1
|
Olaisen C, Røst LM, Sharma A, Søgaard CK, Khong T, Berg S, Jang M, Nedal A, Spencer A, Bruheim P, Otterlei M. Multiple Myeloma Cells with Increased Proteasomal and ER Stress Are Hypersensitive to ATX-101, an Experimental Peptide Drug Targeting PCNA. Cancers (Basel) 2024; 16:3963. [PMID: 39682151 DOI: 10.3390/cancers16233963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives: To examine the regulatory role of PCNA in MM, we have targeted PCNA with the experimental drug ATX-101 in three commercial cell lines (JJN3, RPMI 1660, AMO) and seven in-house patient-derived cell lines with a more primary cell-like phenotype (TK9, 10, 12, 13, 14, 16 and 18) and measured the systemic molecular effects. Methods: We have used a multi-omics untargeted approach, measuring the gene expression (transcriptomics), a subproteomics approach measuring mainly signalling proteins and proteins in complex with these (signallomics) and quantitative metabolomics. These results are supplemented with traditional analysis, e.g., viability, Western and ELISA analysis. Results: The sensitivity of the cell lines to ATX-101 varied, including between three cell lines derived from the same patient at different times of disease. A trend towards increased sensitivity to ATX-101 during disease progression was detected. Although with different sensitivities, ATX-101 treatment resulted in numerous changes in signalling and metabolite pools in all cell lines. Transcriptomics and signallomics analysis of the TK cell lines revealed that elevated endogenous expression of ribosomal genes, elevated proteasomal and endoplasmic reticulum (ER) stress and low endogenous levels of NAD+ and NADH were associated with ATX-101 hypersensitivity. ATX-101 treatment further enhanced the ER stress, reduced primary metabolism and reduced the levels of the redox pair GSH/GSSG in sensitive cells. Signallome analysis suggested that eleven proteins (TPD52, TNFRS17/BCMA, LILRB4/ILT3, TSG101, ZNRF2, UPF3B, FADS2, C11orf38/SMAP, CGREF1, GAA, COG4) were activated only in the sensitive MM cell lines (TK13, 14 and 16 and JJN3), and not in nine other cancer cell lines or in primary monocytes. These proteins may therefore be biomarkers of cells with activated proteasomal and ER stress even though the gene expression levels of these proteins were not elevated. Interestingly, carfilzomib-resistant cells were at least as sensitive to ATX-101 as the wild-type cells, suggesting both low cross-resistance between ATX-101 and proteasome inhibitors and elevated proteasomal stress in carfilzomib-resistant cells. Conclusions: Our multi-omics approach revealed a vital role of PCNA in regulation of proteasomal and ER stress in MM.
Collapse
Affiliation(s)
- Camilla Olaisen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Lisa Marie Røst
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Animesh Sharma
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Caroline Krogh Søgaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Tiffany Khong
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Australia
- Department of Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne 3004, Australia
| | - Sigrid Berg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Mi Jang
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Aina Nedal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Andrew Spencer
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Australia
- Department of Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne 3004, Australia
| | - Per Bruheim
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
- APIM Therapeutics A/S, Rådhusveien 12, NO-7100 Rissa, Norway
| |
Collapse
|
2
|
Hou B, Shu M, Liu C, Du Y, Xu C, Jiang H, Hou J, Chen X, Wang L, Wu X. Unveiling the role of UPF3B in hepatocellular carcinoma: Potential therapeutic target. Cancer Sci 2024; 115:2646-2658. [PMID: 38889220 PMCID: PMC11309952 DOI: 10.1111/cas.16240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
RNA-binding proteins can regulate nucleotide metabolism and gene expression. UPF3B regulator of nonsense mediated mRNA decay (UPF3B) exhibits dysfunction in cancers. However, its role in the progression of hepatocellular carcinoma (HCC) is still insufficiently understood. Here, we found that UPF3B was markedly upregulated in HCC samples and associated with adverse prognosis in patients. UPF3B dramatically promoted HCC growth both in vivo and in vitro. Mechanistically, UPF3B was found to bind to PPP2R2C, a regulatory subunit of PP2A, boosting its mRNA degradation and activating the PI3K/AKT/mTOR pathway. E2F transcription factor 6 (E2F6) directly binds to the UPF3B promoter to facilitate its transcription. Together, the E2F6/UPF3B/PPP2R2C axis promotes HCC growth through the PI3K/AKT/mTOR pathway. Hence, it could be a promising therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Bowen Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
| | - Min Shu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
| | - Chenghao Liu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
| | - Yunfeng Du
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
| | - Cuicui Xu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
| | - Huijiao Jiang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
| |
Collapse
|
3
|
Zhao J, Wang C, Zhao L, Zhou H, Wu R, Zhang T, Ding J, Zhou J, Zheng H, Zhang L, Kong T, Zhou J, Hu Z. A Novel Four-Gene Signature Based on Nonsense-Mediated RNA Decay for Predicting Prognosis in Hepatocellular Carcinoma: Bioinformatics Analysis and Functional Validation. J Hepatocell Carcinoma 2024; 11:747-766. [PMID: 38680213 PMCID: PMC11055534 DOI: 10.2147/jhc.s450711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Nonsense-mediated RNA decay (NMD), a surveillance pathway for selective degradation of aberrant mRNAs, is associated with cancer progression. Its potential as a predictor for aggressive hepatocellular carcinoma (HCC) is unclear. Here, we present an innovative NMD risk model for predicting HCC prognosis. Methods The Cancer Genome Atlas (TCGA) data of 374 liver HCC (LIHC) and 50 normal liver samples were extracted. A risk model based on NMD-related genes was developed through least absolute shrinkage and selection operator Cox (LASSO-Cox) regression of the LIHC-TCGA data. Prognostic validation was done using GSE54236, GSE116174, and GSE76427 data. Univariate and multivariate Cox regression analyses were conducted to assess the prognostic value of the model. We also constructed nomograms for survival prediction. Tumor immune infiltration was evaluated using the CIBERSORT algorithm, and the tumor cell phenotype was assessed. Finally, mouse experiments verified UPF3B knockdown effects on HCC tumor characteristics. Results We developed a risk model based on four NMD-related genes (PABPC1, RPL8, SMG5, and UPF3B) and validated it using GSE54236, GSE116174, and GSE76427 data. The model effectively distinguished high- and low-risk groups corresponding to unfavorable and favorable HCC outcomes. Its prognostic prediction accuracy was confirmed through time-dependent ROC analysis, and clinical-use nomograms with calibration curves were developed. Single-cell RNA sequencing results indicated significantly higher expression of SMG5 and UPF3B in tumor cells. Knockdown of SMG5 and UPF3B inhibited HCC cell proliferation, invasion, and migration, while affecting cell-cycle progression and apoptosis. In vivo, UPF3B knockdown delayed tumor growth and increased immune cell infiltration. Conclusion Our NMD-related gene-based risk model can help identify therapeutic targets and biomarkers for HCC. Additionally, it assists clinicians in predicting the prognosis of HCC patients.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang Province, People’s Republic of China
| | - Cheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang Province, People’s Republic of China
| | - Liang Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang Province, People’s Republic of China
| | - Huiying Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang Province, People’s Republic of China
| | - Rui Wu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang Province, People’s Republic of China
| | - Tao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang Province, People’s Republic of China
| | - Jiawei Ding
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang Province, People’s Republic of China
| | - Junjie Zhou
- Department of Radiology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang Province, People’s Republic of China
| | - Huilin Zheng
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resource Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Lei Zhang
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resource Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Tianci Kong
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resource Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jie Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhenhua Hu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang Province, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
4
|
Wang H, Qian D, Wang J, Liu Y, Luo W, Zhang H, Cheng J, Li H, Wu Y, Li W, Wang J, Yang X, Zhang T, Han D, Wang Q, Zhang CZ, Liu L. HnRNPR-mediated UPF3B mRNA splicing drives hepatocellular carcinoma metastasis. J Adv Res 2024:S2090-1232(24)00072-9. [PMID: 38402949 DOI: 10.1016/j.jare.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Abnormal alternative splicing (AS) contributes to aggressive intrahepatic invasion and metastatic spread, leading to the high lethality of hepatocellular carcinoma (HCC). OBJECTIVES This study aims to investigate the functional implications of UPF3B-S (a truncated oncogenic splice variant) in HCC metastasis. METHODS Basescope assay was performed to analyze the expression of UPF3B-S mRNA in tissues and cells. RNA immunoprecipitation, and in vitro and in vivo models were used to explore the role of UPF3B-S and the underlying mechanisms. RESULTS We show that splicing factor HnRNPR binds to the pre-mRNA of UPF3B via its RRM2 domain to generate an exon 8 exclusion truncated splice variant UPF3B-S. High expression of UPF3B-S is correlated with tumor metastasis and unfavorable overall survival in patients with HCC. The knockdown of UPF3B-S markedly suppresses the invasive and migratory capacities of HCC cells in vitro and in vivo. Mechanistically, UPF3B-S protein targets the 3'-UTR of CDH1 mRNA to enhance the degradation of CDH1 mRNA, which results in the downregulation of E-cadherin and the activation of epithelial-mesenchymal transition. Overexpression of UPF3B-S enhances the dephosphorylation of LATS1 and the nuclear accumulation of YAP1 to trigger the Hippo signaling pathway. CONCLUSION Our findings suggest that HnRNPR-induced UPF3B-S promotes HCC invasion and metastasis by exhausting CDH1 mRNA and modulating YAP1-Hippo signaling. UPF3B-S could potentially serve as a promising biomarker for the clinical management of invasive HCC.
Collapse
Affiliation(s)
- Hong Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiabei Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenguang Luo
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyan Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Heng Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC) West District/Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Yang Wu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of General Surgery, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Wuhan Li
- Department of Emergency Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tianzhi Zhang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Dong Han
- Tianjin Medical University Cancer Institute and Hospital, Department of Radiation Oncology, Tianjin, China
| | - Qinyao Wang
- Anhui Chest Hospital, Department of Radiation Oncology, Hefei, Anhui, China
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lianxin Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Wang L, Wang Q, Li Y, Qi X, Fan X. A signature based on neutrophil extracellular trap-related genes for the assessment of prognosis, immunoinfiltration, mutation and therapeutic response in hepatocellular carcinoma. J Gene Med 2024; 26:e3588. [PMID: 37715643 DOI: 10.1002/jgm.3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Liver cancer is a highly lethal and aggressive form of cancer that poses a significant threat to patient survival. Within this category, liver hepatocellular carcinoma (LIHC) represents the most common subtype of liver cancer. Despite decades of research and treatment, the overall survival rate for LIHC has not significantly improved. Improved models are necessary to differentiate high-risk cases and predict possible treatment options for LIHC patients. Recent studies have identified a set of genes associated with neutrophil extracellular traps (NETs) that may contribute to tumor growth and metastasis; however, their prognostic value in LIHC has yet to be established. This study aims to construct a prognostic signature based on a set of NET-related genes (NRGs) for patients diagnosed with LIHC. METHODS The transcriptomic data and clinical information concerning LIHC patients were procured from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium LIHC (ICLIHC) databases, respectively. To determine the NRG subtypes, the k-means algorithm was employed, along with consensus clustering. The aforementioned analysis aided the construction of a prognostic signature utilizing the last absolute shrinkage and selection operator Cox analysis. To validate the prognostic model, an external dataset, receiver operating characteristic curve, and principal component analysis were utilized. Moreover, the immune microenvironment and the proportion of immune cells between high- and low-risk cases were scrutinized by ESTIMATE and CIBERSORT algorithms. Finally, gene set enrichment analysis was executed to investigate the potential mechanism of NRGs in the pathogenesis and prognosis of LIHC. RESULTS Two molecular subtypes of LIHC were identified based on the expression patterns of differentially expressed NRGs (DE-NRGs). The two subtypes demonstrated significant differences in survival rates and immune cell expression levels. The study results demonstrated the role of NRGs in antigen presentation, which led to the promotion of tumor immune escape. A risk model was developed and validated with strong overall survival prediction ability. The model, comprising 34 NRGs, showed a strong ability to predict prognosis. CONCLUSION We built a dependable prognostic signature based on NRGs for LIHC. We identified that NRGs could have a significant interaction in LIHC's immune microenvironment and therapeutic response. This finding offers insight into the molecular mechanisms and targeted therapy for LIHC.
Collapse
Affiliation(s)
- Lijia Wang
- Department of Radiology, Fourth Clinical Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qi Wang
- Department of Radiology, Fourth Clinical Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuekao Li
- Department of Radiology, Fourth Clinical Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaohui Qi
- Department of Radiology, Fourth Clinical Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueli Fan
- Department of Radiology, Fourth Clinical Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Roccuzzo G, Bongiovanni E, Tonella L, Pala V, Marchisio S, Ricci A, Senetta R, Bertero L, Ribero S, Berrino E, Marchiò C, Sapino A, Quaglino P, Cassoni P. Emerging prognostic biomarkers in advanced cutaneous melanoma: a literature update. Expert Rev Mol Diagn 2024; 24:49-66. [PMID: 38334382 DOI: 10.1080/14737159.2024.2314574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Over the past two years, the scientific community has witnessed an exponential growth in research focused on identifying prognostic biomarkers for melanoma, both in pre-clinical and clinical settings. This surge in studies reflects the need of developing effective prognostic indicators in the field of melanoma. AREAS COVERED The aim of this work is to review the scientific literature on the most recent findings on the development or validation of prognostic biomarkers in melanoma, in the attempt of providing both clinicians and researchers with an updated broad synopsis of prognostic biomarkers in cutaneous melanoma. EXPERT OPINION While the field of prognostic biomarkers in melanoma appears promising, there are several complexities and limitations to address. The interdependence of clinical, histological, and molecular features requires accurate classification of different biomarker families. Correlation does not imply causation, and adjustments for confounding factors are often overlooked. In this scenario, large-scale studies based on high-quality clinical trial data can provide more reliable evidence. It is essential to avoid oversimplification by focusing on a single biomarker, as the interactions among multiple factors contribute to define the disease course and patient's outcome. Furthermore, implementing well-supported evidence in real-life settings can help advance prognostic biomarker research in melanoma.
Collapse
Affiliation(s)
- Gabriele Roccuzzo
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Eleonora Bongiovanni
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Luca Tonella
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Valentina Pala
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Sara Marchisio
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessia Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Rebecca Senetta
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simone Ribero
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|