1
|
Chayangsu C, Ampawong S, Reamtong O, Viriyavejakul P, Kanjanapruthipong T, Fongsodsri K, Intapun S, Polpong P, Intarat R, Charunwatthana P, Chan AHE, Watthanakulpanich D. Detection of Gnathostoma spinigerum larva in the brain with complete follow-up after surgical treatment of human neurognathostomiasis. Food Waterborne Parasitol 2024; 35:e00229. [PMID: 38774558 PMCID: PMC11106535 DOI: 10.1016/j.fawpar.2024.e00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
Human gnathostomiasis is a food-borne zoonotic helminthic infection widely reported in Latin America, Asia, and Southeast Asia. Consuming raw, or under-cooked fresh-water fish is the leading cause of this helminthic infection, which is clinically characterized by signs of inflammation, itching sensation, or irritation with migratory swelling. Neurological symptoms resulting from neurognathostomiasis vary, and there is scant information due to the rareness of patient brain samples. This study aimed to demonstrate the first evidence of human neurognathostomiasis by the detection of Gnathostoma spinigerum larva in patient's brain during craniotomy, supported by histopathological, immunological and proteomic evidence. Clinical symptoms were obtained from medical history and physical examination with laboratory investigations, including magnetic resonance imaging (MRI), left temporal craniotomy, histopathology of brain tissue, and Western blot analysis, were performed to elucidate the causative pathogens for diagnosis. In addition, the host-parasite interaction of the parasite invading the patient's brain was characterized through proteomics. Histopathology revealed worms with the characteristic cuticular spines of G. spinigerum which were detected and identified. These histopathological findings were consistent with a positive Western blot showing a 24-kDa reactive-band for gnathostomiasis. Proteomic analysis revealed the presence of G. spinigerum serpin and serine protease in the patient's serum. Moreover, the leucine-rich alpha-2-glycoprotein was indicated as a systemic biomarker of early brain injury related to invasion by G. spinigerum. Therefore, our study provides the initial evidence of human neurognathostomiasis due to G. spinigerum larval invasion along with successful craniotomy and proven larval detection including complete follow-up, and the disease prognosis after surgical treatment.
Collapse
Affiliation(s)
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand 10400
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand 10400
| | - Parnpen Viriyavejakul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand 10400
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand 10400
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand 10400
| | | | - Pongwat Polpong
- Neurosurgery Department, Neurological Institute of Thailand, Bangkok, Thailand 10400
| | - Rattanarat Intarat
- Department of Surgery, Nopparat Ratchathani Hospital, Bangkok, 10230, Thailand
| | - Prakaykaew Charunwatthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand 10400
| | - Abigail Hui En Chan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Dorn Watthanakulpanich
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
2
|
Nogrado K, Adisakwattana P, Reamtong O. Human gnathostomiasis: A review on the biology of the parasite with special reference on the current therapeutic management. Food Waterborne Parasitol 2023; 33:e00207. [PMID: 37719690 PMCID: PMC10502356 DOI: 10.1016/j.fawpar.2023.e00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Gnathostoma is a parasitic nematode that can infect a wide range of animal species, but human populations have become accidental hosts because of their habit of eating raw or undercooked meat from a wide variety of intermediate hosts. While gnathostomiasis is considered an endemic disease, cases of human gnathostomiasis have been increasing over time, most notably in nonendemic areas. There are several complexities to this parasitic disease, and this review provides an update on human gnathostomiasis, including the life cycle, diagnosis, treatment, and treatment strategies used to combat drug resistance. Even now, a definitive diagnosis of gnathostomiasis is still challenging because it is difficult to isolate larvae for parasitological confirmation. Another reason is the varying clinical symptoms recorded in reported cases. Clinical cases can be confirmed by immunodiagnosis. For Gnathosotoma spinigerum, the detection of IgG against a specific antigenic band with a molecular weight of 24 kDa from G. spinigerum advanced third-stage larvae (aL3), while for other species of Gnathostoma including G. binucleatum, the 33-kDa antigen protein is being used. This review also discusses cases of recurrence of gnathostomiasis and resistance mechanisms to two effective chemotherapeutics (albendazole and ivermectin) used against gnathostomiasis. This is significant, especially when planning strategies to combat anthelmintic resistance. Lastly, while no new chemotherapeutics against gnathostomiasis have been made available, we describe the management of recurrent gnathostomiasis using albendazole and ivermectin combinations or extensions of drug treatment plans.
Collapse
Affiliation(s)
- Kathyleen Nogrado
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Puasri P, Dechkhajorn W, Dekumyoy P, Yoonuan T, Ampawong S, Reamtong O, Boonyuen U, Benjathummarak S, Maneerat Y. Regulation of immune response against third-stage Gnathostoma spinigerum larvae by human genes. Front Immunol 2023; 14:1218965. [PMID: 37600806 PMCID: PMC10436992 DOI: 10.3389/fimmu.2023.1218965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Background Gnathostomiasis is an important zoonosis in tropical areas that is mainly caused by third-stage Gnathostoma spinigerum larvae (G. spinigerum L3). Objectives This study aimed to prove whether G. spinigerum L3 produces extracellular vesicles (EVs) and investigate human gene profiles related to the immune response against the larvae. Methods We created an immune cell model using normal human peripheral blood mononuclear cells (PBMCs) co-cultured with the larvae for 1 and 3 days, respectively. The PBMCs were harvested for transcriptome sequencing analysis. The EV ultrastructure was examined in the larvae and the cultured medium. Results Extracellular vesicle-like particles were observed under the larval teguments and in the pellets in the medium. RNA-seq analysis revealed that 2,847 and 3,118 genes were significantly expressed on days 1 and 3 after culture, respectively. The downregulated genes on day 1 after culture were involved in pro-inflammatory cytokines, the complement system and apoptosis, whereas those on day 3 were involved in T cell-dependent B cell activation and wound healing. Significantly upregulated genes related to cell proliferation, activation and development, as well as cytotoxicity, were observed on day 1, and genes regulating T cell maturation, granulocyte function, nuclear factor-κB and toll-like receptor pathways were predominantly observed on day 3 after culture. Conclusion G. spinigerum L3 produces EV-like particles and releases them into the excretory-secretory products. Overall, genotypic findings during our 3-day observation revealed that most significant gene expressions were related to T and B cell signalling, driving T helper 2 cells related to chronic infection, immune evasion of the larvae, and the pathogenesis of gnathostomiasis. Further in-depth studies are necessary to clarify gene functions in the pathogenesis and immune evasion mechanisms of the infective larvae.
Collapse
Affiliation(s)
- Pattarasuda Puasri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wilanee Dechkhajorn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tippayarat Yoonuan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Surachet Benjathummarak
- Center of Excellence for Antibody Research (CEAR), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Tee MZ, Lee SC, Er YX, Yap NJ, Ngui R, Easton AV, Siow VWY, Ng KS, Boey CCM, Chua KH, Cadwell K, Loke P, Lim YAL. Efficacy of triple dose albendazole treatment for soil-transmitted helminth infections. PLoS One 2022; 17:e0272821. [PMID: 35960935 PMCID: PMC9374461 DOI: 10.1371/journal.pone.0272821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
In Malaysia, soil-transmitted helminth (STH) infections still persist among indigenous communities. In the past, local studies have focused mostly on epidemiologic aspects of STH infections with a scarcity of information on the efficacy of deworming treatment. The present study consisted of 2 phases: a cross-sectional phase on current epidemiological status and risk factors of STH infections and a longitudinal study over 6 weeks on triple dose albendazole efficacy against STH infections. A total of 253 participants were recruited at baseline and a pre-tested questionnaire was administered to obtain information on socio-demographics, environmental and behavioural risk factors. Stool samples were evaluated using a modified Kato-Katz technique. Cure rate (CR) and egg reduction rate (ERR) were assessed at 3 weeks following a 3-day course of 400mg albendazole treatment and infection status were observed again at 6 weeks. Baseline positivity of trichuriasis, ascariasis and hookworm infections were 56.1%, 11.9% and 20.2%, respectively. Multivariate analysis showed age below 18 years old (P = 0.004), without latrine in house (P = 0.042) and indiscriminate defecation (P = 0.032) were associated with STH infections. In the longitudinal study (N = 89), CR for trichuriasis was 64.6%, while CR of 100% was observed for both ascariasis and hookworm. ERR was above 90% for all three STH species. A rapid increased of Trichuris trichiura egg output was observed at 6 weeks. In conclusion, STH infections are highly prevalent among indigenous communities. Children and teenagers, poor sanitation and hygiene behaviour were determinants for STH infections. Triple dose albendazole is found to be efficacious against Ascaris lumbricoides and hookworm infections but has moderate curative effect with high ERR against T. trichiura. Although triple dose albendazole regimen has logistic challenges and may not be a routine option, consideration of this treatment regime may still be necessary in selective communities to reduce high intensity of T. trichiura infection.
Collapse
Affiliation(s)
- Mian Zi Tee
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soo Ching Lee
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Yi Xian Er
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nan Jiun Yap
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Romano Ngui
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Alice V. Easton
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Vinnie Wei Yin Siow
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kee Seong Ng
- Department of Gastroenterology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ken Cadwell
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, United States of America
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, United States of America
- Division of Gastroenterology, Department of Medicine, New York University Langone Health, New York, NY, United States of America
| | - P’ng Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (YALL); (PL)
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (YALL); (PL)
| |
Collapse
|