1
|
Robinson JM, Annells A, Cando-Dumancela C, Breed MF. Sonic restoration: acoustic stimulation enhances plant growth-promoting fungi activity. Biol Lett 2024; 20:20240295. [PMID: 39353567 PMCID: PMC11444772 DOI: 10.1098/rsbl.2024.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Ecosystem restoration interventions often utilize visible elements to restore an ecosystem (e.g. replanting native plant communities and reintroducing lost species). However, using acoustic stimulation to help restore ecosystems and promote plant growth has received little attention. Our study aimed to assess the effect of acoustic stimulation on the growth rate and sporulation of the plant growth-promoting fungus Trichoderma harzianum Rifai, 1969. We played a monotone acoustic stimulus (80 dB sound pressure level (SPL) at a peak frequency of 8 kHz and a bandwidth at -10 dB from the peak of 6819 Hz-parameters determined via review and pilot research) over 5 days to T. harzianum to assess whether acoustic stimulation affected the growth rate and sporulation of this fungus (control samples received only ambient sound stimulation less than 30 dB). We show that the acoustic stimulation treatments resulted in increased fungal biomass and enhanced T. harzianum conidia (spore) activity compared to controls. These results indicate that acoustic stimulation influences plant growth-promoting fungal growth and potentially facilitates their functioning (e.g. stimulating sporulation). The mechanism responsible for this phenomenon may be fungal mechanoreceptor stimulation and/or potentially a piezoelectric effect; however, further research is required to confirm this hypothesis. Our novel study highlights the potential of acoustic stimulation to alter important fungal attributes, which could, with further development, be harnessed to aid ecosystem restoration and sustainable agriculture.
Collapse
Affiliation(s)
- Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Amy Annells
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Christian Cando-Dumancela
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
2
|
Robinson JM, Annells A, Cavagnaro TR, Liddicoat C, Rogers H, Taylor A, Breed MF. Monitoring soil fauna with ecoacoustics. Proc Biol Sci 2024; 291:20241595. [PMID: 39226929 PMCID: PMC11371423 DOI: 10.1098/rspb.2024.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Ecoacoustics-or acoustic ecology-aids in monitoring elusive and protected species in several ecological contexts. For example, passive acoustic monitoring (PAM), which involves autonomous acoustic sensors, is widely used to detect various taxonomic groups in terrestrial and aquatic ecosystems, from birds and bats to fish and cetaceans. Here, we illustrate the potential of ecoacoustics to monitor soil biodiversity (specifically fauna)-a crucial endeavour given that 59% of species live in soil yet 75% of soils are affected by degradation. We describe the sources of sound in the soil (e.g. biological, geological and anthropogenic) and the ability of acoustic technology to detect and differentiate between these sounds, highlighting opportunities and current gaps in knowledge. We also propose a roadmap for the future development of optimized hardware, analytical pipelines and experimental approaches. Soil ecoacoustics is an emerging field with considerable potential to improve soil biodiversity monitoring and 'soil health' diagnostics. Indeed, early studies suggest soil ecoacoustics can be successfully applied in various ecosystems (e.g. grasslands, temperate, tropical and arid forests) and land uses (e.g. agriculture, viticulture, natural and restored ecosystems). Given the low cost, minimal intrusiveness, and effectiveness in supporting soil biodiversity assessments and biosecurity risks, we advocate for the advancement of soil ecoacoustics for future land management applications.
Collapse
Affiliation(s)
- Jake M. Robinson
- College of Science and Engineering, Flinders University, Bedford Park, SA5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA5042, Australia
| | - Amy Annells
- College of Science and Engineering, Flinders University, Bedford Park, SA5042, Australia
| | - Timothy R. Cavagnaro
- College of Science and Engineering, Flinders University, Bedford Park, SA5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA5042, Australia
| | - Craig Liddicoat
- College of Science and Engineering, Flinders University, Bedford Park, SA5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA5042, Australia
| | - Heidi Rogers
- College of Science and Engineering, Flinders University, Bedford Park, SA5042, Australia
| | - Alex Taylor
- College of Science and Engineering, Flinders University, Bedford Park, SA5042, Australia
| | - Martin F. Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA5042, Australia
| |
Collapse
|
3
|
van Klink R, Sheard JK, Høye TT, Roslin T, Do Nascimento LA, Bauer S. Towards a toolkit for global insect biodiversity monitoring. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230101. [PMID: 38705179 PMCID: PMC11070268 DOI: 10.1098/rstb.2023.0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/28/2024] [Indexed: 05/07/2024] Open
Abstract
Insects are the most diverse group of animals on Earth, yet our knowledge of their diversity, ecology and population trends remains abysmally poor. Four major technological approaches are coming to fruition for use in insect monitoring and ecological research-molecular methods, computer vision, autonomous acoustic monitoring and radar-based remote sensing-each of which has seen major advances over the past years. Together, they have the potential to revolutionize insect ecology, and to make all-taxa, fine-grained insect monitoring feasible across the globe. So far, advances within and among technologies have largely taken place in isolation, and parallel efforts among projects have led to redundancy and a methodological sprawl; yet, given the commonalities in their goals and approaches, increased collaboration among projects and integration across technologies could provide unprecedented improvements in taxonomic and spatio-temporal resolution and coverage. This theme issue showcases recent developments and state-of-the-art applications of these technologies, and outlines the way forward regarding data processing, cost-effectiveness, meaningful trend analysis, technological integration and open data requirements. Together, these papers set the stage for the future of automated insect monitoring. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Roel van Klink
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Puschstrasse 4, Leipzig 04103, Germany
- Department of Computer Science, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 1 06120 Halle, Germany
| | - Julie Koch Sheard
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Puschstrasse 4, Leipzig 04103, Germany
- Department of Ecosystem Services, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger Straße 159, Jena 07743, Germany
- Department of Biology, Animal Ecology, University of Marburg, Karl-von-Frisch-Straße 8, Marburg 35043, Germany
| | - Toke T. Høye
- Department of Ecoscience, Aarhus University, C. F. Møllers Allé 8, Aarhus C 8000, Denmark
- Arctic Research Centre, Aarhus University, Ole Worms Allé 1, Aarhus C 8000, Denmark
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Ulls väg 18B, Uppsala 75651, Sweden
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Leandro A. Do Nascimento
- Science Department, biometrio.earth, Dr.-Schoenemann-Str. 38, Saarbrücken 66123 Deutschland, Germany
| | - Silke Bauer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- Swiss Ornithological Institute, Seerose 1, Sempach 6204, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, Sciencepark 904, Amsterdam 1098 XH, The Netherlands
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16 Zürich 8092, Switzerland
| |
Collapse
|
4
|
Goldstein RE, Jack RL, Pesci AI. How do cicadas emerge together? Thermophysical aspects of their collective decision-making. Phys Rev E 2024; 109:L022401. [PMID: 38491648 DOI: 10.1103/physreve.109.l022401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/19/2023] [Indexed: 03/18/2024]
Abstract
Periodical cicadas exhibit life cycles with durations of 13 or 17 years, and it is now accepted that large prime cycles arose to avoid synchrony with predators. Less well explored is how, in the face of intrinsic biological and environmental noise, insects within a brood emerge together in large successive swarms from underground during springtime warming. Here, we consider the decision-making process of underground cicadas experiencing random, spatially correlated thermal microclimates such as those in nature. Introducing short-range communication between insects leads to an Ising model of consensus building with a quenched, spatially correlated random magnetic field and annealed site dilution, which displays the kinds of collective swarms seen in nature. These results highlight the need for fieldwork to quantify the spatial fluctuations in thermal microclimates and their relationship to the spatiotemporal dynamics of swarm emergence.
Collapse
Affiliation(s)
- Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Robert L Jack
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Adriana I Pesci
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
5
|
Sutherland WJ, Bennett C, Brotherton PNM, Butchart SHM, Butterworth HM, Clarke SJ, Esmail N, Fleishman E, Gaston KJ, Herbert-Read JE, Hughes AC, James J, Kaartokallio H, Le Roux X, Lickorish FA, Newport S, Palardy JE, Pearce-Higgins JW, Peck LS, Pettorelli N, Primack RB, Primack WE, Schloss IR, Spalding MD, Ten Brink D, Tew E, Timoshyna A, Tubbs N, Watson JEM, Wentworth J, Wilson JD, Thornton A. A horizon scan of global biological conservation issues for 2024. Trends Ecol Evol 2024; 39:89-100. [PMID: 38114339 DOI: 10.1016/j.tree.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023]
Abstract
We present the results of our 15th horizon scan of novel issues that could influence biological conservation in the future. From an initial list of 96 issues, our international panel of scientists and practitioners identified 15 that we consider important for societies worldwide to track and potentially respond to. Issues are novel within conservation or represent a substantial positive or negative step-change with global or regional extents. For example, new sources of hydrogen fuel and changes in deep-sea currents may have profound impacts on marine and terrestrial ecosystems. Technological advances that may be positive include benchtop DNA printers and the industrialisation of approaches that can create high-protein food from air, potentially reducing the pressure on land for food production.
Collapse
Affiliation(s)
- William J Sutherland
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK.
| | - Craig Bennett
- Royal Society of Wildlife Trusts, The Kiln, Waterside, Mather Road, Newark, Nottinghamshire NG24 1WT, UK
| | | | - Stuart H M Butchart
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; Birdlife International, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| | - Holly M Butterworth
- Natural Resources Wales, Cambria House, 29 Newport Road, Cardiff CF24 0TP, UK
| | | | - Nafeesa Esmail
- Wilder Institute, 1300 Zoo Road NE, Calgary, AB T2E 7V6, Canada
| | - Erica Fleishman
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | | | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region of China, China
| | - Jennifer James
- The Environment Agency, Horizon House, Deanery Road, Bristol BS1 5TL, UK
| | | | - Xavier Le Roux
- Microbial Ecology Centre, Université Lyon 1, INRAE, CNRS, UMR 1418, 69622 Villeurbanne, France
| | - Fiona A Lickorish
- UK Research and Consultancy Services (RCS) Ltd, Valletts Cottage, Westhope, Hereford HR4 8BU, UK
| | - Sarah Newport
- UK Research and Innovation, Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU, UK
| | - James E Palardy
- The Pew Charitable Trusts, 901 East Street NW, Washington, DC 20004, USA
| | - James W Pearce-Higgins
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, UK
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Nathalie Pettorelli
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | | | | | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina; Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina; Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina
| | - Mark D Spalding
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; The Nature Conservancy, Department of Physical, Earth, and Environmental Sciences, University of Siena, Pian dei Mantellini, Siena 53100, Italy
| | - Dirk Ten Brink
- Wetlands International, 6700 AL Wageningen, The Netherlands
| | - Eleanor Tew
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; Forestry England, 620 Bristol Business Park, Coldharbour Lane, Bristol BS16 1EJ, UK
| | - Anastasiya Timoshyna
- TRAFFIC, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| | - Nicolas Tubbs
- WWF-Belgium, Boulevard Emile Jacqmainlaan 90, 1000 Brussels, Belgium
| | - James E M Watson
- School of The Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Jonathan Wentworth
- Parliamentary Office of Science and Technology, 14 Tothill Street, Westminster, London SW1H 9NB, UK
| | - Jeremy D Wilson
- RSPB Centre for Conservation Science, 2 Lochside View, Edinburgh EH12 9DH, UK
| | - Ann Thornton
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| |
Collapse
|
6
|
Rillig MC, Bank MS, Maaβ S, Roger M, Maeder M. Sound stewardship for a noisy planet. Science 2023; 380:1219. [PMID: 37347854 DOI: 10.1126/science.adi3600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Affiliation(s)
- Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Michael S Bank
- Institute of Marine Research, 5005 Bergen, Norway
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Stefanie Maaβ
- Freie Universität Berlin, Institute of Biology, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Mélia Roger
- Zurich University of the Arts, Institute for Computer Music and Sound Technology, 8031 Zürich, Switzerland
| | - Marcus Maeder
- Zurich University of the Arts, Institute for Computer Music and Sound Technology, 8031 Zürich, Switzerland
- Department of Environmental Systems Science, Institute for Environmental Decisions, Eidgenössische Technische Hochschule Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
7
|
Appel H, Cocroft R. Plant ecoacoustics: a sensory ecology approach. Trends Ecol Evol 2023:S0169-5347(23)00030-7. [PMID: 36868907 DOI: 10.1016/j.tree.2023.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 03/05/2023]
Abstract
Many interactions of plants with the environment have an acoustic component, including the actions of herbivores and pollinators, wind and rain. Although plants have long been tested for their response to single tones or music, their response to naturally occurring sources of sound and vibration is barely explored. We argue that progress in understanding the ecology and evolution of plant acoustic sensing requires testing how plants respond to acoustic features of their natural environments, using methods that precisely measure and reproduce the stimulus experienced by the plant.
Collapse
Affiliation(s)
- Heidi Appel
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA.
| | - Reginald Cocroft
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|