1
|
Daudt-Lemos M, Ramos-Silva A, Faustino R, de Noronha TG, Vianna RADO, Cabral-Castro MJ, Cardoso CAA, Silva AA, Carvalho FR. Rising Incidence and Spatiotemporal Dynamics of Emerging and Reemerging Arboviruses in Brazil. Viruses 2025; 17:158. [PMID: 40006913 PMCID: PMC11860164 DOI: 10.3390/v17020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Brazil has witnessed the co-circulation of dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV), with outbreaks exacerbated by environmental factors, social determinants, and poor sanitation. The recent re-emergence of Oropouche virus (OROV) has added complexity to vector control strategies, emphasizing the need for integrated approaches to curb arboviruses spread. We aimed to analyze temporal trends and spatial distributions with national scope of these emerging arboviruses. METHODS An ecological study using data from the Brazilian Notifiable Diseases Information System the period from 2023 to 2024 was undertaken. Temporal trends were evaluated using Joinpoint regression, while spatial analysis was conducted using Moran's I, and local indicators of spatial association. RESULTS Dengue fever cases increased by 322%, while Oropouche fever (OF) increased by 300%. The states of Amazonas and Espírito Santo reported increases in OF cases. Moran's I test revealed spatial clustering of DENV and CHIKV. Two municipalities in the state of Mato Grosso do Sul showed cocirculation of DENV, CHIKV, and ZIKV. CONCLUSIONS This study identified a surge in arbovirus cases between 2023 and 2024, with peak incidences from January to March and October to December, linked to favorable climatic conditions. Clustering patterns and co-circulation of arboviruses highlight the need for tailored control and prevention strategies and targeted interventions to mitigate their impact.
Collapse
Affiliation(s)
- Matheus Daudt-Lemos
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil; (M.D.-L.); (A.R.-S.); (R.F.); (M.J.C.-C.); (C.A.A.C.)
| | - Alice Ramos-Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil; (M.D.-L.); (A.R.-S.); (R.F.); (M.J.C.-C.); (C.A.A.C.)
| | - Renan Faustino
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil; (M.D.-L.); (A.R.-S.); (R.F.); (M.J.C.-C.); (C.A.A.C.)
- Laboratory of Respiratory Viruses, Exanthematics, Enteroviruses and Viral Emergencies, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
| | - Tatiana Guimarães de Noronha
- Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil or (T.G.d.N.); (R.A.d.O.V.)
- Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK
| | | | - Mauro Jorge Cabral-Castro
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil; (M.D.-L.); (A.R.-S.); (R.F.); (M.J.C.-C.); (C.A.A.C.)
- Graduate Program in Pathology, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil
| | - Claudete Aparecida Araújo Cardoso
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil; (M.D.-L.); (A.R.-S.); (R.F.); (M.J.C.-C.); (C.A.A.C.)
- Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil or (T.G.d.N.); (R.A.d.O.V.)
| | - Andrea Alice Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil; (M.D.-L.); (A.R.-S.); (R.F.); (M.J.C.-C.); (C.A.A.C.)
- Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil or (T.G.d.N.); (R.A.d.O.V.)
- Graduate Program in Pathology, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil
| | - Fabiana Rabe Carvalho
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil; (M.D.-L.); (A.R.-S.); (R.F.); (M.J.C.-C.); (C.A.A.C.)
- Graduate Program in Pathology, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033900, RJ, Brazil
| |
Collapse
|
2
|
Scarpaleggia M, Garzillo G, Lucente M, Fraccalvieri C, Randazzo N, Massaro E, Galano B, Ricucci V, Bruzzone B, Domnich A. Diagnostic Accuracy of Five Molecular Assays for the Detection of Dengue Virus. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1557. [PMID: 39336598 PMCID: PMC11434457 DOI: 10.3390/medicina60091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: The steady spread of dengue virus (DENV) poses a profound public health threat worldwide. Reverse transcription real-time polymerase chain reaction (RT2-PCR) has been increasingly recognized as a reference method for the diagnosis of acute dengue infection. The goal of this study was to assess the diagnostic accuracy of five different RT2-PCR kits for the detection of DENV in a historically processed set of sera samples. Materials and Methods: In this retrospective study, 25 sera samples from routinely processed unique adult patients with a known DENV status (previously tested in both molecular and serological assays) were tested in parallel using four conventional (RealStar Dengue PCR Kit 3.0, Clonit'ngo Zika, Dengue & Chikungunya, BioPerfectus Zika Virus/Dengue Virus/Chikungunya Virus Real Time PCR Kit and Novaplex Tropical fever virus) and one sample-to-result (STANDARD M10 Arbovirus Panel) RT2-PCR assays. Additionally, an end-point dilution analysis was conducted in quintuplicate on six serial dilutions of an RNA preparation obtained from a culture-grown DENV serotype 1 strain for a total of 150 tests. Results: The overall accuracy of the evaluated tests ranged from 84% to 100%. In particular, the sensitivity of three conventional RT2-PCR assays (RealStar, Clonit'ngo and Novaplex) was 100% (95% CI: 79.6-100%), while it was lower (73.3%; 95% CI: 48.1-89.1%) for the BioPerfectus kit. The sample-to-result STANDARD M10 panel performed comparatively well, showing a sensitivity of 92.9% (95% CI: 68.5-98.7%). No false positive results were registered in any assay. The end-point dilution analysis suggested that the RealStar kit had the lowest limit of detection. Conclusions: Available RT2-PCR kits for the detection of DENV are highly specific and generally sensitive and, therefore, their implementation in diagnostic pathways is advisable.
Collapse
Affiliation(s)
- Marianna Scarpaleggia
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (M.S.); (G.G.); (E.M.)
| | - Giada Garzillo
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (M.S.); (G.G.); (E.M.)
| | - Miriana Lucente
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| | - Chiara Fraccalvieri
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| | - Nadia Randazzo
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| | - Elvira Massaro
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (M.S.); (G.G.); (E.M.)
| | - Barbara Galano
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| | - Valentina Ricucci
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| | - Bianca Bruzzone
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| | - Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| |
Collapse
|
3
|
Roy A, Liu Q, Yang Y, Debnath AK, Du L. Envelope Protein-Targeting Zika Virus Entry Inhibitors. Int J Mol Sci 2024; 25:9424. [PMID: 39273370 PMCID: PMC11394925 DOI: 10.3390/ijms25179424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Zika virus (ZIKV; family, Flaviviridae), which causes congenital Zika syndrome, Guillain-Barré Syndrome, and other severe diseases, is transmitted mainly by mosquitoes; however, the virus can be transmitted through other routes. Among the three structural and seven nonstructural proteins, the surface envelope (E) protein of ZIKV plays a critical role in viral entry and pathogenesis, making it a key target for the development of effective entry inhibitors. This review article describes the life cycle, genome, and encoded proteins of ZIKV, illustrates the structure and function of the ZIKV E protein, summarizes E protein-targeting entry inhibitors (with a focus on those based on natural products and small molecules), and highlights challenges that may potentially hinder the development of effective inhibitors of ZIKV infection. Overall, the article will provide useful guidance for further development of safe and potent ZIKV entry inhibitors targeting the viral E protein.
Collapse
Affiliation(s)
- Abhijeet Roy
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Qian Liu
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Asim K. Debnath
- Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
4
|
Terradas G, Manzano-Alvarez J, Vanalli C, Werling K, Cattadori IM, Rasgon JL. Temperature affects viral kinetics and vectorial capacity of Aedes aegypti mosquitoes co-infected with Mayaro and Dengue viruses. Parasit Vectors 2024; 17:73. [PMID: 38374048 PMCID: PMC10877814 DOI: 10.1186/s13071-023-06109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/20/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. METHODS Here, we examine single and co-infection of Mayaro virus (D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27 °C) and hot (32 °C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. RESULTS Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes with a tendency for higher titers in co-infected mosquitoes at both temperatures, and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs. single infections and was more evident at earlier time points (7 vs. 14 days post infection) for Mayaro. The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. CONCLUSIONS Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses. However, more studies are necessary to clarify the role of co-infection at different temperature regimes, including under more natural temperature settings.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Chiara Vanalli
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kristine Werling
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Isabella M Cattadori
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
5
|
Gardini Sanches Palasio R, Marques Moralejo Bermudi P, Luiz de Lima Macedo F, Reis Santana LM, Chiaravalloti-Neto F. Zika, chikungunya and co-occurrence in Brazil: space-time clusters and associated environmental-socioeconomic factors. Sci Rep 2023; 13:18026. [PMID: 37865641 PMCID: PMC10590386 DOI: 10.1038/s41598-023-42930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/16/2023] [Indexed: 10/23/2023] Open
Abstract
Chikungunya and Zika have been neglected as emerging diseases. This study aimed to analyze the space-time patterns of their occurrence and co-occurrence and their associated environmental and socioeconomic factors. Univariate (individually) and multivariate (co-occurrence) scans were analyzed for 608,388 and 162,992 cases of chikungunya and Zika, respectively. These occurred more frequently in the summer and autumn. The clusters with the highest risk were initially located in the northeast, dispersed to the central-west and coastal areas of São Paulo and Rio de Janeiro (2018-2021), and then increased in the northeast (2019-2021). Chikungunya and Zika demonstrated decreasing trends of 13% and 40%, respectively, whereas clusters showed an increasing trend of 85% and 57%, respectively. Clusters with a high co-occurrence risk have been identified in some regions of Brazil. High temperatures are associated with areas at a greater risk of these diseases. Chikungunya was associated with low precipitation levels, more urbanized environments, and places with greater social inequalities, whereas Zika was associated with high precipitation levels and low sewage network coverage. In conclusion, to optimize the surveillance and control of chikungunya and Zika, this study's results revealed high-risk areas with increasing trends and priority months and the role of socioeconomic and environmental factors.
Collapse
Affiliation(s)
- Raquel Gardini Sanches Palasio
- Laboratory of Spatial Analysis in Health (LAES), Department of Epidemiology, School of Public Health, University of São Paulo (FSP/USP), São Paulo, SP, Brazil.
| | - Patricia Marques Moralejo Bermudi
- Laboratory of Spatial Analysis in Health (LAES), Department of Epidemiology, School of Public Health, University of São Paulo (FSP/USP), São Paulo, SP, Brazil
| | - Fernando Luiz de Lima Macedo
- Epidemiological Surveillance Center (CVE) Prof. Alexandre Vranjac, Coordination of Disease Control, Health Department of the State of São Paulo, São Paulo, SP, Brazil
| | - Lidia Maria Reis Santana
- Epidemiological Surveillance Center (CVE) Prof. Alexandre Vranjac, Coordination of Disease Control, Health Department of the State of São Paulo, São Paulo, SP, Brazil
- Federal University of Sao Paulo (Unifesp), São Paulo, SP, Brazil
| | - Francisco Chiaravalloti-Neto
- Laboratory of Spatial Analysis in Health (LAES), Department of Epidemiology, School of Public Health, University of São Paulo (FSP/USP), São Paulo, SP, Brazil
| |
Collapse
|
6
|
Terradas G, Manzano-Alvarez J, Vanalli C, Werling K, Cattadori IM, Rasgon JL. Temperature affects viral kinetics and vectorial capacity of Aedes aegypti mosquitoes co-infected with Mayaro and Dengue viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541186. [PMID: 37292724 PMCID: PMC10245717 DOI: 10.1101/2023.05.17.541186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. Here, we examine single and co-infection of Mayaro virus (-D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27°C) and hot (32°C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes, with a tendency for higher titers in co-infected mosquitoes at both temperatures and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs single infections and was more evident at earlier timepoints (7 vs 14 days post infection). The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses, but further studies are necessary to clarify the role of co-infection at different and variable temperature regimes.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chiara Vanalli
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristine Werling
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Isabella M Cattadori
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
7
|
Batista RP, Hökerberg YHM, de Oliveira RDVC, Lambert Passos SR. Development and validation of a clinical rule for the diagnosis of chikungunya fever in a dengue-endemic area. PLoS One 2023; 18:e0279970. [PMID: 36608030 PMCID: PMC9821784 DOI: 10.1371/journal.pone.0279970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Rio de Janeiro is a dengue-endemic city that experienced Zika and chikungunya epidemics between 2015 and 2019. Differential diagnosis is crucial for indicating adequate treatment and assessing prognosis and risk of death. This study aims to derive and validate a clinical rule for diagnosing chikungunya based on 3,214 suspected cases consecutively treated at primary and secondary health units of the sentinel surveillance system (up to 7 days from onset of symptoms) in Rio de Janeiro, Brazil. Of the total sample, 624 were chikungunya, 88 Zika, 51 dengue, and 2,451 were negative for all these arboviruses according to real-time polymerase chain reaction (RT-qPCR). The derived rule included fever (1 point), exanthema (1 point), myalgia (2 points), arthralgia or arthritis (2 points), and joint edema (2 points), providing an AUC (area under the receiver operator curve) = 0.695 (95% CI: 0.662-0.725). Scores of 4 points or more (validation sample) showed 74.3% sensitivity (69.0% - 79.2%) and 51.5% specificity (48.8% - 54.3%). Adding more symptoms improved the specificity at the expense of a lower sensitivity compared to definitions proposed by government agencies based on fever alone (European Center for Disease Control) or in combination with arthralgia (World Health Organization) or arthritis (Pan American Health Organization, Brazilian Ministry of Health). The proposed clinical rule offers a rapid, low-cost, easy-to-apply strategy to differentiate chikungunya fever from other arbovirus infections during epidemics.
Collapse
Affiliation(s)
- Raquel Pereira Batista
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: ,
| | - Yara Hahr Marques Hökerberg
- Laboratório de Epidemiologia Clínica, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Estácio de Sá (UNESA), Rio de Janeiro, Brazil
| | | | - Sonia Regina Lambert Passos
- Laboratório de Epidemiologia Clínica, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|