1
|
Chan HLY. Is HBV RNA a new endpoint of HBV cure? Saudi J Gastroenterol 2024; 30:273-274. [PMID: 39215476 PMCID: PMC11534194 DOI: 10.4103/sjg.sjg_274_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Henry Lik Yuen Chan
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Department of Internal Medicine, Union Hospital, Hong Kong
| |
Collapse
|
2
|
Janssen HL, Lim YS, Kim HJ, Sowah L, Tseng CH, Coffin CS, Elkhashab M, Ahn SH, Nguyen AH, Chen D, Wallin JJ, Fletcher SP, McDonald C, Yang JC, Gaggar A, Brainard DM, Fung S, Kim YJ, Kao JH, Chuang WL, Brooks AE, Dunbar PR. Safety, pharmacodynamics, and antiviral activity of selgantolimod in viremic patients with chronic hepatitis B virus infection. JHEP Rep 2024; 6:100975. [PMID: 38274492 PMCID: PMC10808922 DOI: 10.1016/j.jhepr.2023.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024] Open
Abstract
Background & Aims Novel finite therapies for chronic hepatitis B (CHB) are needed, since lifelong treatment is usually required with current available oral antivirals. This phase II study (NCT03615066) evaluated the safety, pharmacodynamics, and antiviral activity of selgantolimod (a Toll-like receptor 8 agonist [TLR8]) with tenofovir alafenamide (TAF). Methods Viremic patients with CHB not receiving treatment were stratified by HBeAg status and randomized 2:2:1 to TAF 25 mg/day with selgantolimod 3 mg orally once weekly (QW), selgantolimod 1.5 mg QW, or placebo. Combination therapy continued until week (W)24, followed by TAF monotherapy until W48; patients then discontinued TAF and were followed until W96 (treatment-free follow-up [TFFU] period). The primary efficacy endpoint was the proportion with ≥1 log10 IU/ml HBsAg decline at W24. Results Sixty-seven patients received study drug; 27 were followed during TFFU. Nausea, headache, vomiting, fatigue, and dizziness were the most common adverse events. Most adverse events were grade 1. Alanine aminotransferase flares were not observed up to W48. Four patients experienced alanine aminotransferase and hepatitis flares during TFFU; all had HBV DNA increases. Selgantolimod increased serum cytokines and chemokines and redistributed several circulating immune cell subsets. No patients achieved the primary efficacy endpoint. Mean HBsAg changes were -0.12, -0.16, and -0.12 log10 IU/ml in the selgantolimod 3 mg, selgantolimod 1.5 mg, and placebo groups, respectively, at W48; HBV DNA declined in all groups by ≥2 log10 IU/ml as early as W2, with all groups rebounding to baseline during TFFU. No HBsAg or HBeAg loss or seroconversion was observed throughout TFFU. Conclusions Selgantolimod up to 3 mg was safe and well tolerated. Pharmacodynamics and antiviral activity in viremic patients support continued study of selgantolimod in combination CHB therapies. Impact and implications Novel therapeutics for chronic HBV infection are needed to achieve a functional cure. In this study, we confirmed the safety and tolerability of selgantolimod (formerly GS-9688, a TLR8) when administered with tenofovir alafenamide over 24 weeks in viremic patients with chronic HBV infection. Overall, declines in HBsAg levels with selgantolimod treatment were modest; subgroup analysis indicated that patients with alanine aminotransferase levels greater than the upper limit of normal had significantly greater declines compared to those with normal alanine aminotransferase levels (-0.20 vs. -0.03 log10 IU/ml; p <0.001). These findings suggest a potential differential response to selgantolimod based on patients' baseline HBV-specific immune response, which should be considered in future investigations characterizing the underlying mechanisms of selgantolimod treatment and in HBV cure studies using similar immunomodulatory pathways. Clinical trial number NCT03615066 be found at https://www.gileadclinicaltrials.com/transparency-policy/.
Collapse
Affiliation(s)
- Harry L. Janssen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Young-Suk Lim
- Asan Medical Centre, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyung Joon Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | | | - Cheng-Hao Tseng
- Division of Gastroenterology and Hepatology, E-Da Cancer Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Carla S. Coffin
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Sang Hoon Ahn
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Diana Chen
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | | | | | | | - Scott Fung
- Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Anna E. Brooks
- School of Biological Sciences, and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - P. Rod Dunbar
- School of Biological Sciences, and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Tu T, Ajoyan H, George J. Novel Assays to Solve the Clinical and Scientific Challenges of Chronic Hepatitis B. Clin Liver Dis 2023; 27:837-855. [PMID: 37778773 DOI: 10.1016/j.cld.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Chronic infection with Hepatitis B is a common, incurable, and deadly infection. Despite inexpensive laboratory tests for diagnosis and management that have been established for decades, the worldwide rate of diagnosis is only ∼10%, and ∼5% of people are under treatment. Novel assays have been developed to improve linkage to care by providing more flexible approaches to determine a patient's health status. Other assays have been established to better investigate intrahepatic host-virus interactions to support clinical trials for cure research. This review outlines the clinical and scientific challenges still to be solved and the upcoming methods used to address them.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia; Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia.
| | - Harout Ajoyan
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
4
|
Villeret F, Lebossé F, Radenne S, Samuel D, Roche B, Mabrut JY, Leroy V, Pageaux GP, Anty R, Thevenon S, Ahmed SS, Hamilton A, Heil M, Scholtès C, Levrero M, Testoni B, Zoulim F. Early intrahepatic recurrence of HBV infection in liver transplant recipients despite antiviral prophylaxis. JHEP Rep 2023; 5:100728. [PMID: 37122357 PMCID: PMC10131114 DOI: 10.1016/j.jhepr.2023.100728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 05/02/2023] Open
Abstract
Background & Aims Prophylaxis with nucleos(t)ide analogues (NUCs) and hepatitis B immunoglobulin (HBIG) has decreased the rate of HBV recurrence after orthotopic liver transplantation (OLT), but the duration of this prophylaxis remains debated. Our aim was to investigate the recurrence of both intrahepatic and serum HBV markers after OLT in patients receiving long-term NUC and HBIG prophylaxis. Methods A total of 31 HBV-positive patients benefiting from OLT were prospectively enrolled in five French centres between 2012 and 2015. Tissue samples from the native liver, liver reperfusion biopsy, and 12-month post-OLT (M12) biopsy were collected. Intrahepatic HBV markers were quantified using Droplet Digital PCR. Serum hepatitis B core-related antigen (HBcrAg) and HBsAg were quantified using the Lumipulse platform. Results Among the 31 patients, 26 were HBeAg negative and 28 had undetectable serum HBV DNA at OLT. All patients received HBIG and NUC after OLT, and serum HBV DNA was undetectable at M12. Of the 27 available native livers, 26 had detectable total HBV DNA (median, 0.045 copies/cell), 21 were positive for cccDNA (0.001 copies/cell), and 19 were positive for 3.5-kb HBV RNA (0.0004 copies/cell). Among the 14 sequential reperfusion and M12 biopsies, seven were positive for HBV markers on the reperfusion sampling, and six of them were also positive at M12. Of the 27 patients with available serum samples at M12, eight were positive for HBcrAg and five were positive for HBsAg by ultrasensitive quantification, although they were negative by conventional techniques. Overall, among the 17 patients having a matched biopsy and serum sample at M12, only one had undetectable HBV markers in both the liver and serum. Conclusions Our results demonstrate a very early detection of viral genome in the graft and intrahepatic viral recurrence despite NUC and HBIG prophylaxis. Clinical Trials Registration This study is registered at ClinicalTrials.gov (NCT02602847). Impact and Implications In this work, we show that, despite the recommended prophylaxis based on NUC and HBIG, HBV can infect the new liver very rapidly after transplantation. Twelve months after transplantation, the majority of patients had at least one HBV marker detected in either serum or the liver. Therefore, our results demonstrate early intrahepatic viral recurrence despite NUC and HBIG therapy and underline the importance of an optimal patient compliance to the antiviral prophylaxis to prevent viral rebound.
Collapse
Affiliation(s)
- François Villeret
- Service d’Hépatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Fanny Lebossé
- Service d’Hépatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Sylvie Radenne
- Service d’Hépatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Didier Samuel
- Centre Hépato-Biliaire, Université Paris-Saclay, Unité Inserm 1193, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris (AP-HP), Villejuif, France
| | - Bruno Roche
- Centre Hépato-Biliaire, Université Paris-Saclay, Unité Inserm 1193, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris (AP-HP), Villejuif, France
| | - Jean-Yves Mabrut
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
- Service de Chirurgie Générale et Transplantation Hépatique, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Vincent Leroy
- Service d’Hépato-gastro-entérologie, Hôpital Grenoble-Alpes, Grenoble, France
| | | | - Rodolphe Anty
- Université Côte d’Azur, pôle digestif CHU de Nice, INSERM, U1065, C3M, Nice, France
| | - Sylvie Thevenon
- Centre de Recherche Clinique, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Sinafa Si Ahmed
- Service d’Hépatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | | | | | - Caroline Scholtès
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
- Service de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Massimo Levrero
- Service d’Hépatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Barbara Testoni
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
- Corresponding authors. Address: INSERM U1052, 151, Cours Albert Thomas, 69008 Lyon, France. Tel.: +33-4-72-68-19-70; Fax: +33-4-72-68-19-71.
| | - Fabien Zoulim
- Service d’Hépatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
- Corresponding authors. Address: INSERM U1052, 151, Cours Albert Thomas, 69008 Lyon, France. Tel.: +33-4-72-68-19-70; Fax: +33-4-72-68-19-71.
| | | |
Collapse
|
5
|
Aggarwal A, Odorizzi PM, Brodbeck J, van Buuren N, Moon C, Chang S, Adona M, Suthram S, Suri V, Trowe T, Turner S, Marcellin P, Buti M, Gaggar A, Fletcher SP, Diehl L, Feierbach B, Balsitis S. Intrahepatic quantification of HBV antigens in chronic hepatitis B reveals heterogeneity and treatment-mediated reductions in HBV core-positive cells. JHEP Rep 2023; 5:100664. [PMID: 36908748 PMCID: PMC9996321 DOI: 10.1016/j.jhepr.2022.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Background & Aims Patterns of liver HBV antigen expression have been described but not quantified at single-cell resolution. We applied quantitative techniques to liver biopsies from individuals with chronic hepatitis B and evaluated sampling heterogeneity, effects of disease stage, and nucleos(t)ide (NUC) treatment, and correlations between liver and peripheral viral biomarkers. Methods Hepatocytes positive for HBV core and HBsAg were quantified using a novel four-plex immunofluorescence assay and image analysis. Biopsies were analysed from HBeAg-positive (n = 39) and HBeAg-negative (n = 75) participants before and after NUC treatment. To evaluate sampling effects, duplicate biopsies collected at the same time point were compared. Serum or plasma samples were evaluated for levels of HBV DNA, HBsAg, hepatitis B core-related antigen (HBcrAg), and HBV RNA. Results Diffusely distributed individual HBV core+ cells and foci of HBsAg+ cells were the most common staining patterns. Hepatocytes positive for both HBV core and HBsAg were rare. Paired biopsies revealed large local variation in HBV staining within participants, which was confirmed in a large liver resection. NUC treatment was associated with a >100-fold lower median frequency of HBV core+ cells in HBeAg-positive and HBeAg-negative participants, whereas reductions in HBsAg+ cells were not statistically significant. The frequency of HBV core+ hepatocytes was lower in HBeAg-negative participants than in HBeAg-positive participants at all time points evaluated. Total HBV+ hepatocyte burden correlated with HBcrAg, HBV DNA, and HBV RNA only in baseline HBeAg-positive samples. Conclusions Reductions in HBV core+ hepatocytes were associated with HBeAg-negative status and NUC treatment. Variation in HBV positivity within individual livers was extensive. Correlations between the liver and the periphery were found only between biomarkers likely indicative of cccDNA (HBV core+ and HBcrAg, HBV DNA, and RNA). Impact and Implications HBV infects liver hepatocyte cells, and its genome can exist in two forms that express different sets of viral proteins: a circular genome called cccDNA that can express all viral proteins, including the HBV core and HBsAg proteins, or a linear fragment that inserts into the host genome typically to express HBsAg, but not HBV core. We used new techniques to determine the percentage of hepatocytes expressing the HBV core and HBsAg proteins in a large set of liver biopsies. We find that abundance and patterns of expression differ across patient groups and even within a single liver and that NUC treatment greatly reduces the number of core-expressing hepatocytes.
Collapse
Key Words
- ADV, adefovir
- ALT, alanine aminotransferase
- Biomarkers
- CHB, chronic hepatitis B
- CNN, convolutional neural network
- HBV
- HBV core
- HBV core, hepatitis B core antigen
- HBV, Hepatitis B Virus
- HBcrAg, hepatitis B core-related antigen
- HBeAg
- HBeAg, Hepatitis B e antigen
- HBsAg
- HBsAg, Hepatitis B surface antigen
- HCC, hepatocellular carcinoma
- IF, immunofluorescence
- NUC
- NUC, nucleo(t)side
- Na+K+-ATPase, sodium–potassium ATPase
- QC, quality control
- TDF, tenofovir disoproxil fumarate
- cccDNA, covalently closed circular DNA
- dslDNA, double-stranded linear DNA
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Maria Buti
- Hospital Universitario Valle Hebron, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Zoulim F, Testoni B. Eliminating cccDNA to cure hepatitis B virus infection. J Hepatol 2023; 78:677-680. [PMID: 36717025 DOI: 10.1016/j.jhep.2023.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Affiliation(s)
- Fabien Zoulim
- INSERM Unit 1052, France; Université Claude Bernard Lyon 1, France; Hospices Civils de Lyon, France; Hepatology Institute of Lyon, France.
| | - Barbara Testoni
- INSERM Unit 1052, France; Hepatology Institute of Lyon, France
| |
Collapse
|
7
|
Burdette D, Hyrina A, Song Z, Beran RK, Cheung T, Gilmore S, Kobayashi T, Li L, Liu Y, Niedziela-Majka A, Medley J, Mehra U, Morganelli P, Novikov N, Niu C, Tam D, Tang J, Wang J, Yue Q, Fletcher SP, Holdorf MM, Delaney WE, Feierbach B, Lazerwith S. Characterization of a Novel Capsid Assembly Modulator for the Treatment of Chronic Hepatitis B Virus Infection. Antimicrob Agents Chemother 2023; 67:e0134822. [PMID: 36519892 PMCID: PMC9872672 DOI: 10.1128/aac.01348-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
The standard of care for the treatment of chronic hepatitis B (CHB) is typically lifelong treatment with nucleos(t)ide analogs (NAs), which suppress viral replication and provide long-term clinical benefits. However, infectious virus can still be detected in patients who are virally suppressed on NA therapy, which may contribute to the failure of these agents to cure most CHB patients. Accordingly, new antiviral treatment options are being developed to enhance the suppression of hepatitis B virus (HBV) replication in combination with NAs ("antiviral intensification"). Here, we describe GS-SBA-1, a capsid assembly modulator (CAM) belonging to class CAM-E, that demonstrates potent inhibition of extracellular HBV DNA in vitro (EC50 [50% effective concentration] = 19 nM) in HBV-infected primary human hepatocytes (PHHs) as well as in vivo in an HBV-infected immunodeficient mouse model. GS-SBA-1 has comparable activities across HBV genotypes and nucleos(t)ide-resistant mutants in HBV-infected PHHs. In addition, GS-SBA-1 demonstrated in vitro additivity in combination with tenofovir alafenamide (TAF). The administration of GS-SBA-1 to PHHs at the time of infection prevents covalently closed circular DNA (cccDNA) formation and, hence, decreases HBV RNA and antigen levels (EC50 = 80 to 200 nM). Furthermore, GS-SBA-1 prevents the production of extracellular HBV RNA-containing viral particles in vitro. Collectively, these data demonstrate that GS-SBA-1 is a potent CAM that has the potential to enhance viral suppression in combination with an NA.
Collapse
Affiliation(s)
| | | | - Zhijuan Song
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Tara Cheung
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | - Li Li
- Gilead Sciences, Inc., Foster City, California, USA
| | - Yang Liu
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | | - Congrong Niu
- Gilead Sciences, Inc., Foster City, California, USA
| | - Danny Tam
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | - Qin Yue
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | |
Collapse
|
8
|
Akbar SMF, Mahtab MA, Khan S, Yoshida O, Hiasa Y. Development of Therapeutic Vaccine for Chronic Hepatitis B: Concept, Cellular and Molecular Events, Design, Limitation, and Future Projection. Vaccines (Basel) 2022; 10:vaccines10101644. [PMID: 36298512 PMCID: PMC9612083 DOI: 10.3390/vaccines10101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Four decades have passed since the first usage of the therapeutic vaccine in patients with chronic hepatitis B (CHB). However, there is no approved regimen of vaccine therapy for the treatment of CHB. This is mainly attributable to faulty conception, an improper understanding of the cellular and molecular mechanisms of CHB, and the impaired design of vaccine therapy for CHB. With the advent of new techniques and a better understanding of cellular and molecular mechanisms underlying the genesis of CHB, the limitations and failures of previous regimens of therapeutic vaccines have been primarily understood. Additionally, the importance of immune therapy for treating millions of CHB patients and achieving the target of "Elimination of Hepatitis by 2030" has been focused on in the international arena. This has been amplified by the apparent limitation of commercially available antiviral drugs that are infinite in duration, endowed with safety concerns, and unable to cure liver damage due to their minimal immune modulation capacities. The proposed review article comprehensively discusses each of these points and proposes evidence-based approaches for viable types of vaccine therapy for the treatment of CHB.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan
- Correspondence: ; Tel.: +81-89-960-5308; Fax: +81-89-960-5310
| | - Mamun Al Mahtab
- Interventional Hepatology Division, Department of Hepatology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka 1000, Bangladesh
| | - Sakirul Khan
- Department of Microbiology, Oita University, Oita 879-5593, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan
| |
Collapse
|
9
|
Gorsuch CL, Nemec P, Yu M, Xu S, Han D, Smith J, Lape J, van Buuren N, Ramirez R, Muench RC, Holdorf MM, Feierbach B, Falls G, Holt J, Shoop W, Sevigny E, Karriker F, Brown RV, Joshi A, Goodwin T, Tam YK, Lin PJC, Semple SC, Leatherbury N, Delaney Iv WE, Jantz D, Rhoden Smith A. Targeting the hepatitis B cccDNA with a sequence-specific ARCUS nuclease to eliminate hepatitis B virus in vivo. Mol Ther 2022; 30:2909-2922. [PMID: 35581938 PMCID: PMC9481990 DOI: 10.1016/j.ymthe.2022.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Persistence of chronic hepatitis B (CHB) is attributed to maintenance of the intrahepatic pool of the viral covalently closed circular DNA (cccDNA), which serves as the transcriptional template for all viral gene products required for replication. Current nucleos(t)ide therapies for CHB prevent virus production and spread but have no direct impact on cccDNA or expression of viral genes. We describe a potential curative approach using a highly specific engineered ARCUS nuclease (ARCUS-POL) targeting the hepatitis B virus (HBV) genome. Transient ARCUS-POL expression in HBV-infected primary human hepatocytes produced substantial reductions in both cccDNA and hepatitis B surface antigen (HBsAg). To evaluate ARCUS-POL in vivo, we developed episomal adeno-associated virus (AAV) mouse and non-human primate (NHP) models containing a portion of the HBV genome serving as a surrogate for cccDNA. Clinically relevant delivery was achieved through systemic administration of lipid nanoparticles containing ARCUS-POL mRNA. In both mouse and NHP, we observed a significant decrease in total AAV copy number and high on-target indel frequency. In the case of the mouse model, which supports HBsAg expression, circulating surface antigen was durably reduced by 96%. Together, these data support a gene-editing approach for elimination of cccDNA toward an HBV cure.
Collapse
Affiliation(s)
| | - Paige Nemec
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Mei Yu
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Simin Xu
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Dong Han
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Jeff Smith
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Janel Lape
- Precision BioSciences Inc, Durham, NC 27701, USA
| | | | | | | | | | | | - Greg Falls
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Jason Holt
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Wendy Shoop
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Emma Sevigny
- Precision BioSciences Inc, Durham, NC 27701, USA
| | | | | | - Amod Joshi
- Precision BioSciences Inc, Durham, NC 27701, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | - Derek Jantz
- Precision BioSciences Inc, Durham, NC 27701, USA.
| | | |
Collapse
|