1
|
Pírez N, Klappenbach M, Locatelli FF. Experience-dependent tuning of the olfactory system. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101117. [PMID: 37741614 DOI: 10.1016/j.cois.2023.101117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Insects rely on their sense of smell to navigate complex environments and make decisions regarding food and reproduction. However, in natural settings, the odors that convey this information may come mixed with environmental odors that can obscure their perception. Therefore, recognizing the presence of informative odors involves generalization and discrimination processes, which can be facilitated when there is a high contrast between stimuli, or the internal representation of the odors of interest outcompetes that of concurrent ones. The first two layers of the olfactory system, which involve the detection of odorants by olfactory receptor neurons and their encoding by the first postsynaptic partners in the antennal lobe, are critical for achieving such optimal representation. In this review, we summarize evidence indicating that experience-dependent changes adjust these two levels of the olfactory system. These changes are discussed in the context of the advantages they provide for detection of informative odors.
Collapse
Affiliation(s)
- Nicolás Pírez
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Martín Klappenbach
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Fernando F Locatelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
2
|
Hoffmann A, Couzin-Fuchs E. Active smelling in the American cockroach. J Exp Biol 2023; 226:jeb245337. [PMID: 37750327 PMCID: PMC10651109 DOI: 10.1242/jeb.245337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2022] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Motion plays an essential role in sensory acquisition. From changing the position in which information can be acquired to fine-scale probing and active sensing, animals actively control the way they interact with the environment. In olfaction, movement impacts the time and location of odour sampling as well as the flow of odour molecules around the olfactory organs. Employing a detailed spatiotemporal analysis, we investigated how insect antennae interact with the olfactory environment in a species with a well-studied olfactory system - the American cockroach. Cockroaches were tested in a wind-tunnel setup during the presentation of odours with different attractivity levels: colony extract, butanol and linalool. Our analysis revealed significant changes in antennal kinematics when odours were presented, including a shift towards the stream position, an increase in vertical movement and high-frequency local oscillations. Nevertheless, the antennal shifting occurred predominantly in a single antenna while the overall range covered by both antennae was maintained throughout. These findings hold true for both static and moving stimuli and were more pronounced for attractive odours. Furthermore, we found that upon odour encounter, there was an increase in the occurrence of high-frequency antennal sweeps and vertical strokes, which were shown to impact the olfactory environment's statistics directly. Our study lays out a tractable system for exploring the tight coupling between sensing and movement, in which antennal sweeps, in parallel to mammalian sniffing, are actively involved in facilitating odour capture and transport, generating odour intermittency in environments with low air movement where cockroaches dwell.
Collapse
Affiliation(s)
- Antoine Hoffmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- IMPRS for Quantitative Behaviour, Ecology and Evolution, 78315 Radolfzell, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
3
|
Latshaw JS, Mazade RE, Petersen M, Mustard JA, Sinakevitch I, Wissler L, Guo X, Cook C, Lei H, Gadau J, Smith B. Tyramine and its Amtyr1 receptor modulate attention in honey bees ( Apis mellifera). eLife 2023; 12:e83348. [PMID: 37814951 PMCID: PMC10564449 DOI: 10.7554/elife.83348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2022] [Accepted: 08/14/2023] [Indexed: 10/11/2023] Open
Abstract
Animals must learn to ignore stimuli that are irrelevant to survival and attend to ones that enhance survival. When a stimulus regularly fails to be associated with an important consequence, subsequent excitatory learning about that stimulus can be delayed, which is a form of nonassociative conditioning called 'latent inhibition'. Honey bees show latent inhibition toward an odor they have experienced without association with food reinforcement. Moreover, individual honey bees from the same colony differ in the degree to which they show latent inhibition, and these individual differences have a genetic basis. To investigate the mechanisms that underly individual differences in latent inhibition, we selected two honey bee lines for high and low latent inhibition, respectively. We crossed those lines and mapped a Quantitative Trait Locus for latent inhibition to a region of the genome that contains the tyramine receptor gene Amtyr1 [We use Amtyr1 to denote the gene and AmTYR1 the receptor throughout the text.]. We then show that disruption of Amtyr1 signaling either pharmacologically or through RNAi qualitatively changes the expression of latent inhibition but has little or slight effects on appetitive conditioning, and these results suggest that AmTYR1 modulates inhibitory processing in the CNS. Electrophysiological recordings from the brain during pharmacological blockade are consistent with a model that AmTYR1 indirectly regulates at inhibitory synapses in the CNS. Our results therefore identify a distinct Amtyr1-based modulatory pathway for this type of nonassociative learning, and we propose a model for how Amtyr1 acts as a gain control to modulate hebbian plasticity at defined synapses in the CNS. We have shown elsewhere how this modulation also underlies potentially adaptive intracolonial learning differences among individuals that benefit colony survival. Finally, our neural model suggests a mechanism for the broad pleiotropy this gene has on several different behaviors.
Collapse
Affiliation(s)
- Joseph S Latshaw
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Reece E Mazade
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Mary Petersen
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Julie A Mustard
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | | | - Lothar Wissler
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Xiaojiao Guo
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Chelsea Cook
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Hong Lei
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Jürgen Gadau
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Brian Smith
- School of Life Sciences, Arizona State UniversityTempeUnited States
| |
Collapse
|
4
|
Jernigan CM, Uy FM. Impact of the social environment in insect sensory systems. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101083. [PMID: 37423425 DOI: 10.1016/j.cois.2023.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/22/2022] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
The social environment has a direct impact on sensory systems and unquestionable consequences on allocation of neural tissue. Although neuroplasticity is adaptive, responses to different social contexts may be mediated by energetic constraints and/or trade-offs between sensory modalities. However, general patterns of sensory plasticity remain elusive due to variability in experimental approaches. Here, we highlight recent studies in social Hymenoptera showing effects of the social environment on sensory systems. Further, we propose to identify a core set of socially mediated mechanisms that drive sensory plasticity. We hope this approach is widely adopted in different insect clades under a phylogenetic framework, which will allow for a more direct integration of the how and why questions exploring sensory plasticity evolution.
Collapse
Affiliation(s)
- Christopher M Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, NY, USA.
| | - Floria Mk Uy
- Department of Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
5
|
Claverie N, Buvat P, Casas J. Active Sensing in Bees Through Antennal Movements Is Independent of Odor Molecule. Integr Comp Biol 2023; 63:315-331. [PMID: 36958852 DOI: 10.1093/icb/icad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
When sampling odors, many insects are moving their antennae in a complex but repeatable fashion. Previous studies with bees have tracked antennal movements in only two dimensions, with a low sampling rate and with relatively few odorants. A detailed characterization of the multimodal antennal movement patterns as function of olfactory stimuli is thus wanted. The aim of this study is to test for a relationship between the scanning movements and the properties of the odor molecule. We tracked several key locations on the antennae of bumblebees at high frequency and in three dimensions while stimulating the insect with puffs of 11 common odorants released in a low-speed continuous flow. Water and paraffin were used as negative controls. Movement analysis was done with the neural network Deeplabcut. Bees use a stereotypical oscillating motion of their antennae when smelling odors, similar across all bees, independently of the identity of the odors and hence their diffusivity and vapor pressure. The variability in the movement amplitude among odors is as large as between individuals. The main type of oscillation at low frequencies and large amplitude is triggered by the presence of an odor and is in line with previous work, as is the speed of movement. The second oscillation mode at higher frequencies and smaller amplitudes is constantly present. Antennae are quickly deployed when a stimulus is perceived, decorrelate their movement trajectories rapidly, and oscillate vertically with a large amplitude and laterally with a smaller one. The cone of airspace thus sampled was identified through the 3D understanding of the motion patterns. The amplitude and speed of antennal scanning movements seem to be function of the internal state of the animal, rather than determined by the odorant. Still, bees display an active olfactory sampling strategy. First, they deploy their antennae when perceiving an odor. Second, fast vertical scanning movements further increase the odorant capture rate. Finally, lateral movements might enhance the likelihood to locate the source of odor, similarly to the lateral scanning movement of insects at odor plume boundaries.
Collapse
Affiliation(s)
- Nicolas Claverie
- Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, 37200 Tours, France
- CEA le Ripault, Centre d'études du Ripault, 37260 Monts, France
| | - Pierrick Buvat
- CEA le Ripault, Centre d'études du Ripault, 37260 Monts, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, 37200 Tours, France
| |
Collapse
|
6
|
Claverie N, Steinmann T, Bandjee MJ, Buvat P, Casas J. Oscillations for active sensing in olfaction: bioinspiration from insect antennal movements. BIOINSPIRATION & BIOMIMETICS 2022; 17:055004. [PMID: 35931042 DOI: 10.1088/1748-3190/ac877a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/30/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Crustacean and insect antennal scanning movements have been postulated to increase odorant capture but the exact mechanisms as well as measures of efficiency are wanting. The aim of this work is to test the hypothesis that an increase in oscillation frequency of a simplified insect antenna model translates to an increase of odorant capture, and to quantify by how much and through which mechanism. We approximate the antennal movements of bumblebees, quantified in a previous study, by a vertical oscillatory movement of a cylinder in a homogeneous horizontal flow with odorants. We test our multiphysics flow and mass transfer numerical model with dedicated experiments using particle image velocimetry. A new entire translating experimental measurement setup containing an oil tank enables us to work at appropriate Strouhal and Reynolds numbers. Increasing antennal oscillating frequency does increase the odorant capture rate, up to 200%, proving this behavior being active sensing. This result holds however only up to a critical frequency. A decrease of efficiency characterizes higher frequencies, due to molecules depletion within oversampled regions, themselves defined by overlaying boundary layers. Despite decades of work on thermal and mass transfer studies on oscillating cylinders, no analogy with published cases was found. This is due to the unique flow regimes studied here, resulting from the combination of organ small size and low frequencies of oscillations. A theory for such flow regimes is thus to be developed, with applications to fundamental research on animal perception up to bioinspired olfaction.
Collapse
Affiliation(s)
- Nicolas Claverie
- Institut de Recherche en Biologie de l'Insecte, IRBI UMR CNRS 7261, Tours, France
- CEA le Ripault, 37260 Monts, France
| | - Thomas Steinmann
- Institut de Recherche en Biologie de l'Insecte, IRBI UMR CNRS 7261, Tours, France
| | | | | | - Jérôme Casas
- Institut de Recherche en Biologie de l'Insecte, IRBI UMR CNRS 7261, Tours, France
| |
Collapse
|
7
|
Gascue F, Marachlian E, Azcueta M, Locatelli FF, Klappenbach M. Antennal movements can be used as behavioral readout of odor valence in honey bees. IBRO Neurosci Rep 2022; 12:323-332. [PMID: 35746975 PMCID: PMC9210461 DOI: 10.1016/j.ibneur.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022] Open
Abstract
The fact that honey bees have a relatively simple nervous system that allows complex behaviors has made them an outstanding model for studying neurobiological processes. Studies on learning and memory routinely use appetitive and aversive learning paradigms that involve recording of the proboscis or the sting extension. However, these protocols are based on all-or-none responses, which has the disadvantage of occluding intermediate and more elaborated behaviors. Nowadays, the great advances in tracking software and data analysis, combined with affordable video recording systems, have made it possible to extract very detailed information about animal behavior. Here we describe antennal movements that are elicited by odor that have no, positive or negative valence. We show that animals orient their antennae towards the source of the odor when it is positive, and orient them in the opposite direction when the odor is negative. Moreover, we found that this behavior was modified between animals that had been trained based on protocols of different strength. Since this procedure allows a more accurate description of the behavioral outcome using a relatively small number of animals, it represents a great tool for studying different cognitive processes and olfactory perception.
Collapse
Affiliation(s)
- Federico Gascue
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Emiliano Marachlian
- Institut de Biologie de l′Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Milagros Azcueta
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Fernando F. Locatelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Martín Klappenbach
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| |
Collapse
|