1
|
van Beest FM, Schmidt NM, Frederiksen ML, Krogh AKH, Petersen HH, Hansson SV. Direct and Indirect Linkages Between Trace Element Status and Health Indicators - a Multi-tissue Case-Study of Two Deer Species in Denmark. Biol Trace Elem Res 2024; 202:3623-3638. [PMID: 37917250 PMCID: PMC11144132 DOI: 10.1007/s12011-023-03926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Measuring trace element concentrations in tissue can be a valuable approach to monitor animal health status. Temporal variation in the absorption, transport, and storage of elements between different tissues can, however, complicate the assessment of element-health relationships. Here, we measured concentrations of selected essential (copper (Cu), zinc (Zn), selenium (Se)) and non-essential (arsenic (As), cadmium (Cd), lead (Pb)) trace elements within blood, liver, kidney, and hair of fallow deer (Dama dama; N=20) and red deer (Cervus elaphus; N=21). Using multivariate regression and structural equation models, we estimated direct and indirect linkages between tissue-specific trace element profiles and long- (body condition) and short-term (serum protein biomarkers for acute inflammation, infection, and malnutrition) health indicators. Trace element concentrations varied markedly and were weakly correlated among tissues, with the exception of Se. After accounting for sex- and site-differences in trace element concentrations, body condition of red deer was directly, and positively, associated to trace element status in liver and hair, but not in kidney. For both deer species, trace element status in blood was directly linked to serum protein status with an indirect positive association to deer body condition. For fallow deer, no direct association between trace element status and body condition was detected in any of the tissues, possibly because of elemental homeostasis, and because all individuals were in good clinical health. This study shows that hair can serve as an effective, non-invasive, biomarker in deer health assessments, yet, to fully uncover trace element-health relationships a variety of sample matrices is preferred.
Collapse
Affiliation(s)
- Floris M van Beest
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark.
| | - Niels M Schmidt
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | | | - Anne K H Krogh
- Department of Veterinary Clinical Sciences, University of Copenhagen, Dyrlægevej 16, DK-1870, Frederiksberg, Denmark
| | - Heidi H Petersen
- Center for Diagnostics, Technical University of Denmark, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark
| | - Sophia V Hansson
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR- 5245), CNRS, Université de Toulouse, Ave. de l'Agrobiopole, 31326, Castanet Tolosan, France
| |
Collapse
|
2
|
Lim HJ, Lee S, Park W, Park E, Yoo JG. Mineral patterns in hair: A decisive factor between reproducible and repeat breeder dairy cows. PLoS One 2024; 19:e0301362. [PMID: 38564515 PMCID: PMC10986949 DOI: 10.1371/journal.pone.0301362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Reproduction, especially impregnation, is a critical aspect of dairy cow management that directly influences herd milk productivity. We conducted a noninvasive hair mineral assay to compare the mineral profiles of two dairy cow groups: reproducible and repeat breeder, by investigating the levels of 11 essential minerals (Ca, Mg, Na, K, Fe, Cu, Mn, Zn, Cr, Se, and P) and 6 toxic elements (Hg, Pb, Cd, Al, As, and Ni) in both groups. We also conducted principal component and correlation matrix analyses to compare hair mineral patterns between the groups. Compared to their reproducible counterparts, repeat breeder cows had lower levels of Na, K, and Se. However, Fe, Cd, Al, and As levels were higher in repeat breeders than in their reproducible counterparts. The correlation matrix showed notable correlation patterns for each group. Ca, K, and Na levels were positively correlated in reproducible cows, whereas repeat breeder cows showed positive correlations only between Ca and K levels. Se showed positive correlations with Zn only in the reproducible cow group. Negative correlations were not found in the reproducible group, whereas the repeat breeder group exhibited 7 negative correlations. Despite the limitations of hair mineral analysis, this study provided useful insights into the reproductive potential of dairy cows. These findings aid in easing the prediction of repeat breeder occurrences in herds and are expected to facilitate timely mineral supplementation and other interventions to improve overall herd reproduction in dairy farms.
Collapse
Affiliation(s)
- Hyun-Joo Lim
- National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-Do, Republic of Korea
| | - Seunghoon Lee
- National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-Do, Republic of Korea
| | - Woncheoul Park
- National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-Do, Republic of Korea
| | - Eungwoo Park
- National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-Do, Republic of Korea
| | - Jae Gyu Yoo
- National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-Do, Republic of Korea
| |
Collapse
|
3
|
van Beest FM, Schmidt NM, Stewart L, Hansen LH, Michelsen A, Mosbacher JB, Gilbert H, Le Roux G, Hansson SV. Geochemical landscapes as drivers of wildlife reproductive success: Insights from a high-Arctic ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166567. [PMID: 37633375 DOI: 10.1016/j.scitotenv.2023.166567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The bioavailability of essential and non-essential elements in vegetation is expected to influence the performance of free-ranging terrestrial herbivores. However, attempts to relate the use of geochemical landscapes by animal populations directly to reproductive output are currently lacking. Here we measured concentrations of 14 essential and non-essential elements in soil and vegetation samples collected in the Zackenberg valley, northeast Greenland, and linked these to environmental conditions to spatially predict and map geochemical landscapes. We then used long-term (1996-2021) survey data of muskoxen (Ovibos moschatus) to quantify annual variation in the relative use of essential and non-essential elements in vegetated sites and their relationship to calf recruitment the following year. Results showed that the relative use of the geochemical landscape by muskoxen varied substantially between years and differed among elements. Selection for vegetated sites with higher levels of the essential elements N, Cu, Se, and Mo was positively linked to annual calf recruitment. In contrast, selection for vegetated sites with higher concentrations of the non-essential elements As and Pb was negatively correlated to annual calf recruitment. Based on the concentrations measured in our study, we found no apparent associations between annual calf recruitment and levels of C, Mn, Co, Zn, Cd, Ba, Hg, and C:N ratio in the vegetation. We conclude that the spatial distribution and access to essential and non-essential elements are important drivers of reproductive output in muskoxen, which may also apply to other wildlife populations. The value of geochemical landscapes to assess habitat-performance relationships is likely to increase under future environmental change.
Collapse
Affiliation(s)
- Floris M van Beest
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark.
| | - Niels Martin Schmidt
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark
| | - Lærke Stewart
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800 Bø, Norway
| | - Lars H Hansen
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark
| | - Anders Michelsen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | | | - Hugo Gilbert
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR- 5245), CNRS, Université de Toulouse, Avenue de l'Agrobiopole, 31326 Castanet Tolosan, France
| | - Gaël Le Roux
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR- 5245), CNRS, Université de Toulouse, Avenue de l'Agrobiopole, 31326 Castanet Tolosan, France
| | - Sophia V Hansson
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Laboratoire Ecologie Fonctionnelle et Environnement (UMR- 5245), CNRS, Université de Toulouse, Avenue de l'Agrobiopole, 31326 Castanet Tolosan, France
| |
Collapse
|
4
|
Rakic F, Fernandez-Aguilar X, Pruvot M, Whiteside DP, Mastromonaco GF, Leclerc LM, Jutha N, Kutz SJ. Variation of hair cortisol in two herds of migratory caribou ( Rangifer tarandus): implications for health monitoring. CONSERVATION PHYSIOLOGY 2023; 11:coad030. [PMID: 37228297 PMCID: PMC10203588 DOI: 10.1093/conphys/coad030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/03/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Migratory caribou (Rangifer tarandus sspp.) is an ecotype of conservation concern that is experiencing increased cumulative stressors associated with rapid climate change and development in Arctic Canada. Increasingly, hair cortisol concentrations (HCCs) are being used to monitor seasonal hypothalamic-pituitary-adrenal axis activity of ungulate populations; yet, the effect of key covariates for caribou (sex, season, sampling source, body location) are largely unknown. The objectives of this research were 4-fold: first, we assessed the impact of body location (neck, rump) sampling sites on HCC; second, we assessed key covariates (sex, sampling method, season) impacting HCCs of caribou; third, we investigated inter-population (Dolphin and Union (DU), Bluenose-East (BNE)) and inter-annual differences in HCC and fourth, we examined the association between HCCs and indices of biting insect activity on the summer range (oestrid index, mosquito index). We examined hair from 407 DU and BNE caribou sampled by harvesters or during capture-collaring operations from 2012 to 2020. Linear mixed-effect models were used to assess the effect of body location on HCC and generalized least squares regression (GLS) models were used to examine the impacts of key covariates, year and herd and indices of biting insect harassment. HCC varied significantly by body location, year, herd and source of samples (harvester vs capture). HCC was higher in samples taken from the neck and in the DU herd compared with the BNE, decreased linearly over time and was higher in captured versus hunted animals (P < 0.05). There was no difference in HCC between sexes, and indices of biting insect harassment in the previous year were not significantly associated with HCC. This study identifies essential covariates impacting the HCC of caribou that must be accounted for in sampling, monitoring and data interpretation.
Collapse
Affiliation(s)
- F Rakic
- Corresponding author: Department of Ecosystem and Public Health – Faculty of Veterinary Medicine, University of Calgary; 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada.
| | - X Fernandez-Aguilar
- Department of Ecosystem and Public Health – Faculty of Veterinary Medicine, University of Calgary; 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6
| | - M Pruvot
- Department of Ecosystem and Public Health – Faculty of Veterinary Medicine, University of Calgary; 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6
| | - D P Whiteside
- Department of Ecosystem and Public Health – Faculty of Veterinary Medicine, University of Calgary; 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6
| | - G F Mastromonaco
- Reproductive Sciences Unit, Toronto Zoo, 361A Old Finch Avenue, Scarborough, Ontario, Canada, M1B 5K7
| | - L M Leclerc
- Department of Environment, Government of Nunavut, P.O. Box 377, Kugluktuk, Nunavut, Canada, X0B 0E0
| | - N Jutha
- Department of Environment and Natural Resources, Government of the Northwest Territories, 5112 52 st, Yellowknife, The Northwest Territories, Canada, X1A 2L9
| | - S J Kutz
- Department of Ecosystem and Public Health – Faculty of Veterinary Medicine, University of Calgary; 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6
| |
Collapse
|
5
|
Winter SN, Fernandez MDP, Taylor KR, Wild MA. Associations between hair trace mineral concentrations and the occurrence of treponeme-associated hoof disease in elk (Cervus canadensis). BMC Vet Res 2022; 18:446. [PMID: 36564777 PMCID: PMC9783704 DOI: 10.1186/s12917-022-03547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Trace minerals are important for animal health. Mineral deficiency or excess can negatively affect immune function, wound healing, and hoof health in domestic livestock, but normal concentrations and health impairment associated with mineral imbalances in wild animals are poorly understood. Treponeme-associated hoof disease (TAHD) is an emerging disease of free-ranging elk (Cervus canadensis) in the U.S. Pacific Northwest. Selenium and copper levels identified in a small number of elk from areas where TAHD is established (i.e., southwestern Washington) suggested a mineral deficiency may have increased susceptibility to TAHD. Our objectives were to determine trace mineral concentrations using hair from elk originating in TAHD affected areas of Washington, California, Idaho, and Oregon and assess their associations with the occurrence of the disease. RESULTS We identified limited associations between TAHD occurrence and severity with hair mineral concentrations in 72 free-ranging elk, using Firth's logistic regression and multinomial regression models. We found consistent support for a priori hypotheses that selenium concentration, an important mineral for hoof health, is inversely associated with the occurrence of TAHD. Less consistent support was observed for effects of other minerals previously associated with hoof health (e.g., copper or zinc) or increased disease risk from potential toxicants. CONCLUSION Trace mineral analysis of hair is a non-invasive sampling technique that offers feasibility in storage and collection from live animals and carcasses. For some minerals, levels in hair correlate with visceral organs that are challenging to obtain. Our study using hair collected opportunistically from elk feet submitted for diagnostic investigations provides a modest reference of hair mineral levels in elk from the U.S. Pacific Northwest that may be useful in future determination of reference ranges. Although our results revealed high variability in mineral concentrations between elk, consistent relationship of possibly low selenium levels and TAHD suggest that further investigations are warranted.
Collapse
Affiliation(s)
- Steven N Winter
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, 99164, USA
| | | | - Kyle R Taylor
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, 99164, USA
| | - Margaret A Wild
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
6
|
Jachimowicz-Rogowska K, Topczewska J, Krupa W, Bajcar M, Kwiecień M, Winiarska-Mieczan A. Seasonal Changes in Trace-Element Content in the Coat of Hucul Horses. Animals (Basel) 2022; 12:ani12202770. [PMID: 36290155 PMCID: PMC9597826 DOI: 10.3390/ani12202770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of the study was to evaluate seasonal changes in selected trace elements such as Fe, Cu, Mn, Zn, and Al in the coat of healthy Hucul horses kept in south-eastern Poland in two different facilities and fed with locally sourced feed. The coat for the study was collected from 24 individuals in autumn, winter, and spring. The concentration of elements in the feed was also determined. The date of collection had a significant effect on the concentration of the micronutrients analysed in the coat of Hucul horses. The highest concentration of Zn was found in the coat taken in summer. The coat taken in autumn had the highest concentrations of Fe, Cu, Mn, and Al compared with the other seasons. The highest concentrations of Fe, Mn, and Al were found in fur taken in winter, with the lowest levels of Zn. Positive correlations were found between the content of iron and manganese, iron and aluminium, and manganese and aluminium in the coat of Hucul horses. A clear inter-individual and inter-stable variability was found, which may indicate the need for further research that also takes into account other factors.
Collapse
Affiliation(s)
- Karolina Jachimowicz-Rogowska
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
- Correspondence: (K.J.-R.); (J.T.)
| | - Jadwiga Topczewska
- Department of Animal Production and Poultry Products Evaluation, College of Natural Sciences, University of Rzeszów, Zelwerowicza Str. 4, 35-601 Rzeszow, Poland
- Correspondence: (K.J.-R.); (J.T.)
| | - Wanda Krupa
- Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| | - Marcin Bajcar
- Department of Bioenergetics, Food Analysis and Microbiology, College of Natural Sciences, University of Rzeszów, Ćwiklińskiej St. 2D, 35-601 Rzeszow, Poland
| | - Małgorzata Kwiecień
- Department of Animal Nutrition, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| |
Collapse
|
7
|
Links between individual performance, trace elements and stable isotopes in an endangered caribou population. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|