1
|
Maugeri N, De Lorenzo R, Mazza MG, Palladini M, Ciceri F, Rovere-Querini P, Manfredi AA, Benedetti F. Preferential and sustained platelet activation in COVID-19 survivors with mental disorders. Sci Rep 2024; 14:16119. [PMID: 38997256 PMCID: PMC11245597 DOI: 10.1038/s41598-024-64094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/05/2024] [Indexed: 07/14/2024] Open
Abstract
Pre-existing mental disorders are considered a risk factor for severe COVID-19 outcomes, possibly because of higher vascular burden. Moreover, an unconventional platelet activation characterizes COVID-19 and contributes to inflammatory and thrombotic manifestations. In the light of the inflammation theory of mental disorders, we hypothesized that patients with mental disorders could be sensitive to the SARS-CoV-2 elicited platelet activation. We investigated platelet activation in 141 COVID-19 survivors at one month after clearance of the virus, comparing subjects with or without an established pre-existing diagnosis of mental disorder according to the DSM-5. We found that platelets from patients with a positive history of psychiatric disorder underwent unconventional activation more frequently than conventional activation or no activation at all. Such preferential activation was not detected when platelets from patients without a previous psychiatric diagnosis were studied. When testing the effects of age, sex, and psychiatric history on the platelet activation, GLZM multivariate analysis confirmed the significant effect of diagnosis only. These findings suggest a preferential platelet activation during acute COVID-19 in patients with a pre-existing psychiatric disorder, mediated by mechanisms associated with thromboinflammation. This event could have contributed to the higher risk of severe outcome in the psychiatric population.
Collapse
Affiliation(s)
- Norma Maugeri
- Vita-Salute San Raffaele University, Milan, Italy.
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| | - Rebecca De Lorenzo
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Mario Gennaro Mazza
- Vita-Salute San Raffaele University, Milan, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mariagrazia Palladini
- Vita-Salute San Raffaele University, Milan, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Angelo A Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milan, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Trapé J, Fernández-Galán E, Auge JM, Carbonell-Prat M, Filella X, Miró-Cañís S, González-Fernández C. Factors influencing blood tumor marker concentrations in the absence of neoplasia. Tumour Biol 2024; 46:S35-S63. [PMID: 38517826 DOI: 10.3233/tub-220023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Tumor markers (TMs) are a heterogeneous group of molecules used in the diagnosis, prognosis and follow-up of cancer patients. During neoplastic differentiation, cells can either directly synthesize or induce the synthesis of TMs, and the release of these molecules into the bloodstream allows their quantification in biological fluids. Although very small concentrations of TMs are usually present in the serum or plasma of healthy subjects, increased concentrations may also be found in the presence of benign diseases or due to technical interference, producing false positive results. MATERIAL AND METHODS AND RESULTS Our review analyses the causes of false positives described between January 1970 to February 2023 for the TMs most frequently used in clinical practice: α-fetoprotein (AFP), β2-microglobulin (β2-M), cancer antigen 15-3 (CA 15-3), cancer antigen CA 19-9 (CA 19-9), cancer antigen CA 72-4 (CA 72-4), cancer antigen 125 (CA 125), carcinoembryonic antigen (CEA), chromogranin A (CgA), choriogonadotropin (hCG), cytokeratin 19 fragment (CYFRA 21-1), neuron-specific enolase (NSE), human epididymis protein 4 (HE4), serum HER2 (sHER2), squamous cell carcinoma antigen (SCCA), protein induced by vitamin K absence-II (PIVKA-II), Pro-gastrin-releasing peptide (Pro-GRP), prostate-specific antigen (PSA), Protein S-100 (S-100) and thyroglobulin (Tg). A total of 247 references were included. CONCLUSIONS A better understanding of pathophysiological processes and other conditions that affect the concentration of TMs might improve the interpretation of results and their clinical application.
Collapse
Affiliation(s)
- Jaume Trapé
- Department of Laboratory Medicine, Althaia Xarxa Assistencial Universitària de Manresa, Manresa, Catalonia, Spain
- Tissue Repair and Regeneration Laboratory, Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central, Barcelona, Spain
- Faculty of Medicine, University of Vic - Central University of Catalonia, Vic, Spain
| | - Esther Fernández-Galán
- Department of Biochemistry and Molecular Genetics - Hospital Clinic de Barcelona, Barcelona, Spain
| | - Josep Maria Auge
- Department of Biochemistry and Molecular Genetics - Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Xavier Filella
- Department of Biochemistry and Molecular Genetics - Hospital Clinic de Barcelona, Barcelona, Spain
| | - Sílvia Miró-Cañís
- Laboratori d'Anàlisis Clíniques, CLILAB Diagnòstics, Vilafranca del Penedès, Spain
| | - Carolina González-Fernández
- Department of Laboratory Medicine, Althaia Xarxa Assistencial Universitària de Manresa, Manresa, Catalonia, Spain
- Gastrointestinal Oncology, Endoscopy and Surgery Research Group, Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central, Barcelona, Spain
| |
Collapse
|
3
|
Lodge S, Lawler NG, Gray N, Masuda R, Nitschke P, Whiley L, Bong SH, Yeap BB, Dwivedi G, Spraul M, Schaefer H, Gil-Redondo R, Embade N, Millet O, Holmes E, Wist J, Nicholson JK. Integrative Plasma Metabolic and Lipidomic Modelling of SARS-CoV-2 Infection in Relation to Clinical Severity and Early Mortality Prediction. Int J Mol Sci 2023; 24:11614. [PMID: 37511373 PMCID: PMC10380980 DOI: 10.3390/ijms241411614] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
An integrative multi-modal metabolic phenotyping model was developed to assess the systemic plasma sequelae of SARS-CoV-2 (rRT-PCR positive) induced COVID-19 disease in patients with different respiratory severity levels. Plasma samples from 306 unvaccinated COVID-19 patients were collected in 2020 and classified into four levels of severity ranging from mild symptoms to severe ventilated cases. These samples were investigated using a combination of quantitative Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS) platforms to give broad lipoprotein, lipidomic and amino acid, tryptophan-kynurenine pathway, and biogenic amine pathway coverage. All platforms revealed highly significant differences in metabolite patterns between patients and controls (n = 89) that had been collected prior to the COVID-19 pandemic. The total number of significant metabolites increased with severity with 344 out of the 1034 quantitative variables being common to all severity classes. Metabolic signatures showed a continuum of changes across the respiratory severity levels with the most significant and extensive changes being in the most severely affected patients. Even mildly affected respiratory patients showed multiple highly significant abnormal biochemical signatures reflecting serious metabolic deficiencies of the type observed in Post-acute COVID-19 syndrome patients. The most severe respiratory patients had a high mortality (56.1%) and we found that we could predict mortality in this patient sub-group with high accuracy in some cases up to 61 days prior to death, based on a separate metabolic model, which highlighted a different set of metabolites to those defining the basic disease. Specifically, hexosylceramides (HCER 16:0, HCER 20:0, HCER 24:1, HCER 26:0, HCER 26:1) were markedly elevated in the non-surviving patient group (Cliff's delta 0.91-0.95) and two phosphoethanolamines (PE.O 18:0/18:1, Cliff's delta = -0.98 and PE.P 16:0/18:1, Cliff's delta = -0.93) were markedly lower in the non-survivors. These results indicate that patient morbidity to mortality trajectories is determined relatively soon after infection, opening the opportunity to select more intensive therapeutic interventions to these "high risk" patients in the early disease stages.
Collapse
Affiliation(s)
- Samantha Lodge
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Nathan G. Lawler
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Nicola Gray
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Reika Masuda
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
| | - Philipp Nitschke
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
| | - Luke Whiley
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Sze-How Bong
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
| | - Bu B. Yeap
- Medical School, University of Western Australia, Perth, WA 6150, Australia; (B.B.Y.); (G.D.)
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | - Girish Dwivedi
- Medical School, University of Western Australia, Perth, WA 6150, Australia; (B.B.Y.); (G.D.)
- Department of Cardiology, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | | | | | - Rubén Gil-Redondo
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain; (R.G.-R.); (N.E.); (O.M.)
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain; (R.G.-R.); (N.E.); (O.M.)
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain; (R.G.-R.); (N.E.); (O.M.)
| | - Elaine Holmes
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Julien Wist
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Chemistry Department, Universidad del Valle, Cali 76001, Colombia
| | - Jeremy K. Nicholson
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Institute of Global Health Innovation, Faculty of Medicine, Imperial College London, Faculty Building, South Kensington Campus, London SW7 2NA, UK
| |
Collapse
|
4
|
Wang N, Liang Y, Ma Q, Mi J, Xue Y, Yang Y, Wang L, Wu X. Mechanisms of ag85a/b DNA vaccine conferred immunotherapy and recovery from Mycobacterium tuberculosis-induced injury. Immun Inflamm Dis 2023; 11:e854. [PMID: 37249284 PMCID: PMC10187016 DOI: 10.1002/iid3.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Our previous research developed a novel tuberculosis (TB) DNA vaccine ag85a/b that showed a significant therapeutic effect on the mouse tuberculosis model by intramuscular injection (IM) and electroporation (EP). However, the action mechanisms between these two vaccine immunization methods remain unclear. In a previous study, 96 Mycobacterium tuberculosis (MTB) H37 Rv-infected BALB/c mice were treated with phosphate-buffered saline, 10, 50, 100, and 200 μg ag85a/b DNA vaccine delivered by IM and EP three times at 2-week intervals, respectively. In this study, peripheral blood mononuclear cells (PBMCs) from three mice in each group were isolated to extract total RNA. The gene expression profiles were analyzed using gene microarray technology to obtain differentially expressed (DE) genes. Finally, DE genes were validated by real-time reverse transcription-quantitive polymerase chain reaction and the GEO database. After MTB infection, most of the upregulated DE genes were related to the digestion and absorption of nutrients or neuroendocrine (such as Iapp, Scg2, Chga, Amy2a5), and most of the downregulated DE genes were related to cellular structural and functional proteins, especially the structure and function proteins of the alveolar epithelial cell (such as Sftpc, Sftpd, Pdpn). Most of the abnormally upregulated or downregulated DE genes in the TB model group were recovered in the 100 and 200 μg ag85a/b DNA IM groups and four DNA EP groups. The pancreatic secretion pathway downregulated and the Rap1 signal pathway upregulated had particularly significant changes during the immunotherapy of the ag85a/b DNA vaccine on the mouse TB model. The action targets and mechanisms of IM and EP are highly consistent. Tuberculosis infection causes rapid catabolism and slow anabolism in mice. For the first time, we found that the effective dose of the ag85a/b DNA vaccine immunized whether by IM or EP could significantly up-regulate immune-related pathways and recover the metabolic disorder and the injury caused by MTB.
Collapse
Affiliation(s)
- Nan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Qianqian Ma
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yourong Yang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| |
Collapse
|
5
|
Jerkovic I, Kovacic V, Ticinovic Kurir T, Bozic J, Tandara L. Serum Catestatin Level as a Stratification Assessment Tool in Non-Critical COVID-19 Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1136. [PMID: 36673891 PMCID: PMC9858918 DOI: 10.3390/ijerph20021136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Introduction: Catestatin (CST) is a peptide with immunomodulatory, anti-inflammatory, and anti-microbial activities. There are only a few studies that have investigated plasma CST levels in COVID-19 patients (mostly in ICU patients). In our work, the aim was to demonstrate serum CST levels and their correlation with clinical outcomes in a group of severe COVID-19 patients admitted to the non-ICU department. Methods: The subjects were 32 patients (25 females, 7 males) admitted to the non-ICU unit for COVID-19 patients. Results: CST levels in our cohort were higher (8.91 ± 7.00) than previously reported CST levels in control subjects. We found a significant positive correlation between serum CST levels and C-reactive protein (r = 0.423, p = 0.008), D-dimers (r = 0.395, p = 0.013), hsTNT (high-sensitivity troponin T) (r = 0.603, p < 0.001), proBNP (N-terminal pro-brain natriuretic peptide) (r = 0.569, p < 0.001), and hospitalization days (r = 0.388, p = 0.014). There was a difference between groups of participants with SOFA <3 (n = 18) and SOFA >=3 (n = 14) in catestatin serum levels (7.25 ± 3.66 vs. 11.05 ± 9.52 ng/mL), but the difference was statistically insignificant (p = 0.065). Conclusion: We considered plasma CST level at hospital admission as a possible tool for early risk assessment in non-critical COVID-19 patients. This study is an attempt to clarify the complex pathophysiological mechanisms present in the development of severe forms of SARS-CoV2 infection.
Collapse
Affiliation(s)
- Ivan Jerkovic
- Department for Urgent and Intensive Medicine with Clinical Pharmacology and Toxicology, Internal Medicine Clinic, University Hospital Split, University of Split School of Medicine, 21000 Split, Croatia
| | - Vedran Kovacic
- Department for Urgent and Intensive Medicine with Clinical Pharmacology and Toxicology, Internal Medicine Clinic, University Hospital Split, University of Split School of Medicine, 21000 Split, Croatia
| | - Tina Ticinovic Kurir
- Department of Endocrinology, Internal Medicine Clinic, University Hospital Split, University of Split School of Medicine, 21000 Split, Croatia
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Leida Tandara
- Department of Medical Laboratory Diagnostics, University Hospital Split, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
6
|
Sciorati C, De Lorenzo R, Lorè NI, Tresoldi C, Cirillo DM, Ciceri F, Corti A, Manfredi AA, Rovere-Querini P. The elusive role of proton pump inhibitors in COVID-19: Can plasma Chromogranin A levels hold the key? Pharmacol Res 2023; 187:106601. [PMID: 36513209 PMCID: PMC9734069 DOI: 10.1016/j.phrs.2022.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Clara Sciorati
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Rebecca De Lorenzo
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola I Lorè
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Italy
| | - Cristina Tresoldi
- Hematology & Bone Marrow Transplant, IRCCS San Raffaele Scientific Institute, Italy
| | - Daniela M Cirillo
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy; Hematology & Bone Marrow Transplant, IRCCS San Raffaele Scientific Institute, Italy
| | - Angelo Corti
- Vita-Salute San Raffaele University, Milan, Italy; Tumor Biology & Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Italy
| | - Angelo A Manfredi
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Patrizia Rovere-Querini
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
7
|
Schneider F, Le Borgne P, Herbrecht JE, Danion F, Solis M, Hellé S, Betscha C, Clere-Jehl R, Lefebvre F, Castelain V, Goumon Y, Metz-Boutigue MH. Assessment of plasma Catestatin in COVID-19 reveals a hitherto unknown inflammatory activity with impact on morbidity-mortality. Front Immunol 2022; 13:985472. [PMID: 36248786 PMCID: PMC9559198 DOI: 10.3389/fimmu.2022.985472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Neuroendocrine cells release Catestatin (CST) from Chromogranin A (CgA) to regulate stress responses. As regards COVID-19 patients (COVID+) requiring oxygen supply, to date nobody has studied CST as a potential mediator in the regulation of immunity. Patients & Methods Admission plasma CST and CgA - its precursor - concentrations were measured (ELISA test) in 73 COVID+ and 27 controls. Relationships with demographics, comorbidities, disease severity and outcomes were analysed (Mann-Whitney, Spearman correlation tests, ROC curves). Results Among COVID+, 49 required ICU-admission (COVID+ICU+) and 24 standard hospitalization (COVID+ICU-). Controls were either healthy staff (COVID-ICU-, n=11) or COVID-ICU+ patients (n=16). Median plasma CST were higher in COVID+ than in controls (1.6 [1.02; 3.79] vs 0.87 [0.59; 2.21] ng/mL, p<0.03), with no difference between COVID+ and COVID-ICU+. There was no difference between groups in either CgA or CST/CgA ratios, but these parameters were lower in healthy controls (p<0.01). CST did not correlate with either hypoxia- or usual inflammation-related parameters. In-hospital mortality was similar whether COVID+ or not, but COVID+ had longer oxygen support and more complications (p<0.03). CST concentrations and the CST/CgA ratio were associated with in-hospital mortality (p<0.01) in COVID+, whereas CgA was not. CgA correlated with care-related infections (p<0.001). Conclusion Respiratory COVID patients release significant amounts of CST in the plasma making this protein widely available for the neural regulation of immunity. If confirmed prospectively, plasma CST will reliably help in predicting in-hospital mortality, whereas CgA will facilitate the detection of patients prone to care-related infections.
Collapse
Affiliation(s)
- Francis Schneider
- Médecine Intensive Réanimation, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS) and Unistra, Strasbourg, France,Institut National de la Santé et de la Recherche Médicale-Unité Mixte de Recherche (INSERM-UMR) 1121 Biomatériaux et Bio-ingénierie, Fédération de Médecine Translationnelle de Strasbourg (FMTS) and Unistra, Strasbourg, France
| | - Pierrick Le Borgne
- Service d’accueil des urgences, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS) and Unistra, Strasbourg, France
| | - Jean-Etienne Herbrecht
- Médecine Intensive Réanimation, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS) and Unistra, Strasbourg, France
| | - François Danion
- Maladies Infectieuses et Tropicales, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Morgane Solis
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine and Unistra, Strasbourg, France
| | - Sophie Hellé
- Institut National de la Santé et de la Recherche Médicale-Unité Mixte de Recherche (INSERM-UMR) 1121 Biomatériaux et Bio-ingénierie, Fédération de Médecine Translationnelle de Strasbourg (FMTS) and Unistra, Strasbourg, France
| | - Cosette Betscha
- Institut National de la Santé et de la Recherche Médicale-Unité Mixte de Recherche (INSERM-UMR) 1121 Biomatériaux et Bio-ingénierie, Fédération de Médecine Translationnelle de Strasbourg (FMTS) and Unistra, Strasbourg, France
| | - Raphaël Clere-Jehl
- Médecine Intensive Réanimation, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS) and Unistra, Strasbourg, France
| | - François Lefebvre
- Pôle de Santé Publique, Groupe de Méthodes en Recheche Clinique (GRMC), Hôpitaux Universitaires de Strasbourg, Unistra, Strasbourg, France
| | - Vincent Castelain
- Médecine Intensive Réanimation, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS) and Unistra, Strasbourg, France
| | - Yannick Goumon
- Centre National de la Recherche Scientifique-Unité Propre de Recherche (CNRS-UPR) 3212, Institut des Neurosciences Cellulaires et Intégratives, Unistra, Strasbourg, France
| | - Marie-Hélène Metz-Boutigue
- Institut National de la Santé et de la Recherche Médicale-Unité Mixte de Recherche (INSERM-UMR) 1121 Biomatériaux et Bio-ingénierie, Fédération de Médecine Translationnelle de Strasbourg (FMTS) and Unistra, Strasbourg, France,*Correspondence: Marie-Hélène Metz-Boutigue,
| |
Collapse
|