1
|
Shah A, Spannenburg L, Thite P, Morrison M, Fairlie T, Koloski N, Kashyap PC, Pimentel M, Rezaie A, Gores GJ, Jones MP, Holtmann G. Small intestinal bacterial overgrowth in chronic liver disease: an updated systematic review and meta-analysis of case-control studies. EClinicalMedicine 2025; 80:103024. [PMID: 39844931 PMCID: PMC11751576 DOI: 10.1016/j.eclinm.2024.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025] Open
Abstract
Background Small Intestinal Bacterial Overgrowth (SIBO) has been implicated in the pathophysiology of chronic liver disease (CLD). We conducted a systematic review and meta-analysis to assess and compare the prevalence of SIBO among CLD patients (with and without with complications of end stage liver disease) and healthy controls. Methods Electronic databases were searched from inception up to July-2024 for case-control studies reporting SIBO in CLD. Prevalence rates, odds ratios (ORs), and 95% confidence intervals (CIs) of SIBO in patients with CLD and controls were calculated utilizing a random-effects model. The protocol was prospectively registered with PROSPERO (CRD42022379578). Findings The final dataset included 34 case-control studies with 2130 CLD patients and 1222 controls. Overall, the odds for SIBO prevalence in CLD patients compared to controls was 6.7 (95% CI 4.6-9.7, p < 0.001). Although the prevalence of SIBO among patients with CLD with cirrhosis was higher at 42.9% (95% CI: 35.9-50.2) compared to 36.9% (95% CI: 27.4-47.6) in those without cirrhosis, this difference failed statistical significance. However, CLD patients with decompensated cirrhosis had a significantly higher prevalence of SIBO compared to those with compensated cirrhosis, with an OR of 2.6 (95% CI: 1.5-4.5, p < 0.001). Additionally, the prevalence of SIBO was significantly higher in CLD patients with portal hypertension (PHT) than in those without PHT, with an OR of 2.1 (95% CI: 1.4-3.1, p < 0.001). The highest prevalence of SIBO was observed in patients with spontaneous bacterial peritonitis (SBP) (57.7%, 95% CI 38.8-74.5), followed by patients with hepatic encephalopathy (41.0%, 95% CI 16.0-72.3) and patients with variceal bleed (39.5%, 95% CI 12.1-75.6). Interpretation Overall, there is a significantly increased prevalence of SIBO in CLD patients compared to controls. The prevalence is even higher in CLD patients with PHT, especially those with SBP. This meta-analysis suggests that SIBO is associated with complications of CLD and potentially linked to the progression of CLD. Funding National Health and Medical Research Council, Centre for Research Excellence (APP170993).
Collapse
Affiliation(s)
- Ayesha Shah
- Faculty of Medicine, University of Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Australia
- Translational Research Institute, QLD, Australia
| | - Liam Spannenburg
- Faculty of Medicine, University of Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Australia
| | - Parag Thite
- Faculty of Medicine, University of Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Woolloongabba, QLD, Australia
| | - Thomas Fairlie
- Faculty of Medicine, University of Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Australia
- Translational Research Institute, QLD, Australia
| | - Natasha Koloski
- Faculty of Medicine, University of Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Australia
- Translational Research Institute, QLD, Australia
| | - Purna C. Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mark Pimentel
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Michael P. Jones
- Macquarie University, Department of Psychology, Sydney, NSW, Australia
| | - Gerald Holtmann
- Faculty of Medicine, University of Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Australia
- Translational Research Institute, QLD, Australia
| |
Collapse
|
2
|
Hu L, Du H, Zhou Q, Liu C, Zhang T, Yuan M. Web of Science-Based Visualization of Metabolic Dysfunction-Associated Fatty Liver Disease in Pediatric and Adolescent Populations: A Bibliometric Study. Health Sci Rep 2025; 8:e70409. [PMID: 39897463 PMCID: PMC11779742 DOI: 10.1002/hsr2.70409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Background and Aims The prevalence of metabolism-associated fatty liver disease (MAFLD) in children is on the rise. This study employs visualization and analysis to evaluate the research implications, current advancements, and emerging trends in pediatric MAFLD, with the aim of elucidating its pathogenesis and informing the development of clinical treatment strategies. Methods Using visualization software, we conducted a visual analysis and mapping of the journal distribution, leading institutions, prominent authors, annual publication trends, and keyword frequencies among the 1179 scholarly articles retrieved from the Web of Science Core Collection for this study. Results The overall publication volume demonstrated an upward trend, with a total of 200 journals, contributions from 63 countries, 882 research institutions, and 5605 authors involved, including 84 who were identified as core authors. The main research team is led by Nobili, Valerio. The main research institutions are concentrated in Italy, the United States, and China. A total of 473 keywords were included, and the keywords with high frequency and medium centricity are insulin resistance, metabolic syndrome, children, steatohepatitis, adolescents, hepatic steatosis, nash, obesity, diagnosis, and fibrosis, which resulted in six keyword clusters. Conclusion MAFLD represents a significant public health concern. Research on children and adolescents with MAFLD continues to attract high interest. Noninvasive diagnostic methods, pathogenesis (intestinal microbiota research), disease prediction (gene research) are current research hotspots.
Collapse
Affiliation(s)
- Liangyu Hu
- Science and Technology Information Center, LibraryShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huarong Du
- Science and Technology Information Center, LibraryShanghai University of Traditional Chinese MedicineShanghaiChina
| | - QianQian Zhou
- Science and Technology Information Center, LibraryShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chunlei Liu
- Science and Technology Information Center, LibraryShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tiansong Zhang
- Department of Traditional Chinese Medicine, Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Min Yuan
- Science and Technology Information Center, LibraryShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
3
|
Wang Z, Tan W, Huang J, Li Q, Wang J, Su H, Guo C, Liu H. Small intestinal bacterial overgrowth and metabolic dysfunction-associated steatotic liver disease. Front Nutr 2024; 11:1502151. [PMID: 39742106 PMCID: PMC11685094 DOI: 10.3389/fnut.2024.1502151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
Small intestinal bacterial overgrowth (SIBO), characterized by alterations in both the type and quantity of bacteria in the small intestine, leads to impaired intestinal digestion and absorption that can cause a range of clinical symptoms. Recent studies have identified significant changes in the composition of the small intestinal microbiota and metabolomic profiles of patients with metabolic dysfunction-associated steatotic liver disease (MASLD). This study systematically reviewed and synthesized the available data to explore the association between SIBO and MASLD. Comprehensive literature searches of the Embase, PubMed, Web of Science, Ovid, and Cochrane databases were conducted. Article quality screening was performed using the Newcastle-Ottawa Quality Assessment Scale. Cross-sectional, cohort, and case-control studies were included. A total of 7,200 articles were initially screened, of which 14 were ultimately included for analysis. Individuals with SIBO in both the MASLD and non-MASLD groups were extracted and a chi-square test was performed to calculate the odds ratio (OR) and 95% confidence interval (CI). The I2 index was used to measure heterogeneity. For heterogeneity >50%, a random effects model was used. There was a clear association between SIBO and MASLD (OR = 3.09; 95% CI 2.09-4.59, I 2 = 66%, p < 0.0001). Subgroup analyses by MASLD stage showed that the probability of SIBO positivity increased with MASLD lesion severity. After stratifying by the diagnostic methods for SIBO and MASLD, the meta-analysis results suggest a reduction in inter-group heterogeneity. For the MASLD subgroup diagnosed via liver biopsy, the OR was 4.89. A subgroup analysis of four studies that included intestinal permeability testing revealed an OR of 3.86 (95% CI: 1.80-8.28, I 2 = 9%, p = 0.0005). A meta-regression analyses revealed that both race and regional development level significantly influenced the relationship between SIBO and MASLD (p = 0.010, p = 0.047). In conclusion, this meta-analyses provides strong evidence that SIBO may contribute to the development and progression of MASLD. The strongest associations were observed between lactulose breath testing, gut microbiota culture, liver biopsy diagnosis of MASLD, and SIBO detected through intestinal permeability testing. The primary sources of heterogeneity are race and developed regions. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=427040.
Collapse
Affiliation(s)
- Ziteng Wang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wentao Tan
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jiali Huang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qian Li
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui Su
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chunmei Guo
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zhang L, El-Shabrawi M, Baur LA, Byrne CD, Targher G, Kehar M, Porta G, Lee WS, Lefere S, Turan S, Alisi A, Weiss R, Faienza MF, Ashraf A, Sundaram SS, Srivastava A, De Bruyne R, Kang Y, Bacopoulou F, Zhou YH, Darma A, Lupsor-Platon M, Hamaguchi M, Misra A, Méndez-Sánchez N, Ng NBH, Marcus C, Staiano AE, Waheed N, Alqahtani SA, Giannini C, Ocama P, Nguyen MH, Arias-Loste MT, Ahmed MR, Sebastiani G, Poovorawan Y, Al Mahtab M, Pericàs JM, Reverbel da Silveira T, Hegyi P, Azaz A, Isa HM, Lertudomphonwanit C, Farrag MI, Nugud AAA, Du HW, Qi KM, Mouane N, Cheng XR, Al Lawati T, Fagundes EDT, Ghazinyan H, Hadjipanayis A, Fan JG, Gimiga N, Kamal NM, Ștefănescu G, Hong L, Diaconescu S, Li M, George J, Zheng MH. An international multidisciplinary consensus on pediatric metabolic dysfunction-associated fatty liver disease. MED 2024; 5:797-815.e2. [PMID: 38677287 DOI: 10.1016/j.medj.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is highly prevalent in children and adolescents, particularly those with obesity. NAFLD is considered a hepatic manifestation of the metabolic syndrome due to its close associations with abdominal obesity, insulin resistance, and atherogenic dyslipidemia. Experts have proposed an alternative terminology, metabolic dysfunction-associated fatty liver disease (MAFLD), to better reflect its pathophysiology. This study aimed to develop consensus statements and recommendations for pediatric MAFLD through collaboration among international experts. METHODS A group of 65 experts from 35 countries and six continents, including pediatricians, hepatologists, and endocrinologists, participated in a consensus development process. The process encompassed various aspects of pediatric MAFLD, including epidemiology, mechanisms, screening, and management. FINDINGS In round 1, we received 65 surveys from 35 countries and analyzed these results, which informed us that 73.3% of respondents agreed with 20 draft statements while 23.8% agreed somewhat. The mean percentage of agreement or somewhat agreement increased to 80.85% and 15.75%, respectively, in round 2. The final statements covered a wide range of topics related to epidemiology, pathophysiology, and strategies for screening and managing pediatric MAFLD. CONCLUSIONS The consensus statements and recommendations developed by an international expert panel serve to optimize clinical outcomes and improve the quality of life for children and adolescents with MAFLD. These findings emphasize the need for standardized approaches in diagnosing and treating pediatric MAFLD. FUNDING This work was funded by the National Natural Science Foundation of China (82070588, 82370577), the National Key R&D Program of China (2023YFA1800801), National High Level Hospital Clinical Research Funding (2022-PUMCH-C-014), the Wuxi Taihu Talent Plan (DJTD202106), and the Medical Key Discipline Program of Wuxi Health Commission (ZDXK2021007).
Collapse
Affiliation(s)
- Le Zhang
- Department of Paediatrics, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Mortada El-Shabrawi
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Louise A Baur
- Children's Hospital Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Mohit Kehar
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Eastern Ontario, Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gilda Porta
- Pediatric Hepatology, Transplant Unit, Hospital Sírio-Libanês, Hospital Municipal Infantil Menino Jesus, Sau Paulo, Brazil
| | - Way Seah Lee
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Sander Lefere
- Hepatology Research Unit, Department Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Serap Turan
- Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ram Weiss
- Department of Pediatrics, Ruth Children's Hospital, Rambam Medical Center and the Bruce Rappaport School of Medicine, Technion, Haifa, Israel
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Ambika Ashraf
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shikha S Sundaram
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Pediatric Liver Center, Children's Hospital Colorado, University of Colorado School of Medicine and Anschutz Medical Campus, Aurora, CO, USA
| | - Anshu Srivastava
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ruth De Bruyne
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University Hospital, Ghent, Belgium
| | - Yunkoo Kang
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, Aghia Sophia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yong-Hai Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andy Darma
- Department of Pediatrics, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Monica Lupsor-Platon
- Department of Medical Imaging, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Anoop Misra
- Fortis-C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India; Diabetes Foundation, New Delhi, India
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation and Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Nicholas Beng Hui Ng
- Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claude Marcus
- Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | | | - Nadia Waheed
- Department of Pediatrics, Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Saleh A Alqahtani
- Organ Transplantation Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Ponsiano Ocama
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Palo Alto, CA, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Maria Teresa Arias-Loste
- Hospital Universitario Marqués de Valdecilla, Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Mohamed Rabea Ahmed
- Department of Pediatrics, Jahra Hospital, Kuwait and Department of Pediatrics, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology and Division of Infectious Diseases, McGill University Health Centre, Montreal, QC, Canada
| | - Yong Poovorawan
- Centre of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Juan M Pericàs
- Liver Unit, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Amer Azaz
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Hasan M Isa
- Pediatric Department, Salmaniya Medical Complex and Pediatric Department, Arabian Gulf University, Manama, Bahrain
| | - Chatmanee Lertudomphonwanit
- Division of Gastroenterology, Department of Paediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Mona Issa Farrag
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Abd Alwahab Nugud
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hong-Wei Du
- Department of Paediatrics, First Hospital of Jilin University, Changchun, China
| | - Ke-Min Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Nezha Mouane
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Academic Children's Hospital Ibn Sina, Mohammed V University, Rabat, Morocco
| | - Xin-Ran Cheng
- Department of Paediatric Genetics, Endocrinology and Metabolism, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Eleonora D T Fagundes
- Department of Pediatrics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hasmik Ghazinyan
- Department of Hepatology, Nikomed Medical Center, Yerevan, Armenia
| | | | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Nicoleta Gimiga
- Clinical Department of Pediatric Gastroenterology, "St. Mary" Emergency Children's Hospital, Iași, Romania; Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Naglaa M Kamal
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt; Pediatric Hepatology and Gastroenterology, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Gabriela Ștefănescu
- Department of Gastroenterology, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Li Hong
- Department of Clinical Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Smaranda Diaconescu
- Medical-Surgical Department, Faculty of Medicine, University "Titu Maiorescu", Bucuresti, Romania
| | - Ming Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
5
|
Roszkowska P, Klimczak E, Ostrycharz E, Rączka A, Wojciechowska-Koszko I, Dybus A, Cheng YH, Yu YH, Mazgaj S, Hukowska-Szematowicz B. Small Intestinal Bacterial Overgrowth (SIBO) and Twelve Groups of Related Diseases-Current State of Knowledge. Biomedicines 2024; 12:1030. [PMID: 38790992 PMCID: PMC11117733 DOI: 10.3390/biomedicines12051030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The human gut microbiota creates a complex microbial ecosystem, characterized by its high population density, wide diversity, and complex interactions. Any imbalance of the intestinal microbiome, whether qualitative or quantitative, may have serious consequences for human health, including small intestinal bacterial overgrowth (SIBO). SIBO is defined as an increase in the number of bacteria (103-105 CFU/mL), an alteration in the bacterial composition, or both in the small intestine. The PubMed, Science Direct, Web of Science, EMBASE, and Medline databases were searched for studies on SIBO and related diseases. These diseases were divided into 12 groups: (1) gastrointestinal disorders; (2) autoimmune disease; (3) cardiovascular system disease; (4) metabolic disease; (5) endocrine disorders; (6) nephrological disorders; (7) dermatological diseases; (8) neurological diseases (9); developmental disorders; (10) mental disorders; (11) genetic diseases; and (12) gastrointestinal cancer. The purpose of this comprehensive review is to present the current state of knowledge on the relationships between SIBO and these 12 disease groups, taking into account risk factors and the causal context. This review fills the evidence gap on SIBO and presents a biological-medical approach to the problem, clearly showing the groups and diseases having a proven relationship with SIBO, as well as indicating groups within which research should continue to be expanded.
Collapse
Affiliation(s)
- Paulina Roszkowska
- Department of Diagnostic Immunology, Pomeranian Medical University, st. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.R.); (I.W.-K.)
| | - Emilia Klimczak
- Institute of Biology, University of Szczecin, st. Z. Felczaka 3c, 71-412 Szczecin, Poland; (E.K.); (E.O.); (S.M.)
| | - Ewa Ostrycharz
- Institute of Biology, University of Szczecin, st. Z. Felczaka 3c, 71-412 Szczecin, Poland; (E.K.); (E.O.); (S.M.)
- Doctoral School, University of Szczecin, st. A. Mickiewicz 16, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, st. Wąska 13, 71-412 Szczecin, Poland
| | - Aleksandra Rączka
- Department of Genetics, West Pomeranian University of Technology, st. Aleja Piastów 45, 70-311 Szczecin, Poland; (A.R.); (A.D.)
| | - Iwona Wojciechowska-Koszko
- Department of Diagnostic Immunology, Pomeranian Medical University, st. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.R.); (I.W.-K.)
| | - Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, st. Aleja Piastów 45, 70-311 Szczecin, Poland; (A.R.); (A.D.)
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.C.); (Y.-H.Y.)
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.C.); (Y.-H.Y.)
| | - Szymon Mazgaj
- Institute of Biology, University of Szczecin, st. Z. Felczaka 3c, 71-412 Szczecin, Poland; (E.K.); (E.O.); (S.M.)
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, st. Z. Felczaka 3c, 71-412 Szczecin, Poland; (E.K.); (E.O.); (S.M.)
- Molecular Biology and Biotechnology Center, University of Szczecin, st. Wąska 13, 71-412 Szczecin, Poland
| |
Collapse
|
6
|
Efremova I, Maslennikov R, Poluektova E, Vasilieva E, Zharikov Y, Suslov A, Letyagina Y, Kozlov E, Levshina A, Ivashkin V. Epidemiology of small intestinal bacterial overgrowth. World J Gastroenterol 2023; 29:3400-3421. [PMID: 37389240 PMCID: PMC10303511 DOI: 10.3748/wjg.v29.i22.3400] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is defined as an increase in the bacterial content of the small intestine above normal values. The presence of SIBO is detected in 33.8% of patients with gastroenterological complaints who underwent a breath test, and is significantly associated with smoking, bloating, abdominal pain, and anemia. Proton pump inhibitor therapy is a significant risk factor for SIBO. The risk of SIBO increases with age and does not depend on gender or race. SIBO complicates the course of a number of diseases and may be of pathogenetic significance in the development of their symptoms. SIBO is significantly associated with functional dyspepsia, irritable bowel syndrome, functional abdominal bloating, functional constipation, functional diarrhea, short bowel syndrome, chronic intestinal pseudo-obstruction, lactase deficiency, diverticular and celiac diseases, ulcerative colitis, Crohn’s disease, cirrhosis, metabolic-associated fatty liver disease (MAFLD), primary biliary cholangitis, gastroparesis, pancreatitis, cystic fibrosis, gallstone disease, diabetes, hypothyroidism, hyperlipidemia, acromegaly, multiple sclerosis, autism, Parkinson’s disease, systemic sclerosis, spondylarthropathy, fibromyalgia, asthma, heart failure, and other diseases. The development of SIBO is often associated with a slowdown in orocecal transit time that decreases the normal clearance of bacteria from the small intestine. The slowdown of this transit may be due to motor dysfunction of the intestine in diseases of the gut, autonomic diabetic polyneuropathy, and portal hypertension, or a decrease in the motor-stimulating influence of thyroid hormones. In a number of diseases, including cirrhosis, MAFLD, diabetes, and pancreatitis, an association was found between disease severity and the presence of SIBO. Further work on the effect of SIBO eradication on the condition and prognosis of patients with various diseases is required.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Ekaterina Vasilieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Yury Zharikov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 125009, Russia
| | - Andrey Suslov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 125009, Russia
| | - Yana Letyagina
- N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov University, Moscow 119991, Russia
| | - Evgenii Kozlov
- Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| |
Collapse
|
7
|
Kanezawa S, Moriyama M, Kanda T, Fukushima A, Masuzaki R, Sasaki-Tanaka R, Tsunemi A, Ueno T, Fukuda N, Kogure H. Gut-Microbiota Dysbiosis in Stroke-Prone Spontaneously Hypertensive Rats with Diet-Induced Steatohepatitis. Int J Mol Sci 2023; 24:ijms24054603. [PMID: 36902037 PMCID: PMC10002594 DOI: 10.3390/ijms24054603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Metabolic-dysfunction-associated fatty-liver disease (MAFLD) is the principal worldwide cause of liver disease. Individuals with nonalcoholic steatohepatitis (NASH) have a higher prevalence of small-intestinal bacterial overgrowth (SIBO). We examined gut-microbiota isolated from 12-week-old stroke-prone spontaneously hypertensive-5 rats (SHRSP5) fed on a normal diet (ND) or a high-fat- and high-cholesterol-containing diet (HFCD) and clarified the differences between their gut-microbiota. We observed that the Firmicute/Bacteroidetes (F/B) ratio in both the small intestines and the feces of the SHRSP5 rats fed HFCD increased compared to that of the SHRSP5 rats fed ND. Notably, the quantities of the 16S rRNA genes in small intestines of the SHRSP5 rats fed HFCD were significantly lower than those of the SHRSP5 rats fed ND. As in SIBO syndrome, the SHRSP5 rats fed HFCD presented with diarrhea and body-weight loss with abnormal types of bacteria in the small intestine, although the number of bacteria in the small intestine did not increase. The microbiota of the feces in the SHRSP5 rats fed HFCD was different from those in the SHRP5 rats fed ND. In conclusion, there is an association between MAFLD and gut-microbiota alteration. Gut-microbiota alteration may be a therapeutic target for MAFLD.
Collapse
Affiliation(s)
- Shini Kanezawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Correspondence: (M.M.); (T.K.); Tel.: +81-3-3972-8111 (M.M. & T.K.)
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Correspondence: (M.M.); (T.K.); Tel.: +81-3-3972-8111 (M.M. & T.K.)
| | - Akiko Fukushima
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Reina Sasaki-Tanaka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Akiko Tsunemi
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Takahiro Ueno
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Noboru Fukuda
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hirofumi Kogure
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
8
|
The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. J Clin Med 2022; 11:jcm11133649. [PMID: 35806934 PMCID: PMC9267803 DOI: 10.3390/jcm11133649] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a predominant hepatopathy that is rapidly becoming the most common cause of hepatocellular carcinoma worldwide. The close association with metabolic syndrome’s extrahepatic components has suggested the nature of the systemic metabolic-related disorder based on the interplay between genetic, nutritional, and environmental factors, creating a complex network of yet-unclarified pathogenetic mechanisms in which the role of insulin resistance (IR) could be crucial. This review detailed the clinical and pathogenetic evidence involved in the NAFLD–IR relationship, presenting both the classic and more innovative models. In particular, we focused on the reciprocal effects of IR, oxidative stress, and systemic inflammation on insulin-sensitivity disruption in critical regions such as the hepatic and the adipose tissue, while considering the impact of genetics/epigenetics on the regulation of IR mechanisms as well as nutrients on specific insulin-related gene expression (nutrigenetics and nutrigenomics). In addition, we discussed the emerging capability of the gut microbiota to interfere with physiological signaling of the hormonal pathways responsible for maintaining metabolic homeostasis and by inducing an abnormal activation of the immune system. The translation of these novel findings into clinical practice could promote the expansion of accurate diagnostic/prognostic stratification tools and tailored pharmacological approaches.
Collapse
|
9
|
Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener 2022; 17:43. [PMID: 35715821 PMCID: PMC9204954 DOI: 10.1186/s13024-022-00548-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
A consequence of our progressively ageing global population is the increasing prevalence of worldwide age-related cognitive decline and dementia. In the absence of effective therapeutic interventions, identifying risk factors associated with cognitive decline becomes increasingly vital. Novel perspectives suggest that a dynamic bidirectional communication system between the gut, its microbiome, and the central nervous system, commonly referred to as the microbiota-gut-brain axis, may be a contributing factor for cognitive health and disease. However, the exact mechanisms remain undefined. Microbial-derived metabolites produced in the gut can cross the intestinal epithelial barrier, enter systemic circulation and trigger physiological responses both directly and indirectly affecting the central nervous system and its functions. Dysregulation of this system (i.e., dysbiosis) can modulate cytotoxic metabolite production, promote neuroinflammation and negatively impact cognition. In this review, we explore critical connections between microbial-derived metabolites (secondary bile acids, trimethylamine-N-oxide (TMAO), tryptophan derivatives and others) and their influence upon cognitive function and neurodegenerative disorders, with a particular interest in their less-explored role as risk factors of cognitive decline.
Collapse
|