1
|
Jiang TQ, Wang H, Cheng WX, Xie C. Modulation of host N6-methyladenosine modification by gut microbiota in colorectal cancer. World J Gastroenterol 2024; 30:4175-4193. [PMID: 39493326 PMCID: PMC11525875 DOI: 10.3748/wjg.v30.i38.4175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
As a research hotspot in the field of molecular biology, N6-methyladenosine (m6A) modification has made progress in the treatment of colorectal cancer (CRC), leukemia and other cancers. Numerous studies have demonstrated that the tumour microenvironment (TME) regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells, thus affecting the progression and prognosis of CRC. However, with the diversity in the composition of TME factors, this action is reciprocal and complex. Encouragingly, some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation. This review summarizes the data, supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC. We also review the role of m6A modification in the diagnosis, treatment, and prognostic assessment of CRC and discuss the current status, limitations, and potential clinical value of m6A modification in this field. We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.
Collapse
Affiliation(s)
- Tian-Qi Jiang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hao Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wang-XinJun Cheng
- Queen Mary College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
2
|
Fellows RC, Chun SK, Larson N, Fortin BM, Mahieu AL, Song WA, Seldin MM, Pannunzio NR, Masri S. Disruption of the intestinal clock drives dysbiosis and impaired barrier function in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1458. [PMID: 39331712 PMCID: PMC11430476 DOI: 10.1126/sciadv.ado1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Diet is a robust entrainment cue that regulates diurnal rhythms of the gut microbiome. We and others have shown that disruption of the circadian clock drives the progression of colorectal cancer (CRC). While certain bacterial species have been suggested to play driver roles in CRC, it is unknown whether the intestinal clock impinges on the microbiome to accelerate CRC pathogenesis. To address this, genetic disruption of the circadian clock, in an Apc-driven mouse model of CRC, was used to define the impact on the gut microbiome. When clock disruption is combined with CRC, metagenomic sequencing identified dysregulation of many bacterial genera including Bacteroides, Helicobacter, and Megasphaera. We identify functional changes to microbial pathways including dysregulated nucleic acid, amino acid, and carbohydrate metabolism, as well as disruption of intestinal barrier function. Our findings suggest that clock disruption impinges on microbiota composition and intestinal permeability that may contribute to CRC pathogenesis.
Collapse
Affiliation(s)
- Rachel C. Fellows
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Natalie Larson
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Bridget M. Fortin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Wei A. Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Nicholas R. Pannunzio
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Aminu S, Ascandari A, Laamarti M, Safdi NEH, El Allali A, Daoud R. Exploring microbial worlds: a review of whole genome sequencing and its application in characterizing the microbial communities. Crit Rev Microbiol 2024; 50:805-829. [PMID: 38006569 DOI: 10.1080/1040841x.2023.2282447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The classical microbiology techniques have inherent limitations in unraveling the complexity of microbial communities, necessitating the pivotal role of sequencing in studying the diversity of microbial communities. Whole genome sequencing (WGS) enables researchers to uncover the metabolic capabilities of the microbial community, providing valuable insights into the microbiome. Herein, we present an overview of the rapid advancements achieved thus far in the use of WGS in microbiome research. There was an upsurge in publications, particularly in 2021 and 2022 with the United States, China, and India leading the metagenomics research landscape. The Illumina platform has emerged as the widely adopted sequencing technology, whereas a significant focus of metagenomics has been on understanding the relationship between the gut microbiome and human health where distinct bacterial species have been linked to various diseases. Additionally, studies have explored the impact of human activities on microbial communities, including the potential spread of pathogenic bacteria and antimicrobial resistance genes in different ecosystems. Furthermore, WGS is used in investigating the microbiome of various animal species and plant tissues such as the rhizosphere microbiome. Overall, this review reflects the importance of WGS in metagenomics studies and underscores its remarkable power in illuminating the variety and intricacy of the microbiome in different environments.
Collapse
Affiliation(s)
- Suleiman Aminu
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - AbdulAziz Ascandari
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Meriem Laamarti
- Faculty of Medical Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Nour El Houda Safdi
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Rachid Daoud
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| |
Collapse
|
4
|
Nguyen Duy T, Le Huy H, Đao Thanh Q, Ngo Thi H, Ngo Thi Minh H, Nguyen Dang M, Le Huu S, Ngo Tat T. Association between Bacteroides fragilis and Fusobacterium nucleatum infection and colorectal cancer in Vietnamese patients. Anaerobe 2024; 88:102880. [PMID: 38942229 DOI: 10.1016/j.anaerobe.2024.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a significant global health concern, and understanding the role of specific bacterial infections in its development and progression is of increasing interest. This cross-sectional study investigated the associations between Bacteroides fragilis (B. fragilis) and Fusobacterium nucleatum (F. nucleatum) infections and Vietnamese CRC patients. METHODS 192 patients with either polyps or CRC at varying stages were recruited from May 2017 to December 2020. Real-time PCR assessed infection rates and bacterial loads in CRC tissues. RESULTS B. fragilis infection was notably higher in CRC tissues (51.6 %) than polyps (9.4 %), with a fivefold higher relative load. Positive associations were found in stages II and III, indicating a fivefold increase in CRC progression risk. F. nucleatum infection rates were significantly higher in CRC tissues (55.2 %) than in polyps (10.5 %). In stage II, the infection rate exceeded that in adjacent tissues. The relative load of F. nucleatum was higher in stage III than in stages I and II. Positive F. nucleatum patients had a 3.2 times higher risk of CRC progression. CONCLUSION These findings suggest associations between loading of F. nucleatum or/and B. fragilis with the advanced stages of CRC.
Collapse
Affiliation(s)
- Truong Nguyen Duy
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, 10000, Viet Nam
| | - Hoang Le Huy
- Department of Bacteriology, National of Hygiene and Epidemiology, Hanoi, 10000, Viet Nam
| | - Quyen Đao Thanh
- Vietnamese-German Center of Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, 100000, Viet Nam
| | - Hoai Ngo Thi
- Department of Gastroenterological Intensive Care, 108 Military Central Hospital, Hanoi, 10000, Viet Nam
| | - Hanh Ngo Thi Minh
- Department of Pathology, 108 Military Central Hospital, Hanoi, 10000, Viet Nam
| | - Manh Nguyen Dang
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, 10000, Viet Nam
| | - Song Le Huu
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, 10000, Viet Nam; Vietnamese-German Center of Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, 100000, Viet Nam.
| | - Trung Ngo Tat
- Vietnamese-German Center of Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, 100000, Viet Nam; Centre for Genetics Consultation and Cancer Screening, 108 Military Central Hospital, Hanoi, 100000, Viet Nam.
| |
Collapse
|
5
|
Wu J, Zhang P, Mei W, Zeng C. Intratumoral microbiota: implications for cancer onset, progression, and therapy. Front Immunol 2024; 14:1301506. [PMID: 38292482 PMCID: PMC10824977 DOI: 10.3389/fimmu.2023.1301506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Significant advancements have been made in comprehending the interactions between the microbiome and cancer. However, prevailing research predominantly directs its focus toward the gut microbiome, affording limited consideration to the interactions of intratumoral microbiota and tumors. Within the tumor microenvironment (TME), the intratumoral microbiome and its associated products wield regulatory influence, directing the modulation of cancer cell properties and impacting immune system functionality. However, to grasp a more profound insight into the intratumoral microbiota in cancer, further research into its underlying mechanisms is necessary. In this review, we delve into the intricate associations between intratumoral microbiota and cancer, with a specific focus on elucidating the significant contribution of intratumoral microbiota to the onset and advancement of cancer. Notably, we provide a detailed exploration of therapeutic advances facilitated by intratumoral microbiota, offering insights into recent developments in this burgeoning field.
Collapse
Affiliation(s)
- Jinmei Wu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Pengfei Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
6
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
7
|
Can the Correlation of Periodontopathies with Gastrointestinal Diseases Be Used as Indicators in Severe Colorectal Diseases? Biomedicines 2023; 11:biomedicines11020402. [PMID: 36830938 PMCID: PMC9953596 DOI: 10.3390/biomedicines11020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Gastrointestinal problems are among the most common health problems which can acutely affect the healthy population and chronically involve health risks, seriously affecting the quality of life. Identifying the risk of gastrointestinal diseases in the early phase by indirect methods can increase the healing rate and the quality of life.: The proposal of this study is to verify a correlation between gastrointestinal and periodontal problems and the risk of inflammatory gastrointestinal diseases (IBD). The study was conducted on 123 people who were observed to have gastrointestinal and psychological problems. The participants were divided into three groups, depending on each one's diagnosis. The control group (CG) was composed of 37 people who did not fit either irritable bowel syndrome (IBS) according to the ROME IV criteria, nor were inflammatory markers positive for IBD. Group 2 (IBS) was composed of 44 participants diagnosed with IBS according to the ROME IV criteria. Group 3 was composed of 42 participants who were diagnosed with IBD. All study participants underwent anthropometric, micro-Ident, and quality of life tests. A directly proportional relationship of the presence of bacteria with IBD patients with the exception of Capnocytophaga spp. and Actinobacillus actinomycetemcomitans was observed. These two bacteria correlated significantly with IBS. Follow-up of the study participants will help determine whether periodontal disease can be used as an indicator of severe colorectal disease. In addition, this study should be continued especially in the case of IBD more thoroughly to follow and reduce the risk of malignancy.
Collapse
|