1
|
Arsène S, Parès Y, Tixier E, Granjeon-Noriot S, Martin B, Bruezière L, Couty C, Courcelles E, Kahoul R, Pitrat J, Go N, Monteiro C, Kleine-Schultjann J, Jemai S, Pham E, Boissel JP, Kulesza A. In Silico Clinical Trials: Is It Possible? Methods Mol Biol 2024; 2716:51-99. [PMID: 37702936 DOI: 10.1007/978-1-0716-3449-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Modeling and simulation (M&S), including in silico (clinical) trials, helps accelerate drug research and development and reduce costs and have coined the term "model-informed drug development (MIDD)." Data-driven, inferential approaches are now becoming increasingly complemented by emerging complex physiologically and knowledge-based disease (and drug) models, but differ in setup, bottlenecks, data requirements, and applications (also reminiscent of the different scientific communities they arose from). At the same time, and within the MIDD landscape, regulators and drug developers start to embrace in silico trials as a potential tool to refine, reduce, and ultimately replace clinical trials. Effectively, silos between the historically distinct modeling approaches start to break down. Widespread adoption of in silico trials still needs more collaboration between different stakeholders and established precedence use cases in key applications, which is currently impeded by a shattered collection of tools and practices. In order to address these key challenges, efforts to establish best practice workflows need to be undertaken and new collaborative M&S tools devised, and an attempt to provide a coherent set of solutions is provided in this chapter. First, a dedicated workflow for in silico clinical trial (development) life cycle is provided, which takes up general ideas from the systems biology and quantitative systems pharmacology space and which implements specific steps toward regulatory qualification. Then, key characteristics of an in silico trial software platform implementation are given on the example of jinkō.ai (nova's end-to-end in silico clinical trial platform). Considering these enabling scientific and technological advances, future applications of in silico trials to refine, reduce, and replace clinical research are indicated, ranging from synthetic control strategies and digital twins, which overall shows promise to begin a new era of more efficient drug development.
Collapse
|
2
|
Benest J, Rhodes S, Evans TG, White RG. Mathematical Modelling for Optimal Vaccine Dose Finding: Maximising Efficacy and Minimising Toxicity. Vaccines (Basel) 2022; 10:vaccines10050756. [PMID: 35632511 PMCID: PMC9144167 DOI: 10.3390/vaccines10050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023] Open
Abstract
Vaccination is a key tool to reduce global disease burden. Vaccine dose can affect vaccine efficacy and toxicity. Given the expense of developing vaccines, optimising vaccine dose is essential. Mathematical modelling has been suggested as an approach for optimising vaccine dose by quantitatively establishing the relationships between dose and efficacy/toxicity. In this work, we performed simulation studies to assess the performance of modelling approaches in determining optimal dose. We found that the ability of modelling approaches to determine optimal dose improved with trial size, particularly for studies with at least 30 trial participants, and that, generally, using a peaking or a weighted model-averaging-based dose–efficacy relationship was most effective in finding optimal dose. Most methods of trial dose selection were similarly effective for the purpose of determining optimal dose; however, including modelling to adapt doses during a trial may lead to more trial participants receiving a more optimal dose. Clinical trial dosing around the predicted optimal dose, rather than only at the predicted optimal dose, may improve final dose selection. This work suggests modelling can be used effectively for vaccine dose finding, prompting potential practical applications of these methods in accelerating effective vaccine development and saving lives.
Collapse
Affiliation(s)
- John Benest
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.G.W.)
- Correspondence:
| | - Sophie Rhodes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.G.W.)
| | - Thomas G. Evans
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK;
| | - Richard G. White
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.G.W.)
| |
Collapse
|
3
|
Courcelles E, Boissel JP, Massol J, Klingmann I, Kahoul R, Hommel M, Pham E, Kulesza A. Solving the Evidence Interpretability Crisis in Health Technology Assessment: A Role for Mechanistic Models? FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:810315. [PMID: 35281671 PMCID: PMC8907708 DOI: 10.3389/fmedt.2022.810315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Health technology assessment (HTA) aims to be a systematic, transparent, unbiased synthesis of clinical efficacy, safety, and value of medical products (MPs) to help policymakers, payers, clinicians, and industry to make informed decisions. The evidence available for HTA has gaps-impeding timely prediction of the individual long-term effect in real clinical practice. Also, appraisal of an MP needs cross-stakeholder communication and engagement. Both aspects may benefit from extended use of modeling and simulation. Modeling is used in HTA for data-synthesis and health-economic projections. In parallel, regulatory consideration of model informed drug development (MIDD) has brought attention to mechanistic modeling techniques that could in fact be relevant for HTA. The ability to extrapolate and generate personalized predictions renders the mechanistic MIDD approaches suitable to support translation between clinical trial data into real-world evidence. In this perspective, we therefore discuss concrete examples of how mechanistic models could address HTA-related questions. We shed light on different stakeholder's contributions and needs in the appraisal phase and suggest how mechanistic modeling strategies and reporting can contribute to this effort. There are still barriers dissecting the HTA space and the clinical development space with regard to modeling: lack of an adapted model validation framework for decision-making process, inconsistent and unclear support by stakeholders, limited generalizable use cases, and absence of appropriate incentives. To address this challenge, we suggest to intensify the collaboration between competent authorities, drug developers and modelers with the aim to implement mechanistic models central in the evidence generation, synthesis, and appraisal of HTA so that the totality of mechanistic and clinical evidence can be leveraged by all relevant stakeholders.
Collapse
Affiliation(s)
| | | | - Jacques Massol
- Phisquare Institute, Transplantation Foundation, Paris, France
| | | | | | | | | | | |
Collapse
|