1
|
Martian PC, Tertis M, Leonte D, Hadade N, Cristea C, Crisan O. Cyclic peptides: A powerful instrument for advancing biomedical nanotechnologies and drug development. J Pharm Biomed Anal 2025; 252:116488. [PMID: 39388867 DOI: 10.1016/j.jpba.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications. We explore the synthesis and design strategies that enable the precise control of cyclic peptide structures, leading to enhanced performance in targeting specific cellular pathways. The article also highlights recent breakthroughs in the use of cyclic peptides for creating innovative drug delivery systems, including nanoparticle conjugates and peptide-drug conjugates, which have shown promise in improving the efficacy and safety profiles of existing traditional treatments. The integration of cyclic peptides into nanotechnological frameworks holds significant promise for addressing unmet medical needs, providing a foundation for future advancements in personalized medicine and targeted drug delivery.
Collapse
Affiliation(s)
- Paul Cristian Martian
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Denisa Leonte
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| | - Niculina Hadade
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania.
| | - Ovidiu Crisan
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| |
Collapse
|
2
|
Barraza GA, Maza JR, Kouznetsov VV, Gómez CMM. Exploring quinoline-type inhibitors of ergosterol biosynthesis: Binding mechanism investigation via molecular docking, pharmacophore mapping, and dynamics simulation approaches. Comput Biol Med 2024; 185:109524. [PMID: 39693691 DOI: 10.1016/j.compbiomed.2024.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Drug-resistant fungal infections pose a formidable challenge in healthcare, attributed to ergosterol production as a key mechanism of resistance. It is therefore imperative to target this pathway for effective therapeutic interventions. In this study, we have analyzed the binding mode of twelve quinoline derivatives known to be effective against various Candida species, Microsporum gypseum, and Cryptococcus neoformans. Employing molecular docking techniques, pharmacological modeling, and molecular dynamics, we have delved into interactions with Erg1, Erg11, and Erg24 proteins, crucial in ergosterol biosynthesis. Our analysis unveiled critical interactions that facilitate the docking and stabilization of C-2-substituted quinoline derivatives on these proteins, highlighting their potential as regulators of ergosterol synthesis. Furthermore, complexes formed with Erg1 … 8 (MIC = 125 μg/mL) and Erg24 … 4 (MIC = 62 μg/mL) showed higher affinity and stability during the docking process, pointing to their promising role as regulatory agents of these proteins. This in silico approach provides insights into potential pathways to combat drug-resistant fungal infections.
Collapse
Affiliation(s)
- Gustavo A Barraza
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, A.A.1890, Barranquilla, Colombia; Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Julio Román Maza
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, A.A.1890, Barranquilla, Colombia
| | - Vladimir V Kouznetsov
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, A.A.1890, Barranquilla, Colombia
| | - Carlos Mario Meléndez Gómez
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, A.A.1890, Barranquilla, Colombia
| |
Collapse
|
3
|
Zeitoun H, Salem RA, El-Guink NM, Tolba NS, Mohamed NM. Elucidation of the mechanisms of fluconazole resistance and repurposing treatment options against urinary Candida spp. isolated from hospitalized patients in Alexandria, Egypt. BMC Microbiol 2024; 24:383. [PMID: 39354378 PMCID: PMC11443771 DOI: 10.1186/s12866-024-03512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/10/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The incidence of fungal urinary tract infections (UTIs) has dramatically increased in the past decades, with Candida arising as the predominant etiological agent. Managing these infections poses a serious challenge to clinicians, especially with the emergence of fluconazole-resistant (FLC-R) Candida species. In this study, we aimed to determine the mechanisms of fluconazole resistance in urinary Candida spp. isolated from hospitalized patients in Alexandria, Egypt, assess the correlation between fluconazole resistance and virulence, and explore potential treatment options for UTIs caused by FLC-R Candida strains. RESULTS Fluconazole susceptibility testing of 34 urinary Candida isolates indicated that 76.5% were FLC-R, with a higher prevalence of resistance recorded in non-albicans Candida spp. (88.9%) than in Candida albicans (62.5%). The calculated Spearman's correlation coefficients implied significant positive correlations between fluconazole minimum inhibitory concentrations and both biofilm formation and phospholipase production. Real-time PCR results revealed that most FLC-R isolates (60%) significantly overexpressed at least one efflux pump gene, while 42.3% significantly upregulated the ERG11 gene. The most prevalent mutation detected upon ERG11 sequencing was G464S, which is conclusively linked to fluconazole resistance. The five repurposed agents: amikacin, colistin, dexamethasone, ketorolac, and sulfamethoxazole demonstrated variable fluconazole-sensitizing activities in vitro, with amikacin, dexamethasone, and colistin being the most effective. However, the fluconazole/colistin combination produced a notable reduction (49.1%) in bladder bioburden, a 50% decrease in the inflammatory response, and tripled the median survival span relative to the untreated murine models. CONCLUSIONS The fluconazole/colistin combination offers a promising treatment option for UTIs caused by FLC-R Candida, providing an alternative to the high-cost, tedious process of novel antifungal drug discovery in the battle against antifungal resistance.
Collapse
Affiliation(s)
- Hend Zeitoun
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Rawan A Salem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Nadia M El-Guink
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Nesrin S Tolba
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nelly M Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt.
| |
Collapse
|
4
|
Gupta AK, Talukder M, Shemer A, Galili E. Safety and efficacy of new generation azole antifungals in the management of recalcitrant superficial fungal infections and onychomycosis. Expert Rev Anti Infect Ther 2024; 22:399-412. [PMID: 38841996 DOI: 10.1080/14787210.2024.2362911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Terbinafine is considered the gold standard for treating skin fungal infections and onychomycosis. However, recent reports suggest that dermatophytes are developing resistance to terbinafine and the other traditional antifungal agents, itraconazole and fluconazole. When there is resistance to terbinafine, itraconazole or fluconazole, or when these agents cannot used, for example, due to potential drug interactions with the patient's current medications, clinicians may need to consider off-label use of new generation azoles, such as voriconazole, posaconazole, fosravuconazole, or oteseconazole. It is essential to emphasize that we do not advocate the use of newer generation azoles unless traditional agents such as terbinafine, itraconazole, or fluconazole have been thoroughly evaluated as first-line therapies. AREAS COVERED This article reviews the clinical evidence, safety, dosage regimens, pharmacokinetics, and management algorithm of new-generation azole antifungals. EXPERT OPINION Antifungal stewardship should be the top priority when prescribing new-generation azoles. First-line antifungal therapy is terbinafine and itraconazole. Fluconazole is a consideration but is generally less effective and its use may be off-label in many countries. For difficult-to-treat skin fungal infections and onychomycosis, that have failed terbinafine, itraconazole and fluconazole, we propose consideration of off-label voriconazole or posaconazole.
Collapse
Affiliation(s)
- Aditya K Gupta
- Division of Dermatology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Mediprobe Research Inc., London, Ontario, Canada
| | - Mesbah Talukder
- Mediprobe Research Inc., London, Ontario, Canada
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| | - Avner Shemer
- Department of Dermatology, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Galili
- Department of Dermatology, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Khamrai A, Paul S, Rudramurthy SM, Ghosh AK. Carbon substrates promotes stress resistance and drug tolerance in clinical isolates of Candida tropicalis. Arch Microbiol 2024; 206:270. [PMID: 38767668 DOI: 10.1007/s00203-024-04000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Candida tropicalis is a human pathogen and one of the most prevalent non-Candida albicans Candida (NCAC) species causing invasive infections. Azole antifungal resistance in C. tropicalis is also gradually increasing with the increasing incidence of infections. The pathogenic success of C. tropicalis depends on its effective response in the host microenvironment. To become a successful pathogen, cellular metabolism, and physiological status determine the ability of the pathogen to counter diverse stresses inside the host. However, to date, limited knowledge is available on the impact of carbon substrate metabolism on stress adaptation and azole resistance in C. tropicalis. In this study, we determined the impact of glucose, fructose, and sucrose as the sole carbon source on the fluconazole resistance and osmotic (NaCl), oxidative (H2O2) stress adaptation in C. tropicalis clinical isolates. We confirmed that the abundance of carbon substrates influences or increases drug resistance and osmotic and oxidative stress tolerance in C. tropicalis. Additionally, both azole-resistant and susceptible isolates showed similar stress adaptation phenotypes, confirming the equal efficiency of becoming successful pathogens irrespective of drug susceptibility profile. To the best of our knowledge, our study is the first on C. tropicalis to demonstrate the direct relation between carbon substrate metabolism and stress tolerance or drug resistance.
Collapse
Affiliation(s)
- Arpita Khamrai
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Saikat Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Anup K Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
6
|
Ahmady L, Gothwal M, Mukkoli MM, Bari VK. Antifungal drug resistance in Candida: a special emphasis on amphotericin B. APMIS 2024; 132:291-316. [PMID: 38465406 DOI: 10.1111/apm.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Invasive fungal infections in humans caused by several Candida species, increased considerably in immunocompromised or critically ill patients, resulting in substantial morbidity and mortality. Candida albicans is the most prevalent species, although the frequency of these organisms varies greatly according to geographic region. Infections with C. albicans and non-albicans Candida species have become more common, especially in the past 20 years, as a result of aging, immunosuppressive medication use, endocrine disorders, malnourishment, extended use of medical equipment, and an increase in immunogenic diseases. Despite C. albicans being the species most frequently associated with human infections, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei also have been identified. Several antifungal drugs with different modes of action are approved for use in clinical settings to treat fungal infections. However, due to the common eukaryotic structure of humans and fungi, only a limited number of antifungal drugs are available for therapeutic use. Furthermore, drug resistance in Candida species has emerged as a result of the growing use of currently available antifungal drugs against fungal infections. Amphotericin B (AmB), a polyene class of antifungal drugs, is mainly used for the treatment of serious systemic fungal infections. AmB interacts with fungal plasma membrane ergosterol, triggering cellular ion leakage via pore formation, or extracting the ergosterol from the plasma membrane inducing cellular death. AmB resistance is primarily caused by changes in the content or structure of ergosterol. This review summarizes the antifungal drug resistance exhibited by Candida species, with a special focus on AmB.
Collapse
Affiliation(s)
- Lailema Ahmady
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Manisha Gothwal
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
7
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
8
|
Spruijtenburg B, Meijer EFJ, Xiao M, Shawky SM, Meis JF, de Groot T, El-Kholy MA. Genotyping and susceptibility testing uncovers large azole-resistant Candida tropicalis clade in Alexandria, Egypt. J Glob Antimicrob Resist 2023; 34:99-105. [PMID: 37419181 DOI: 10.1016/j.jgar.2023.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
OBJECTIVES Candida tropicalis is an emerging medically relevant Candida species. The yeast primarily causes opportunistic infections in intensive care units and is highly prevalent in tropical countries. The genetic diversity within this species is high, and nosocomial transmission has been reported. C. tropicalis genotyping of isolates from low- and middle-income countries is underrepresented when compared with that from high-income countries. Also, in Egypt, only limited genotyping has been conducted for C. tropicalis isolates, while antifungal resistance seems to increase, especially against azoles. METHODS Antifungal susceptibility testing was performed on 64 C. tropicalis isolates from ICU patients collected from multiple hospitals in Alexandria, Egypt. Genotyping by means of short tandem repeat (STR) and whole genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis was performed. RESULTS Using antifungal susceptibility testing, fluconazole resistance was observed in 24 isolates (38%), of which 23 harboured an ERG11 G464S substitution, previously shown to cause resistance in Candida albicans. STR genotyping showed that these 23 isolates were related, forming a distinct resistant clade. WGS SNP analysis subsequently confirmed this genetic relationship, although isolates within this clade differed in at least 429 SNPs, suggesting that these were independently introduced. CONCLUSION Overall, STR and WGS SNP analysis of this collection indicates limited C. tropicalis nosocomial transmission in Alexandria, while the presence of this large azole-resistant C. tropicalis clade within this city hampers the treatment of intensive care unit patients.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; Center of Expertise in Mycology Radboud University Medical Center/Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Eelco F J Meijer
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; Center of Expertise in Mycology Radboud University Medical Center/Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People's Republic of China
| | - Sherine M Shawky
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; Center of Expertise in Mycology Radboud University Medical Center/Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; Department I of Internal Medicine, University of Cologne, Excellence Center for Medical Mycology, Cologne, Germany
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; Center of Expertise in Mycology Radboud University Medical Center/Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Mohammed A El-Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, Egypt.
| |
Collapse
|
9
|
Hetta HF, Ramadan YN, Al-Kadmy IMS, Ellah NHA, Shbibe L, Battah B. Nanotechnology-Based Strategies to Combat Multidrug-Resistant Candida auris Infections. Pathogens 2023; 12:1033. [PMID: 37623993 PMCID: PMC10458664 DOI: 10.3390/pathogens12081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
An emerging multidrug-resistant pathogenic yeast called Candida auris has a high potential to spread quickly among hospitalized patients and immunodeficient patients causing nosocomial outbreaks. It has the potential to cause pandemic outbreaks in about 45 nations with high mortality rates. Additionally, the fungus has become resistant to decontamination techniques and can survive for weeks in a hospital environment. Nanoparticles might be a good substitute to treat illnesses brought on by this newly discovered pathogen. Nanoparticles have become a trend and hot topic in recent years to combat this fatal fungus. This review gives a general insight into the epidemiology of C. auris and infection. It discusses the current conventional therapy and mechanism of resistance development. Furthermore, it focuses on nanoparticles, their different types, and up-to-date trials to evaluate the promising efficacy of nanoparticles with respect to C. auris.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Israa M. S. Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, Baghdad P.O. Box 10244, Iraq;
| | - Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt
| | - Lama Shbibe
- Faculty of Science, Damascus University, Damascus 97009, Syria;
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, Damascus 36822, Syria
| |
Collapse
|
10
|
Fang W, Wu J, Cheng M, Zhu X, Du M, Chen C, Liao W, Zhi K, Pan W. Diagnosis of invasive fungal infections: challenges and recent developments. J Biomed Sci 2023; 30:42. [PMID: 37337179 DOI: 10.1186/s12929-023-00926-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/13/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The global burden of invasive fungal infections (IFIs) has shown an upsurge in recent years due to the higher load of immunocompromised patients suffering from various diseases. The role of early and accurate diagnosis in the aggressive containment of the fungal infection at the initial stages becomes crucial thus, preventing the development of a life-threatening situation. With the changing demands of clinical mycology, the field of fungal diagnostics has evolved and come a long way from traditional methods of microscopy and culturing to more advanced non-culture-based tools. With the advent of more powerful approaches such as novel PCR assays, T2 Candida, microfluidic chip technology, next generation sequencing, new generation biosensors, nanotechnology-based tools, artificial intelligence-based models, the face of fungal diagnostics is constantly changing for the better. All these advances have been reviewed here giving the latest update to our readers in the most orderly flow. MAIN TEXT A detailed literature survey was conducted by the team followed by data collection, pertinent data extraction, in-depth analysis, and composing the various sub-sections and the final review. The review is unique in its kind as it discusses the advances in molecular methods; advances in serology-based methods; advances in biosensor technology; and advances in machine learning-based models, all under one roof. To the best of our knowledge, there has been no review covering all of these fields (especially biosensor technology and machine learning using artificial intelligence) with relevance to invasive fungal infections. CONCLUSION The review will undoubtedly assist in updating the scientific community's understanding of the most recent advancements that are on the horizon and that may be implemented as adjuncts to the traditional diagnostic algorithms.
Collapse
Affiliation(s)
- Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Mingrong Cheng
- Department of Anorectal Surgery, The Third Affiliated Hospital of Guizhou Medical University, Guizhou, 558000, China
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Kangkang Zhi
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
11
|
Carmo A, Rocha M, Pereirinha P, Tomé R, Costa E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics (Basel) 2023; 12:884. [PMID: 37237787 PMCID: PMC10215229 DOI: 10.3390/antibiotics12050884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The use of antifungal drugs started in the 1950s with polyenes nystatin, natamycin and amphotericin B-deoxycholate (AmB). Until the present day, AmB has been considered to be a hallmark in the treatment of invasive systemic fungal infections. Nevertheless, the success and the use of AmB were associated with severe adverse effects which stimulated the development of new antifungal drugs such as azoles, pyrimidine antimetabolite, mitotic inhibitors, allylamines and echinochandins. However, all of these drugs presented one or more limitations associated with adverse reactions, administration route and more recently the development of resistance. To worsen this scenario, there has been an increase in fungal infections, especially in invasive systemic fungal infections that are particularly difficult to diagnose and treat. In 2022, the World Health Organization (WHO) published the first fungal priority pathogens list, alerting people to the increased incidence of invasive systemic fungal infections and to the associated risk of mortality/morbidity. The report also emphasized the need to rationally use existing drugs and develop new drugs. In this review, we performed an overview of the history of antifungals and their classification, mechanism of action, pharmacokinetic/pharmacodynamic (PK/PD) characteristics and clinical applications. In parallel, we also addressed the contribution of fungi biology and genetics to the development of resistance to antifungal drugs. Considering that drug effectiveness also depends on the mammalian host, we provide an overview on the roles of therapeutic drug monitoring and pharmacogenomics as means to improve the outcome, prevent/reduce antifungal toxicity and prevent the emergence of antifungal resistance. Finally, we present the new antifungals and their main characteristics.
Collapse
Affiliation(s)
- Anália Carmo
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Marilia Rocha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Patricia Pereirinha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Rui Tomé
- Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal;
| | - Eulália Costa
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
12
|
Characterization of Virulence Factors in Candida Species Causing Candidemia in a Tertiary Care Hospital in Bangkok, Thailand. J Fungi (Basel) 2023; 9:jof9030353. [PMID: 36983521 PMCID: PMC10059995 DOI: 10.3390/jof9030353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Candidemia is often associated with high mortality, and Candida albicans, Candida tropicalis, Candida glabrata, and Candida parapsilosis are common causes of this disease. The pathogenicity characteristics of specific Candida spp. that cause candidemia in Thailand are poorly understood. This study aimed to characterize the virulence factors of Candida spp. Thirty-eight isolates of different Candida species from blood cultures were evaluated for their virulence properties, including exoenzyme and biofilm production, cell surface hydrophobicity, tissue invasion, epithelial cell damage, morphogenesis, and phagocytosis resistance; the identity and frequency of mutations in ERG11 contributing to azole-resistance were also determined. C. albicans had the highest epithelial cell invasion rate and phospholipase activity, with true hyphae formation, whereas C. tropicalis produced the most biofilm, hydrophobicity, protease activity, and host cell damage and true hyphae formation. ERG11 mutations Y132F and S154F were observed in all azole-resistant C. tropicalis. C. glabrata had the most hemolytic activity while cell invasion was low with no morphologic transition. C. glabrata was more easily phagocytosed than other species. C. parapsilosis generated pseudohyphae but not hyphae and did not exhibit any trends in exoenzyme production. This knowledge will be crucial for understanding the pathogenicity of Candida spp. and will help to explore antivirulence-based treatment.
Collapse
|
13
|
Caicedo-Bejarano LD, Osorio-Vanegas LS, Ramírez-Castrillón M, Castillo JE, Martínez-Garay CA, Chávez-Vivas M. Water Quality, Heavy Metals, and Antifungal Susceptibility to Fluconazole of Yeasts from Water Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3428. [PMID: 36834128 PMCID: PMC9968106 DOI: 10.3390/ijerph20043428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Aquatic environments could be reservoirs of pathogenic yeasts with acquired antifungal resistance. The susceptibility to antifungal agents of yeasts present in the wastewater and natural waters of the city of Cali was evaluated. Samples were taken from two types of water: drinking water (Meléndez River, drinking water treatment plant "Puerto Mallarino" in the Cauca River) and wastewater (South Channel of the Cauca River, "Cañaveralejo-PTAR" wastewater treatment plant). Physico-chemical parameters, heavy metal concentration, and yeast levels were determined using standard procedures. Yeasts were identified using API 20 C AUX (BioMérieux) and sequence analysis of the ITS1-5.8S-ITS2 and D1/D2 regions of the large subunit of the ribosome. Susceptibility assays against fluconazole and amphotericin B using the minimum inhibitory concentration (MIC) test were determined using the microdilution method. The influence of physico-chemical parameters and heavy metals was established using principal component analysis (PCA). Yeast counts were higher at WWTP "PTAR" and lower at Melendez River, as expected. A total of 14 genera and 21 yeast species was identified, and the genus Candida was present at all locations. Susceptibility tests showed a 32.7% resistance profile to fluconazole in the order DWTP "Puerto Mallarino = WWTP "PTAR" > South Channel "Navarro". There were significant differences (p < 0.05) in the physico-chemical parameters/concentration of heavy metals and yeast levels between the aquatic systems under study. A positive association was observed between yeast levels and total dissolved solids, nitrate levels, and Cr at the "PTAR" WWTP; conductivity, Zn, and Cu in the South Channel; and the presence of Pb in the "Puerto Mallarino" DWTP. Rhodotorula mucilaginosa, Candida albicans, and Candida sp. 1 were influenced by Cr and Cd, and Diutina catelunata was influenced by Fe (p < 0.05). The water systems explored in this study showed different yeast levels and susceptibility profiles, and, therefore, possible genetic differences among populations of the same species, and different physico-chemical and heavy metals concentrations, which were probably modulating the antifungal-resistant yeasts. All these aquatic systems discharge their content into the Cauca River. We highlight the importance to further investigate if these resistant communities continue to other locations in the second largest river of Colombia and to determine the risk posed to humans and animals.
Collapse
Affiliation(s)
- Luz Dary Caicedo-Bejarano
- Research Group in Mycology (GIM/CICBA), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Santiago de Cali 760035, Colombia
| | - Lizeth Stefania Osorio-Vanegas
- Department of Biochemical Engineering, Faculty of Engineering and Design, Universidad Icesi, Santiago de Cali 760031, Colombia
| | - Mauricio Ramírez-Castrillón
- Department of Biochemical Engineering, Faculty of Engineering and Design, Universidad Icesi, Santiago de Cali 760031, Colombia
| | - Jorge Enrique Castillo
- Grupo de Investigación en Electroquímica y Ambiente (GIEMA), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Santiago de Cali 760035, Colombia
| | - Carlos Andrés Martínez-Garay
- Research Group in Mycology (GIM/CICBA), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Santiago de Cali 760035, Colombia
| | - Mónica Chávez-Vivas
- Grupo de Investigación GIMMEIN, Programa de Medicina, Facultad de Salud, Universidad Libre Seccional Cali, Santiago de Cali 760031, Colombia
| |
Collapse
|
14
|
Leepattarakit T, Tulyaprawat O, Ngamskulrungroj P. The Risk Factors and Mechanisms of Azole Resistance of Candida tropicalis Blood Isolates in Thailand: A Retrospective Cohort Study. J Fungi (Basel) 2022; 8:jof8100983. [PMID: 36294548 PMCID: PMC9604623 DOI: 10.3390/jof8100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
In recent decades, an epidemiological shift has been observed from Candida infections to non-albicans species and resistance to azoles. We investigated the associated factors and molecular mechanisms of azole-resistant blood isolates of C. tropicalis. Full-length sequencing of the ERG11 gene and quantitative real-time RT-PCR for the ERG11, MDR1, and CDR1 genes were performed. Male sex (odds ratio, 0.38), leukemia (odds ratio 3.15), and recent administration of azole (odds ratio 10.56) were associated with isolates resistant to azole. ERG11 mutations were found in 83% of resistant isolates, with A395T as the most common mutation (53%). There were no statistically significant differences in the expression of the ERG11, MDR1, and CDR1 genes between the groups resistant and susceptible to azole. The prevalence of azole-resistant isolates was higher than the usage of antifungal drugs, suggesting the possibility of environmental transmission in the healthcare setting. The unknown mechanism of the other 17% of the resistant isolates remains to be further investigated.
Collapse
|