1
|
Iwan E, Zając M, Bomba A, Olejnik M, Skarżyńska M, Wasiński B, Wieczorek K, Tłuścik K, Wasyl D. Phylogenetics and Mobilization of Genomic Traits of Cephalosporin-Resistant Escherichia coli Originated from Retail Meat. Pathogens 2024; 13:700. [PMID: 39204300 PMCID: PMC11357031 DOI: 10.3390/pathogens13080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Contaminations with cephalosporin-resistant Escherichia coli across the food chain may pose a significant threat to public health because those antimicrobials are critically important in human medicine. The impact of the presented data is especially significant concerning Poland's role as one of the leading food producers in the EU. This work aimed to characterize the genomic contents of cephalosporin-resistant Escherichia coli (n = 36) isolated from retail meat to expand the official AMR monitoring reported by EFSA. The ESBL mechanism was predominant (via blaCTX-M-1 and blaSHV-12), with the AmpC-type represented by the blaCMY-2 variant. The strains harbored multiple resistance genes, mainly conferring resistance to aminoglycosides, sulfonamides, trimethoprim, tetracyclines. In some isolates, virulence factors-including intimin (eae) and its receptor (tir) were detected, indicating significant pathogenic potential. Resistance genes showed a link with IncI1 and IncB/O/K/Z plasmids. Cephalosporinases were particularly linked to ISEc9/ISEc1 (blaCTX-M-1 and blaCMY-2). The association of virulence with mobile elements was less common-mostly with IncF plasmids. The analysis of E. coli isolated from retail meat indicates accumulation of ARGs and their association with various mobile genetic elements, thus increasing the potential for the transmission of resistance across the food chain.
Collapse
Affiliation(s)
- Ewelina Iwan
- Department of Omics Analyses, National Veterinary Research Institute, 57 Partyzantow, 24-100 Pulawy, Poland (M.O.); (D.W.)
| | - Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute, 57 Partyzantow, 24-100 Pulawy, Poland (B.W.)
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, 57 Partyzantow, 24-100 Pulawy, Poland (M.O.); (D.W.)
| | - Małgorzata Olejnik
- Department of Omics Analyses, National Veterinary Research Institute, 57 Partyzantow, 24-100 Pulawy, Poland (M.O.); (D.W.)
- Faculty of Biological and Veterinary Sciences, Department of Basic and Preclinical Sciences, Nicolaus Copernicus University in Torun, 11 Gagarina St., 87-100 Torun, Poland
| | - Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute, 57 Partyzantow, 24-100 Pulawy, Poland (B.W.)
| | - Bernard Wasiński
- Department of Microbiology, National Veterinary Research Institute, 57 Partyzantow, 24-100 Pulawy, Poland (B.W.)
| | - Kinga Wieczorek
- Department of Food of Safety, National Veterinary Research Institute, 57 Partyzantow, 24-100 Pulawy, Poland;
| | - Katarzyna Tłuścik
- Department of Omics Analyses, National Veterinary Research Institute, 57 Partyzantow, 24-100 Pulawy, Poland (M.O.); (D.W.)
| | - Dariusz Wasyl
- Department of Omics Analyses, National Veterinary Research Institute, 57 Partyzantow, 24-100 Pulawy, Poland (M.O.); (D.W.)
- Department of Microbiology, National Veterinary Research Institute, 57 Partyzantow, 24-100 Pulawy, Poland (B.W.)
| |
Collapse
|
2
|
Fieldman T. Evolutionary principles for modifying pathogen virulence. Crit Rev Microbiol 2024; 50:385-396. [PMID: 37146153 DOI: 10.1080/1040841x.2023.2203766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 05/07/2023]
Abstract
Current methods for combatting infectious diseases are largely limited to the prevention of infection, enhancing host immunity (via vaccination), and administration of small molecules to slow the growth of or kill pathogens (e.g. antimicrobials). Beyond efforts to deter the rise of antimicrobial resistance, little consideration is given to pathogen evolution. Natural selection will favor different levels of virulence under different circumstances. Experimental studies and a wealth of theoretical work have identified many likely evolutionary determinants of virulence. Some of these, such as transmission dynamics, are amenable to modification by clinicians and public health practitioners. In this article, we provide a conceptual overview of virulence, followed by an analysis of modifiable evolutionary determinants of virulence including vaccinations, antibiotics, and transmission dynamics. Finally, we discuss both the importance and limitations of taking an evolutionary approach to reducing pathogen virulence.
Collapse
Affiliation(s)
- Tom Fieldman
- Clinical Microbiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
3
|
Alawi M, Smyth C, Drissner D, Zimmerer A, Leupold D, Müller D, Do TT, Velasco-Torrijos T, Walsh F. Private and well drinking water are reservoirs for antimicrobial resistant bacteria. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:7. [PMID: 39843970 PMCID: PMC11721118 DOI: 10.1038/s44259-024-00024-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2025]
Abstract
Water quality testing does not recognise antimicrobial resistance (AMR) and is often limited to indicators of faecal contamination Escherichia coli and Enterococcus species. In Europe, data on AMR in drinking water is scarce. In Ireland, as in many countries, household drinking water is supplied via mains or via private wells or water schemes. Using citizen science, we identified Irish private drinking water supplies as reservoirs of antimicrobial resistant bacteria (ARB). Gram-negative (n = 464) and Gram-positive (n = 72) bacteria were isolated. We identified instances of potentially opportunistic ARB such as Enterobacter cloacae, Acinetobacter baumannii and Enterococcus species. We report reservoirs of multidrug resistance in Enterococcus casseliflavus, E. cloacae, E. coli, Stenotrophomonas maltophilia, and Serratia rubidaea. We also identified linezolid-resistant Enterococcus in Irish drinking water. Linezolid is a last-resort antibiotic used to treat vancomycin-resistant Enterococcus sp. Additionally, we identified mobile AMR in three water samples, two of which were carried on IncF group, one on IncQ and five on Col-like plasmids. Our work suggests that private drinking water is a potential sink and source of AMR pathogens. This highlights a value of drinking water surveillance in a One Health framework as the surveillance would provide information regarding the movement and persistence of ARB and ARGs that are able to survive in drinking water and subsequently have the opportunity to be mobilised through humans; linking the environment to the human and potentially threatening human health.
Collapse
Affiliation(s)
- Marwa Alawi
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| | - Cian Smyth
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - David Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Anna Zimmerer
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Denise Leupold
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Daria Müller
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Thi Thuy Do
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- Department of Agriculture, Food and the Marine, Celbridge, Kildare, Ireland
| | - Trinidad Velasco-Torrijos
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
- Department of Chemistry, Maynooth University, Maynooth, County Kildare, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
4
|
Haley BJ, Salaheen S, Kim SW, Van Kessel JA. Virulome analysis of Escherichia coli ST117 from bovine sources identifies similarities and differences with strains isolated from other food animals. PLoS One 2024; 19:e0296514. [PMID: 38175844 PMCID: PMC10766182 DOI: 10.1371/journal.pone.0296514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Escherichia coli ST117 is a pandemic extraintestinal pathogenic E. coli (ExPEC) causing significant morbidity globally. Poultry are a known reservoir of this pathogen, but the characteristics of ST117 strains from other animal sources have not been adequately investigated. Here we characterize the genomes of 36 ST117 strains recovered primarily from preweaned dairy calves, but also from older postweaned calves and lactating cows, in the context of other bovine-associated strains and strains from poultry, swine, and humans. Results of this study demonstrate that bovine-associated ST117 genomes encode virulence factors (VFs) known to be involved in extraintestinal infections, but also occasionally encode the Shiga toxin, a virulence factor (VF) involved in severe gastrointestinal infections and more frequently identified in E. coli from ruminants than other animals. Bovine-associated ST117 genomes were also more likely to encode afa-VIII (adhesins), pap (P-fimbriae), cdt (cytolethal distending toxin), and stx (Shiga toxins) than were poultry and swine-associated genomes. All of the ST117 genomes were grouped into seven virulence clusters, with bovine-associated genomes grouping into Clusters 1, 2, 4, 5, but not 3, 6, or 7. Major differences in the presence of virulence factors between clusters were observed as well. Antimicrobial resistance genes were detected in 112 of 122 (91%) bovine-associated genomes, with 103 of these being multidrug-resistant (MDR). Inclusion of genomes that differed from ST117 by one multi-locus sequence type (MLST) allele identified 31 STs, four of these among the bovine-associated genomes. These non-ST117 genomes clustered with the ST117 genomes suggesting that they may cause similar disease as ST117. Results of this study identify cattle as a reservoir of ST117 strains, some of which are highly similar to those isolated from other food animals and some of which have unique bovine-specific characteristics.
Collapse
Affiliation(s)
- Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Jo Ann Van Kessel
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| |
Collapse
|
5
|
James C, James SJ, Onarinde BA, Dixon RA, Williams N. A Critical Review of AMR Risks Arising as a Consequence of Using Biocides and Certain Metals in Food Animal Production. Antibiotics (Basel) 2023; 12:1569. [PMID: 37998771 PMCID: PMC10668721 DOI: 10.3390/antibiotics12111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
The focus of this review was to assess what evidence exists on whether, and to what extent, the use of biocides (disinfectants and sanitizers) and certain metals (used in feed and other uses) in animal production (both land and aquatic) leads to the development and spread of AMR within the food chain. A comprehensive literature search identified 3434 publications, which after screening were reduced to 154 relevant publications from which some data were extracted to address the focus of the review. The review has shown that there is some evidence that biocides and metals used in food animal production may have an impact on the development of AMR. There is clear evidence that metals used in food animal production will persist, accumulate, and may impact on the development of AMR in primary animal and food production environments for many years. There is less evidence on the persistence and impact of biocides. There is also particularly little, if any, data on the impact of biocides/metal use in aquaculture on AMR. Although it is recognized that AMR from food animal production is a risk to human health there is not sufficient evidence to undertake an assessment of the impact of biocide or metal use on this risk and further focused in-field studies are needed provide the evidence required.
Collapse
Affiliation(s)
- Christian James
- Formerly Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK;
- National Centre for Food Manufacturing (NCFM), University of Lincoln, South Lincolnshire Food Enterprise Zone, Peppermint Way, Holbeach PE12 7FJ, UK;
| | - Stephen J. James
- Formerly Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK;
- National Centre for Food Manufacturing (NCFM), University of Lincoln, South Lincolnshire Food Enterprise Zone, Peppermint Way, Holbeach PE12 7FJ, UK;
| | - Bukola A. Onarinde
- National Centre for Food Manufacturing (NCFM), University of Lincoln, South Lincolnshire Food Enterprise Zone, Peppermint Way, Holbeach PE12 7FJ, UK;
| | - Ronald A. Dixon
- School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
| | - Nicola Williams
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK;
| |
Collapse
|
6
|
Haley BJ, Kim SW, Salaheen S, Hovingh E, Van Kessel JAS. Genome-Wide Analysis of Escherichia coli Isolated from Dairy Animals Identifies Virulence Factors and Genes Enriched in Multidrug-Resistant Strains. Antibiotics (Basel) 2023; 12:1559. [PMID: 37887260 PMCID: PMC10604827 DOI: 10.3390/antibiotics12101559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
The gastrointestinal tracts of dairy calves and cows are reservoirs of antimicrobial-resistant bacteria (ARB), which are present regardless of previous antimicrobial therapy. Young calves harbor a greater abundance of resistant bacteria than older cows, but the factors driving this high abundance are unknown. Here, we aimed to fully characterize the genomes of multidrug-resistant (MDR) and antimicrobial-susceptible Escherichia coli strains isolated from pre-weaned calves, post-weaned calves, dry cows, and lactating cows and to identify the accessory genes that are associated with the MDR genotype to discover genetic targets that can be exploited to mitigate antimicrobial resistance in dairy farms. Results indicated that both susceptible and resistant E. coli isolates recovered from animals on commercial dairy operations were highly diverse and encoded a large pool of virulence factors. In total, 838 transferrable antimicrobial resistance genes (ARGs) were detected, with genes conferring resistance to aminoglycosides being the most common. Multiple sequence types (STs) associated with mild to severe human gastrointestinal and extraintestinal infections were identified. A Fisher's Exact Test identified 619 genes (ARGs and non-ARGs) that were significantly enriched in MDR isolates and 147 genes that were significantly enriched in susceptible isolates. Significantly enriched genes in MDR isolates included the iron scavenging aerobactin synthesis and receptor genes (iucABCD-iutA) and the sitABCD system, as well as the P fimbriae pap genes, myo-inositol catabolism (iolABCDEG-iatA), and ascorbate transport genes (ulaABC). The results of this study demonstrate a highly diverse population of E. coli in commercial dairy operations, some of which encode virulence genes responsible for severe human infections and resistance to antibiotics of human health significance. Further, the enriched accessory genes in MDR isolates (aerobactin, sit, P fimbriae, and myo-inositol catabolism and ascorbate transport genes) represent potential targets for reducing colonization of antimicrobial-resistant bacteria in the calf gut.
Collapse
Affiliation(s)
- Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 307 Center Drive, Beltsville, MD 20705, USA; (S.W.K.)
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 307 Center Drive, Beltsville, MD 20705, USA; (S.W.K.)
| | - Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 307 Center Drive, Beltsville, MD 20705, USA; (S.W.K.)
| | - Ernest Hovingh
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 307 Center Drive, Beltsville, MD 20705, USA; (S.W.K.)
| |
Collapse
|
7
|
Joddha HB, Mathakiya RA, Joshi KV, Khant RB, Golaviya AV, Hinsu AT, Desai MR, Jakhesara SJ, Koringa PG. Profiling of Antimicrobial Resistance Genes and Integron from Escherichia coli Isolates Using Whole Genome Sequencing. Genes (Basel) 2023; 14:1212. [PMID: 37372392 DOI: 10.3390/genes14061212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
This study is designed to investigate Escherichia coli for the antibiotic resistance genes (ARGs) and integrons from healthy as well as diarrhoeic/diseased animals/birds' faecal samples. A total of eight samples were selected for the study; from each animal, two samples were taken, one from healthy animals/birds and one from diarrhoeic/diseased animals/birds. Antibiotic sensitivity testing (AST) and whole genome sequencing (WGS) was performed for selected isolates. The E. coli isolates showed resistance to moxifloxacin, followed by erythromycin, ciprofloxacin, pefloxacin, tetracycline, levofloxacin, ampicillin, amoxicillin, and sulfadiazine (4/8, 50.00% each). The E. coli isolates were 100% sensitive to amikacin, followed by chloramphenicol, cefixime, cefoperazone, and cephalothin. A total of 47 ARGs from 12 different antibiotic classes were detected among the eight isolates by WGS. The different classes of antibiotics included aminoglycoside, sulphonamide, tetracycline, trimethoprim, quinolone, fosfomycin, phenicol, macrolide, colistin, fosmidomycin, and multidrug efflux. The class 1 integrons were detected in 6/8 (75.00%) isolates with 14 different gene cassettes.
Collapse
Affiliation(s)
- Harshrajsinh B Joddha
- Department of Veterinary Microbiology, College of Veterinary Science and A H, Kamdhenu University, Anand 388001, Gujarat, India
| | - Rafiyuddin A Mathakiya
- Department of Veterinary Microbiology, College of Veterinary Science and A H, Kamdhenu University, Anand 388001, Gujarat, India
| | - Kuldip V Joshi
- Department of Veterinary Microbiology, College of Veterinary Science and A H, Kamdhenu University, Anand 388001, Gujarat, India
| | - Ravindra B Khant
- Department of Veterinary Microbiology, College of Veterinary Science and A H, Kamdhenu University, Anand 388001, Gujarat, India
| | - Akash V Golaviya
- Department of Veterinary Microbiology, College of Veterinary Science and A H, Kamdhenu University, Anand 388001, Gujarat, India
| | - Ankit T Hinsu
- Department of Animal Biotechnology, College of Veterinary Science and A H, Kamdhenu University, Anand 388001, Gujarat, India
| | - Mansi R Desai
- Department of Animal Biotechnology, College of Veterinary Science and A H, Kamdhenu University, Anand 388001, Gujarat, India
| | - Subhash J Jakhesara
- Department of Animal Biotechnology, College of Veterinary Science and A H, Kamdhenu University, Anand 388001, Gujarat, India
| | - Prakash G Koringa
- Department of Animal Biotechnology, College of Veterinary Science and A H, Kamdhenu University, Anand 388001, Gujarat, India
| |
Collapse
|
8
|
Salaheen S, Kim SW, Springer HR, Hovingh EP, Van Kessel JAS, Haley BJ. Genomic diversity of antimicrobial-resistant and Shiga toxin gene-harboring non-O157 Escherichia coli from dairy calves. J Glob Antimicrob Resist 2023; 33:164-170. [PMID: 36898633 DOI: 10.1016/j.jgar.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVES Shiga toxin-producing Escherichia coli (STEC) are globally significant foodborne pathogens. Dairy calves are a known reservoir of both O157 and non-O157 STEC. The objective of this study was to comprehensively evaluate the genomic attributes, diversity, virulence factors, and antimicrobial resistance gene (ARG) profiles of the STEC from preweaned and postweaned dairy calves in commercial dairy herds. METHODS In total, 31 non-O157 STEC were identified as part of a larger study focused on the pangenome of >1000 E. coli isolates from the faeces of preweaned and postweaned dairy calves on commercial dairy farms. These 31 genomes were sequenced on an Illumina NextSeq500 platform. RESULTS Based on the phylogenetic analyses, the STEC isolates were determined to be polyphyletic, with at least three phylogroups: A (32%), B1 (58%), and G (3%). These phylogroups represented at least 16 sequence types and 11 serogroups, including two of the 'big six' serogroups, O103 and O111. Several Shiga toxin gene subtypes were identified in the genomes, including stx1a, stx2a, stx2c, stx2d, and stx2g. Using the ResFinder database, the majority of the isolates (>50%) were determined to be multidrug-resistant strains because they harboured genes conferring resistance to three or more classes of antimicrobials, including some of human health significance (e.g., β-lactams, macrolides, and fosfomycin). Additionally, non-O157 STEC strain persistence and transmission within a farm was observed. CONCLUSION Dairy calves are a reservoir of phylogenomically diverse multidrug-resistant non-O157 STEC. Information from this study may inform assessments of public health risk and guide preharvest prevention strategies focusing on STEC reservoirs.
Collapse
Affiliation(s)
- Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland
| | - Hayley R Springer
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Ernest P Hovingh
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Jo Ann S Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland
| | - Bradd J Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland.
| |
Collapse
|
9
|
da Silva DAV, Dieckmann R, Makarewicz O, Hartung A, Bethe A, Grobbel M, Belik V, Pletz MW, Al Dahouk S, Neuhaus S. Biocide Susceptibility and Antimicrobial Resistance of Escherichia coli Isolated from Swine Feces, Pork Meat and Humans in Germany. Antibiotics (Basel) 2023; 12:antibiotics12050823. [PMID: 37237726 DOI: 10.3390/antibiotics12050823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Phenotypic susceptibility testing of Escherichia (E.) coli is an essential tool to gain a better understanding of the potential impact of biocide selection pressure on antimicrobial resistance. We, therefore, determined the biocide and antimicrobial susceptibility of 216 extended-spectrum β-lactamase-producing (ESBL) and 177 non-ESBL E. coli isolated from swine feces, pork meat, voluntary donors and inpatients and evaluated associations between their susceptibilities. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of benzalkonium chloride, chlorhexidine digluconate (CHG), chlorocresol (PCMC), glutaraldehyde (GDA), isopropanol (IPA), octenidine dihydrochloride and sodium hypochlorite (NaOCl) showed unimodal distributions, indicating the absence of bacterial adaptation to biocides due to the acquisition of resistance mechanisms. Although MIC95 and MBC95 did not vary more than one doubling dilution step between isolates of porcine and human origin, significant differences in MIC and/or MBC distributions were identified for GDA, CHG, IPA, PCMC and NaOCl. Comparing non-ESBL and ESBL E. coli, significantly different MIC and/or MBC distributions were found for PCMC, CHG and GDA. Antimicrobial susceptibility testing revealed the highest frequency of resistant E. coli in the subpopulation isolated from inpatients. We observed significant but weakly positive correlations between biocide MICs and/or MBCs and antimicrobial MICs. In summary, our data indicate a rather moderate effect of biocide use on the susceptibility of E. coli to biocides and antimicrobials.
Collapse
Affiliation(s)
- David Attuy Vey da Silva
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ralf Dieckmann
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Oliwia Makarewicz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Anita Hartung
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Mirjam Grobbel
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Vitaly Belik
- System Modeling Group, Institute of Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
- Department of Internal Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Szilvia Neuhaus
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| |
Collapse
|
10
|
Assessing the Load, Virulence and Antibiotic-Resistant Traits of ESBL/Ampc E. coli from Broilers Raised on Conventional, Antibiotic-Free, and Organic Farms. Antibiotics (Basel) 2022; 11:antibiotics11111484. [PMID: 36358139 PMCID: PMC9686507 DOI: 10.3390/antibiotics11111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Poultry is the most likely source of livestock-associated Extended Spectrum Beta-Lactamase (ESBL) and plasmid-mediated AmpC (pAmpC)-producing E. coli (EC) for humans. We tested the hypothesis that farming methods have an impact on the load of ESBL/pAmpC-EC in the gut of broilers at slaughter. Isolates (n = 156) of antibiotic-free (AF), organic (O), and conventional (C) animals were characterized for antibiotic susceptibility and antibiotic resistance genes. Thirteen isolates were whole-genome sequenced. The average loads of ESBL/pAmpC-EC in cecal contents were 4.17 Log CFU/g for AF; 2.85 Log CFU/g for O; and 3.88 Log CFU/g for C type (p < 0.001). ESBL/pAmpC-EC isolates showed resistance to antibiotic classes historically used in poultry, including penicillins, tetracyclines, quinolones, and sulfonamides. Isolates from O and AF farms harbored a lower proportion of resistance to antibiotics than isolates from C farms. Among the determinants for ESBL/pAmpC, CTX-M-1 prevailed (42.7%), followed by TEM-type (29%) and SHV (19.8%). Avian pathogenic E. coli (APEC), belonging to ST117 and ST349, were identified in the collection. These data confirm the possible role of a broiler as an ESBL/AmpC EC and APEC reservoir for humans. Overall, our study suggests that antibiotic-free and organic production may contribute to a reduced exposure to ESBL/AmpC EC for the consumer.
Collapse
|