1
|
Shao J, Lai C, Zheng Q, Luo Y, Li C, Zhang B, Sun Y, Liu S, Shi Y, Li J, Zhao Z, Guo L. Effects of dietary arsenic exposure on liver metabolism in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116147. [PMID: 38460405 DOI: 10.1016/j.ecoenv.2024.116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Arsenic, a ubiquitous environmental toxicant with various forms and complex food matrix interactions, can reportedly exert differential effects on the liver compared to drinking water exposure. To examine its specific liver-related harms, we targeted the liver in C57BL/6 J mice (n=48, 8-week-old) fed with arsenic-contaminated food (30 mg/kg) for 60 days, mimicking the rice arsenic composition observed in real-world scenarios (iAsV: 7.3%, iAsIII: 72.7%, MMA: 1.0%, DMA: 19.0%). We then comprehensively evaluated liver histopathology, metabolic changes, and the potential role of the gut-liver axis using human hepatocellular carcinoma cells (HepG2) and microbiota/metabolite analyses. Rice arsenic exposure significantly altered hepatic lipid (fatty acids, glycerol lipids, phospholipids, sphingolipids) and metabolite (glutathione, thioneine, spermidine, inosine, indole-derivatives, etc.) profiles, disrupting 33 metabolic pathways (bile secretion, unsaturated fatty acid biosynthesis, glutathione metabolism, ferroptosis, etc.). Pathological examination revealed liver cell necrosis/apoptosis, further confirmed by ferroptosis induction in HepG2 cells. Gut microbiome analysis showed enrichment of pathogenic bacteria linked to liver diseases and depletion of beneficial strains. Fecal primary and secondary bile acids, short-chain fatty acids, and branched-chain amino acids were also elevated. Importantly, mediation analysis revealed significant correlations between gut microbiota, fecal metabolites, and liver metabolic alterations, suggesting fecal metabolites may mediate the impact of gut microbiota and liver metabolic disorders. Gut microbiota and its metabolites may play significant roles in arsenic-induced gut-liver injuries. Overall, our findings demonstrate that rice arsenic exposure triggers oxidative stress, disrupts liver metabolism, and induces ferroptosis.
Collapse
Affiliation(s)
- Junli Shao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengze Lai
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yu Luo
- Guangzhou Liwan District Center for Disease Control and Prevention, Guangzhou, Guangdong 510176, China
| | - Chengji Li
- Yunfu Disease Control and Prevention Center, Guangdong Province 527300, China
| | - Bin Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| | - Shizhen Liu
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jinglin Li
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zuguo Zhao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
2
|
Custodio RJP, Hobloss Z, Myllys M, Hassan R, González D, Reinders J, Bornhorst J, Weishaupt AK, Seddek AL, Abbas T, Friebel A, Hoehme S, Getzmann S, Hengstler JG, van Thriel C, Ghallab A. Cognitive Functions, Neurotransmitter Alterations, and Hippocampal Microstructural Changes in Mice Caused by Feeding on Western Diet. Cells 2023; 12:2331. [PMID: 37759553 PMCID: PMC10529844 DOI: 10.3390/cells12182331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is the most common chronic liver disease in Western countries. It is becoming increasingly evident that peripheral organ-centered inflammatory diseases, including liver diseases, are linked with brain dysfunctions. Therefore, this study aims to unravel the effect of MASLD on brain histology, cognitive functions, and neurotransmitters. For this purpose, mice fed for 48 weeks on standard (SD) or Western diet (WD) were evaluated by behavioral tests, followed by sacrifice and analysis of the liver-brain axis including histopathology, immunohistochemistry, and biochemical analyses. Histological analysis of the liver showed features of Metabolic Dysfunction-Associated Steatohepatitis (MASH) in the WD-fed mice including lipid droplet accumulation, inflammation, and fibrosis. This was accompanied by an elevation of transaminase and alkaline phosphatase activities, increase in inflammatory cytokine and bile acid concentrations, as well as altered amino acid concentrations in the blood. Interestingly, compromised blood capillary morphology coupled with astrogliosis and microgliosis were observed in brain hippocampus of the WD mice, indicating neuroinflammation or a disrupted neurovascular unit. Moreover, attention was impaired in WD-fed mice along with the observations of impaired motor activity and balance, enhanced anxiety, and stereotyped head-twitch response (HTR) behaviors. Analysis of neurotransmitters and modulators including dopamine, serotonin, GABA, glutamate, and acetylcholine showed region-specific dysregulation in the brain of the WD-fed mice. In conclusion, the induction of MASH in mice is accompanied by the alteration of cellular morphology and neurotransmitter expression in the brain, associated with compromised cognitive functions.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Jörg Reinders
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (J.B.); (A.-K.W.)
| | - Ann-Kathrin Weishaupt
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (J.B.); (A.-K.W.)
| | - Abdel-latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Tahany Abbas
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Adrian Friebel
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Stefan Hoehme
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| |
Collapse
|
3
|
Radford-Smith DE, Anthony DC. Prebiotic and Probiotic Modulation of the Microbiota-Gut-Brain Axis in Depression. Nutrients 2023; 15:nu15081880. [PMID: 37111100 PMCID: PMC10146605 DOI: 10.3390/nu15081880] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Emerging evidence demonstrates that alterations to the gut microbiota can affect mood, suggesting that the microbiota-gut-brain (MGB) axis contributes to the pathogenesis of depression. Many of these pathways overlap with the way in which the gut microbiota are thought to contribute to metabolic disease progression and obesity. In rodents, prebiotics and probiotics have been shown to modulate the composition and function of the gut microbiota. Together with germ-free rodent models, probiotics have provided compelling evidence for a causal relationship between microbes, microbial metabolites, and altered neurochemical signalling and inflammatory pathways in the brain. In humans, probiotic supplementation has demonstrated modest antidepressant effects in individuals with depressive symptoms, though more studies in clinically relevant populations are needed. This review critically discusses the role of the MGB axis in depression pathophysiology, integrating preclinical and clinical evidence, as well as the putative routes of communication between the microbiota-gut interface and the brain. A critical overview of the current approaches to investigating microbiome changes in depression is provided. To effectively translate preclinical breakthroughs in MGB axis research into novel therapies, rigorous placebo-controlled trials alongside a mechanistic and biochemical understanding of prebiotic and probiotic action are required from future research.
Collapse
Affiliation(s)
- Daniel E Radford-Smith
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX3 7JX, UK
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
4
|
Shea S, Lionis C, Atkinson L, Kite C, Lagojda L, Chaggar SS, Kyrou I, Randeva HS. Support Needs and Coping Strategies in Non-Alcoholic Fatty Liver Disease (NAFLD): A Multidisciplinary Approach to Potential Unmet Challenges beyond Pharmacological Treatment. LIVERS 2022; 3:1-20. [DOI: 10.3390/livers3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequently occurring chronic liver disease, affecting approximately 25–30% of the adult general population worldwide. NAFLD reflects excess hepatic accumulation of fat in the absence of increased alcohol intake, and, due to its close association with obesity, is frequently referred to as the ‘hepatic manifestation’ of metabolic syndrome. Indeed, a high percentage of individuals with NAFLD present with a combination of the cardio-metabolic comorbidities that are associated with the metabolic syndrome. In addition to its well-established link with the metabolic syndrome and increased risk for cardiovascular disease, NAFLD has also been associated with certain mental health issues (e.g., depression and stress). Although this link is now being increasingly recognized, there are still unmet needs regarding the holistic management of patients with NAFLD, which could further contribute to feelings of social isolation and loneliness. The latter conditions are also increasingly reported to pose a substantial risk to overall health and quality of life. To date, there is limited research that has explored these issues among patients with NAFLD, despite existing data which indicate that perceived loneliness and isolation may pose an additional health risk. Notably, many features associated with NAFLD have been related to these concepts, such as perceived stigma, fatigue, stress, and confusion regarding this diagnosis. As such, this review aimed to assess such potential problems faced by patients with NAFLD, and to explore the possibility of unmet support needs which could lead to perceived social isolation. Moreover, the importance of a compassionate approach towards such patients is discussed, together with potential coping strategies. Future research directions and the need for a multidisciplinary approach are also highlighted.
Collapse
Affiliation(s)
- Sue Shea
- Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Christos Lionis
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Lou Atkinson
- Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Chris Kite
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- School of Public Health Studies, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
| | - Lukasz Lagojda
- Clinical Evidence Based Information Service (CEBIS), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | | | - Ioannis Kyrou
- Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics & Quality of Life, Department of Food Science & Human Nutrition, School of Food & Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Harpal S. Randeva
- Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| |
Collapse
|
5
|
Lennox B, Xiong W, Waters P, Coles A, Jones PB, Yeo T, May JTM, Yeeles K, Anthony D, Probert F. The serum metabolomic profile of a distinct, inflammatory subtype of acute psychosis. Mol Psychiatry 2022; 27:4722-4730. [PMID: 36131046 PMCID: PMC7613906 DOI: 10.1038/s41380-022-01784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022]
Abstract
A range of studies suggest that a proportion of psychosis may have an autoimmune basis, but this has not translated through into clinical practice-there is no biochemical test able to accurately identify psychosis resulting from an underlying inflammatory cause. Such a test would be an important step towards identifying who might require different treatments and have the potential to improve outcomes for patients. To identify novel subgroups within patients with acute psychosis we measured the serum nuclear magnetic resonance (NMR) metabolite profiles of 75 patients who had identified antibodies (anti-glycine receptor [GlyR], voltage-gated potassium channel [VGKC], Contactin-associated protein-like 2 [CASPR2], leucine-rich glioma inactivated 1 [LGI1], N-methyl-D-aspartate receptor [NMDAR] antibody) and 70 antibody negative patients matched for age, gender, and ethnicity. Clinical symptoms were assessed using the positive and negative syndrome scale (PANSS). Unsupervised principal component analysis identified two distinct biochemical signatures within the cohort. Orthogonal partial least squared discriminatory analysis revealed that the serum metabolomes of NMDAR, LGI1, and CASPR2 antibody psychosis patients were indistinct from the antibody negative control group while VGKC and GlyR antibody patients had significantly decreased lipoprotein fatty acids and increased amino acid concentrations. Furthermore, these patients had more severe presentation with higher PANSS scores than either the antibody negative controls or the NMDAR, LGI1, and CASPR2 antibody groups. These results suggest that a proportion of patients with acute psychosis have a distinct clinical and biochemical phenotype that may indicate an inflammatory subtype.
Collapse
Affiliation(s)
- Belinda Lennox
- Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Oxford, UK.
| | - Wenzheng Xiong
- Department of Pharmacology, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alasdair Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Tianrong Yeo
- Department of Pharmacology, University of Oxford, Oxford, UK
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jeanne Tan May May
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ksenija Yeeles
- Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Oxford, UK
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Fay Probert
- Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Peng HL, Liu LN, Liu DL, Tan YY. Depression and non-alcoholic fatty liver disease: Association and potential mechanisms. Shijie Huaren Xiaohua Zazhi 2022; 30:295-302. [DOI: 10.11569/wcjd.v30.i7.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and is closely related to the high incidence of obesity, metabolic syndrome, type 2 diabetes, arteriosclerotic cardiovascular disease, and colorectal tumor. Depression is a common mental disorder that is characterized by high incidence, high recurrence rate, high disability rate, and high suicide rate, which has serious harm to patients' physical and mental health, reduce the quality of life of patients. In recent years, as more and more attention has been paid to mental health of NAFLD patients, the relationship between NAFLD and depression has become one of the hot research topics. Studies have shown that the incidence of depression in NAFLD patients is higher than that in non-NAFLD patients, and the incidence of NAFLD in depressed patients is also higher. Some research results have been published on the mechanism of comorbidity between the two. This paper reviews the research progress on the correlation and common mechanism between NAFLD and depression, aiming to lay a foundation for further research on the comorbidities of NAFLD and depression, and provide a basis and research direction for the diagnosis and treatment of patients with both comorbidities.
Collapse
Affiliation(s)
- Hai-Ling Peng
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China,Research Center of Digestive Diseases, Central South University, Changsha 410011, Hunan Province, China
| | - Li-Ni Liu
- Department of Psychosomatic Medicine, Hunan Brain Hospital, Changsha 410011, Hunan Province, China
| | - De-Liang Liu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China,Research Center of Digestive Diseases, Central South University, Changsha 410011, Hunan Province, China
| | - Yu-Yong Tan
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China,Research Center of Digestive Diseases, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|