithelial mesenchymal transition, β-CATENIN homolog protein γ-CATENIN and disease, thus deepening the understanding of the Wnt/β-CATENIN signaling and the homeostasis between cell adhesion and further addressing related disease problems.
Collapse
Affiliation(s)
- Ding-Xi Liu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Wu Z, Ding H, Chen Y, Huang C, Chen X, Hu H, Chen Y, Zhang W, Fang X. Motor neurons transplantation alleviates neurofibrogenesis during chronic degeneration by reversibly regulating Schwann cells epithelial-mesenchymal transition. Exp Neurol 2023; 359:114272. [PMID: 36370841 DOI: 10.1016/j.expneurol.2022.114272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
A novel understanding of peripheral nerve injury is epithelial-mesenchymal transition (EMT), which characterizes the process of dedifferentiation and transformation of Schwann cells after nerve injury. Despite being regarded as an important mechanism for healing nerve injuries, long-term EMT is the primary cause of fibrosis in other tissue organs. The potential mechanism promoting neurofibrosis in the process of chronic degeneration of nerve injury and the effects of motor neurons (MNs) transplantation on neurofibrosis and repair of nerve injury were studied by transcriptome sequencing and bioinformatics analysis, which were confirmed by in vivo and in vitro experiments. Even 3 months after nerve injury, the distal nerve maintained high levels of transforming growth factor β-1 (TGFβ-1) and Snail family transcriptional repressor 2 (Snai2). The microenvironment TGFβ-1, Snai2 and endogenous TGFβ-1 formed a positive feedback loop in vivo and in vitro, which may contribute to the sustained EMT state and neurofibrogenesis in the distal injured nerve. Inhibiting TGFβ-1 and Snai2 expression and reversing EMT can be achieved by transferring MNs to distal nerves, and the removal of transplanted MNs is capable of reactivating EMT and promoting the growth of proximal axons. In conclusion, EMT persisting can be an explanation for distal neurofibrosis and a potential therapeutic target. By reversibly regulating EMT, MNs transplantation can alleviate neurofibrogenesis of distal nerve in chronic degeneration.
Collapse
Affiliation(s)
- Zhaoyang Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Provincial Institute of Orthopedics, Fuzhou, China
| | - Haiqi Ding
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Changyu Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoqing Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hongxin Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian,China
| | - Yongfa Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pediatric Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wenming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Provincial Institute of Orthopedics, Fuzhou, China.
| | - Xinyu Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Provincial Institute of Orthopedics, Fuzhou, China.
| |
Collapse
|
3
|
Chen SY, Hsieh JL, Wu PT, Shiau AL, Wu CL. MicroRNA-133 suppresses cell viability and migration of rheumatoid arthritis fibroblast-like synoviocytes by down-regulation of MET, EGFR, and FSCN1 expression. Mol Cell Biochem 2022; 477:2529-2537. [PMID: 35595956 DOI: 10.1007/s11010-022-04457-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
Aberrant proliferation and migration of fibroblast-like synoviocytes (FLS) are major characteristics of rheumatoid arthritis (RA). MicroRNA-133 (miR-133) is a tumor-suppressive miRNA that targets various genes responsive for cell proliferation and migration. The aim of this study was to examine the effect of miR-133 on RA FLS. A high throughput miRNA microarray was performed in synovium from mice with collagen-induced arthritis (CIA). Expression levels of miR-133 and the putative targets were determined in synovium and FLS from patients with RA and mice with CIA. Overexpression of miR-133 in RA FLS was performed by lentiviral vector-mediated transfer of precursor miRNA (pre-miR). The expression of miR-133a/b was decreased in the joint tissue and FLS of CIA mice, as determined by miRNA array and qRT-PCR. Down-regulation of miR-133a/b expression could also be observed in synovium and FLS from patients with RA. Overexpression of miR-133 reduced cell viability and migration of RA FLS, with decreased levels of FSCN1, EGFR, and MET. Our findings demonstrated the inhibitory effects of miR-133 on FLS viability and migration, and might contribute to the pharmacologic development of miR-133 therapeutics in patients with RA.
Collapse
Affiliation(s)
- Shih-Yao Chen
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, 89, Wenhua 1st street, Tainan, 71703, Taiwan.
| | - Jeng-Long Hsieh
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, 89, Wenhua 1st street, Tainan, 71703, Taiwan
| | - Po-Ting Wu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Orthopaedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 539, Zhongxiao Road, Chiayi, 60002, Taiwan
| | - Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 539, Zhongxiao Road, Chiayi, 60002, Taiwan.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|