1
|
Dixon AL, Oliveira ARS, Cohnstaedt LW, Mitzel D, Mire C, Cernicchiaro N. Revisiting the risk of introduction of Japanese encephalitis virus (JEV) into the United States - An updated semi-quantitative risk assessment. One Health 2024; 19:100879. [PMID: 39253386 PMCID: PMC11381889 DOI: 10.1016/j.onehlt.2024.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Japanese encephalitis virus (JEV) is associated with encephalitis in humans and reproductive and neurological illness in pigs. JEV has expanded beyond its native distribution in southeast Asia, with identifications in Europe (2010) and Africa (2016), and most recently, its spread into mainland Australia (2021-2022). The introduction of JEV into the United States (US) is a public health risk, and could also impact animal health and the food supply. To efficiently and cost-effectively manage risk, a better understanding of how and where diseases will be introduced, transmitted, and spread is required. To achieve this objective, we updated our group's previous qualitative risk assessment using an established semi-quantitative risk assessment tool (MINTRISK) to compare the overall rate of introduction and risk, including impacts, of JEV in seven US regions. The rate of introduction from the current region of distribution was considered negligible for the Northeast, Midwest, Rocky Mountain, West, Alaska, and Hawaii regions. The South region was the only region with a pathway that had a non-negligible rate of introduction; infected mosquito eggs and larvae introduced via imported used tires (very low; 95% uncertainty interval (UI) = negligible to high). The overall risk estimate for the South was very high (95% UI = very low to very high). Based on this risk assessment, the South region should be prioritized for surveillance activities to ensure the early detection of JEV. The assumptions used in this risk assessment, due to the lack of information about the global movement of mosquitoes, number of feral pigs in the US, the role of non-ardeid wild birds in transmission, and the magnitude of the basic reproduction ratio of JEV in a novel region, need to be fully considered as these impact the estimated probability of establishment.
Collapse
Affiliation(s)
- Andrea L Dixon
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ana R S Oliveira
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Lee W Cohnstaedt
- National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Dana Mitzel
- National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Chad Mire
- National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Bibard A, Martinetti D, Giraud A, Picado A, Chalvet-Monfray K, Porphyre T. Quantitative risk assessment for the introduction of bluetongue virus into mainland Europe by long-distance wind dispersal of Culicoides spp.: A case study from Sardinia. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024. [PMID: 38955987 DOI: 10.1111/risa.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
Europe faces regular introductions and reintroductions of bluetongue virus (BTV) serotypes, most recently exemplified by the incursion of serotype 3 in the Netherlands. Although the long-distance wind dispersal of the disease vector, Culicoides spp., is recognized as a virus introduction pathway, it remains understudied in risk assessments. A Quantitative Risk Assessment framework was developed to estimate the risk of BTV-3 incursion into mainland Europe from Sardinia, where the virus has been present since 2018. We used an atmospheric transport model (HYbrid Single-Particle Lagrangian Integrated Trajectory) to infer the probability of airborne dispersion of the insect vector. Epidemiological disease parameters quantified the virus prevalence in vector population in Sardinia and its potential first transmission after introduction in a new area. When assuming a 24h maximal flight duration, the risk of BTV introduction from Sardinia is limited to the Mediterranean Basin, mainly affecting the southwestern area of the Italian Peninsula, Sicily, Malta, and Corsica. The risk extends to the northern and central parts of Italy, Balearic archipelago, and mainland France and Spain, mostly when maximal flight duration is longer than 24h. Additional knowledge on vector flight conditions and Obsoletus complex-specific parameters could improve the robustness of the model. Providing both spatial and temporal insights into BTV introduction risks, our framework is a key tool to guide global surveillance and preparedness against epizootics.
Collapse
Affiliation(s)
- Amandine Bibard
- Global Innovation, Boehringer Ingelheim Animal Health France, Saint-Priest, France
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
- Epidémiologie Des Maladies Animales et Zoonotiques, UMR EPIA, Université Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Davide Martinetti
- Biostatistique et Processus Spatiaux, UMR 0546, INRAE, Avignon, France
| | - Aymeric Giraud
- Biostatistique et Processus Spatiaux, UMR 0546, INRAE, Avignon, France
| | - Albert Picado
- Global Innovation, Boehringer Ingelheim Animal Health France, Saint-Priest, France
| | - Karine Chalvet-Monfray
- Epidémiologie Des Maladies Animales et Zoonotiques, UMR EPIA, Université Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| |
Collapse
|
3
|
Horigan V, Simons R, Kavanagh K, Kelly L. A review of qualitative risk assessment in animal health: Suggestions for best practice. Front Vet Sci 2023; 10:1102131. [PMID: 36825234 PMCID: PMC9941190 DOI: 10.3389/fvets.2023.1102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Qualitative risk assessment (QRA) can provide decision support in line with the requirement for an objective, unbiased assessment of disease risk according to the Agreement on the Application of Sanitary and Phytosanitary Measures of the World Trade Organization. However, in order for a QRA to be objective and consistently applied it is necessary to standardize the approach as much as possible. This review considers how QRAs have historically been used for the benefit of animal health, what problems have been encountered during their progression, and considers best practice for their future use. Four main elements were identified as having been the subject of some proposed standard methodology: (i) the description of risk levels, (ii) combining probabilities, (iii) accounting for trade volume and time period, and (iv) uncertainty. These elements were addressed in different ways but were highlighted as being fundamental to improving the robustness in estimating the risk and conveying the results to the risk manager with minimal ambiguity. In line with this, several tools have been developed which attempt to use mathematical reasoning to incorporate uncertainty and improve the objectivity of the qualitative framework. This represents an important advance in animal health QRA. Overall, animal health QRAs have established their usefulness by providing a tool for rapid risk estimation which can be used to identify important chains of events and critical control points along risk pathways and inform risk management programmes as to whether or not the risk exceeds a decision-making threshold above which action should be taken. Ensuring a robust objective methodology is used and that the reasons for differences in results, such as assumptions and uncertainty are clearly described to the customer with minimal ambiguity is essential to maintain confidence in the QRA process. However, further work needs to be done to determine if one objective uniform methodology should be developed and considered best practice. To this end, a set of best practice guidelines presenting the optimal way to conduct a QRA and regulated by bodies such as the World Organization for Animal Health or the European Food Safety Authority would be beneficial.
Collapse
Affiliation(s)
- Verity Horigan
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Surrey, United Kingdom
| | - Robin Simons
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Surrey, United Kingdom
| | - Kim Kavanagh
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| | - Louise Kelly
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Surrey, United Kingdom
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
4
|
de Vos CJ, Petie R, van Klink EGM, Swanenburg M. Rapid risk assessment tool (RRAT) to prioritize emerging and re-emerging livestock diseases for risk management. Front Vet Sci 2022; 9:963758. [PMID: 36157188 PMCID: PMC9490411 DOI: 10.3389/fvets.2022.963758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing globalization and international trade contribute to rapid expansion of animal and human diseases. Hence, preparedness is warranted to prevent outbreaks of emerging and re-emerging diseases or detect outbreaks in an early stage. We developed a rapid risk assessment tool (RRAT) to inform risk managers on the incursion risk of multiple livestock diseases, about the main sources for incursion and the change of risk over time. RRAT was built as a relational database to link data on disease outbreaks worldwide, on introduction routes and on disease-specific parameters. The tool was parameterized to assess the incursion risk of 10 livestock diseases for the Netherlands by three introduction routes: legal trade in live animals, legal trade of animal products, and animal products illegally carried by air travelers. RRAT calculates a semi-quantitative risk score for the incursion risk of each disease, the results of which allow for prioritization. Results based on the years 2016-2018 indicated that the legal introduction routes had the highest incursion risk for bovine tuberculosis, whereas the illegal route posed the highest risk for classical swine fever. The overall incursion risk via the illegal route was lower than via the legal routes. The incursion risk of African swine fever increased over the period considered, whereas the risk of equine infectious anemia decreased. The variation in the incursion risk over time illustrates the need to update the risk estimates on a regular basis. RRAT has been designed such that the risk assessment can be automatically updated when new data becomes available. For diseases with high-risk scores, model results can be analyzed in more detail to see which countries and trade flows contribute most to the risk, the results of which can be used to design risk-based surveillance. RRAT thus provides a multitude of information to evaluate the incursion risk of livestock diseases at different levels of detail. To give risk managers access to all results of RRAT, an online visualization tool was built.
Collapse
|
5
|
Molina-Guzmán LP, Gutiérrez-Builes LA, Ríos-Osorio LA. Models of spatial analysis for vector-borne diseases studies: A systematic review. Vet World 2022; 15:1975-1989. [PMID: 36313837 PMCID: PMC9615510 DOI: 10.14202/vetworld.2022.1975-1989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Vector-borne diseases (VBDs) constitute a global problem for humans and animals. Knowledge related to the spatial distribution of various species of vectors and their relationship with the environment where they develop is essential to understand the current risk of VBDs and for planning surveillance and control strategies in the face of future threats. This study aimed to identify models, variables, and factors that may influence the emergence and resurgence of VBDs and how these factors can affect spatial local and global distribution patterns.
Materials and Methods: A systematic review was designed based on identification, screening, selection, and inclusion described in the research protocols according to the preferred reporting items for systematic reviews and meta-analyses guide. A literature search was performed in PubMed, ScienceDirect, Scopus, and SciELO using the following search strategy: Article type: Original research, Language: English, Publishing period: 2010–2020, Search terms: Spatial analysis, spatial models, VBDs, climate, ecologic, life cycle, climate variability, vector-borne, vector, zoonoses, species distribution model, and niche model used in different combinations with "AND" and "OR."
Results: The complexity of the interactions between climate, biotic/abiotic variables, and non-climate factors vary considerably depending on the type of disease and the particular location. VBDs are among the most studied types of illnesses related to climate and environmental aspects due to their high disease burden, extended presence in tropical and subtropical areas, and high susceptibility to climate and environment variations.
Conclusion: It is difficult to generalize our knowledge of VBDs from a geospatial point of view, mainly because every case is inherently independent in variable selection, geographic coverage, and temporal extension. It can be inferred from predictions that as global temperatures increase, so will the potential trend toward extreme events. Consequently, it will become a public health priority to determine the role of climate and environmental variations in the incidence of infectious diseases. Our analysis of the information, as conducted in this work, extends the review beyond individual cases to generate a series of relevant observations applicable to different models.
Collapse
Affiliation(s)
- Licet Paola Molina-Guzmán
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia; Grupo de Investigación Salud y Sostenibilidad, Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin - Colombia
| | - Lina A. Gutiérrez-Builes
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Leonardo A. Ríos-Osorio
- Grupo de Investigación Salud y Sostenibilidad, Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin - Colombia
| |
Collapse
|