1
|
Amani B, Khodavirdilou L, Rajabkhah K, Kardan Moghaddam V, Akbarzadeh A, Amani B. Efficacy and safety of bamlanivimab in patients with COVID-19: A systematic review and meta-analysis. World J Virol 2024; 13:88660. [PMID: 38616851 PMCID: PMC11008398 DOI: 10.5501/wjv.v13.i1.88660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Monoclonal antibodies (mAbs) have shown clinical benefits against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies have reported the use of bamlanivimab as a promising treatment option for COVID-19. AIM To synthesize the latest evidence for the efficacy and safety of bamlanivimab alone in the treatment of adult patients with COVID-19. METHODS A literature search was conducted in PubMed, Cochrane Library, Web of Science, medRxiv, and Google Scholar using "SARS-CoV-2", "COVID-19", "LY-CoV555", and "Bamlanivimab" keywords up to January 25, 2023. The quality of included studies was assessed using the Cochrane bias tools. The Comprehensive Meta-Analysis software version 3.0 was used to analyze the data. RESULTS A total of 30 studies involving 47368 patients were included. A significant difference was observed between the bamlanivimab and standard of care/placebo groups in terms of mortality rate [risk ratio (RR) = 50, 95% confidence interval (CI): 0.36-0.70], hospitalization rate (RR = 0.51; 95%CI: 0.39-0.68), and emergency department (ED) visits (RR = 0.69; 95%CI: 0.47-0.99); while the two groups exhibited no significant difference in terms of intensive care unit (ICU) admission (P > 0.05). Compared to other mAbs, bamlanivimab was associated with a higher rate of hospitalization (RR = 1.44; 95%CI: 1.07-1.94). However, no significant difference was detected between the bamlanivimab and other mAbs groups in terms of mortality rate, ICU admission, and ED (P > 0.05). The incidence of any adverse events was similar between the bamlanivimab and control groups (P > 0.05). CONCLUSION Although the results suggest the efficacy and safety of bamlanivimab in COVID-19 patients, further research is required to confirm the efficacy of this drug for the current circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Behnam Amani
- Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Lida Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, United States
| | - Kourosh Rajabkhah
- Deputy of Research and Technology, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Vida Kardan Moghaddam
- School of Medicine and Dentistry, Griffith University, Queensland, Brisbane 4222, Australia
| | - Arash Akbarzadeh
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Bahman Amani
- Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| |
Collapse
|
2
|
Arevalo-Romero JA, Chingaté-López SM, Camacho BA, Alméciga-Díaz CJ, Ramirez-Segura CA. Next-generation treatments: Immunotherapy and advanced therapies for COVID-19. Heliyon 2024; 10:e26423. [PMID: 38434363 PMCID: PMC10907543 DOI: 10.1016/j.heliyon.2024.e26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.
Collapse
Affiliation(s)
- Jenny Andrea Arevalo-Romero
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Sandra M. Chingaté-López
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Carlos Javier Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Cesar A. Ramirez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| |
Collapse
|
3
|
Boonserm P, Somsoros W, Khunrae P, Charupanit K, Limsakul P, Sutthibutpong T. Allosteric Signal within the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein Mediated by a Class 3 Monoclonal Antibody Revealed through Molecular Dynamics Simulations and Protein Residue Networks. ACS OMEGA 2024; 9:4684-4694. [PMID: 38313482 PMCID: PMC10831861 DOI: 10.1021/acsomega.3c07947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
This study investigated the allosteric action within the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein caused by class 3 monoclonal antibody (mAb) binding. As the emergence of SARS-CoV-2 variants has raised concerns about the effectiveness of treatments by antibodies, targeting the highly conserved class 3 epitopes has become an alternative strategy of antibody design. Simulations of explicitly solvated RBD of the BA.2.75 omicron subvariants were carried out both in the presence and in the absence of bebtelovimab, as a model example of class 3 monoclonal antibodies against the RBD of the SARS-CoV-2 spike protein. The comparative analysis showed that bebtelovimab's binding on two α helices at the epitope region disrupted the nearby interaction network, which triggered a denser interaction network formation on the opposite side of the receptor-binding motif (RBM) region and resulted in a "close" conformation that could prevent the ACE2 binding. A better understanding of this allosteric action could lead to the development of alternative mAbs for further variants of concern. In terms of computational techniques, the communicability matrix could serve as a tool to visualize the effects of allostery, as the pairs of amino acids or secondary structures with high communicability could pinpoint the possible sites to transfer the allosteric signal. Additionally, the communicability gain/loss matrix could help elucidate the consequences of allosteric actions, which could be employed along with other allostery quantification techniques in some previous studies.
Collapse
Affiliation(s)
- Patamalai Boonserm
- Department
of Microbiology, Faculty of Science, King
Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Wasusit Somsoros
- Department
of Microbiology, Faculty of Science, King
Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pongsak Khunrae
- Department
of Microbiology, Faculty of Science, King
Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Krit Charupanit
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Praopim Limsakul
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center
of Excellence for Trace Analysis and Biosensor (TAB-CoE), Faculty
of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thana Sutthibutpong
- Theoretical
and Computational Physics Group, Department of Physics, Faculty of
Science, King Mongkut’s University
of Technology Thonburi, Bangkok 10140, Thailand
- Center
of
Excellence in Theoretical and Computational Science (TACS-CoE), Faculty
of Science, King Mongkut’s University
of Technology Thonburi, Bangkok 10140, Thailand
| |
Collapse
|
4
|
Liew MNY, Kua KP, Lee SWH, Wong KK. SARS-CoV-2 neutralizing antibody bebtelovimab - a systematic scoping review and meta-analysis. Front Immunol 2023; 14:1100263. [PMID: 37701439 PMCID: PMC10494534 DOI: 10.3389/fimmu.2023.1100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/28/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction The COVID-19 pandemic is a major global public health crisis. More than 2 years into the pandemic, effective therapeutic options remain limited due to rapid viral evolution. Stemming from the emergence of multiple variants, several monoclonal antibodies are no longer suitable for clinical use. This scoping review aimed to summarize the preclinical and clinical evidence for bebtelovimab in treating newly emerging SARS-CoV-2 variants. Methods We systematically searched five electronic databases (PubMed, CENTRAL, Embase, Global Health, and PsycINFO) from date of inception to September 30, 2022, for studies reporting on the effect of bebtelovimab in SARS-CoV-2 infection, using a combination of search terms around -bebtelovimab‖, -LY-CoV1404‖, -LY3853113‖, and -coronavirus infection‖. All citations were screened independently by two researchers. Data were extracted and thematically analyzed based on study design by adhering to the stipulated scoping review approaches. Results Thirty-nine studies were included, thirty-four non-clinical studies were narratively synthesized, and five clinical studies were meta-analyzed. The non-clinical studies revealed bebtelovimab not only potently neutralized wide-type SARS-CoV-2 and existing variants of concern such as B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta), but also retained appreciable activity against Omicron lineages, including BA.2.75, BA.4, BA.4.6, and BA.5. Unlike other monoclonal antibodies, bebtelovimab was able to bind to epitope of the SARS-CoV-2 S protein by exploiting loop mobility or by minimizing side-chain interactions. Pooled analysis from clinical studies depicted that the rates of hospitalization, ICU admission, and death were similar between bebtelovimab and other COVID-19 therapies. Bebtelovimab was associated with a low incidence of treatment-emergent adverse events. Conclusion Preclinical evidence suggests bebtelovimab be a potential treatment for COVID-19 amidst viral evolution. Bebtelovimab has comparable efficacy to other COVID-19 therapies without evident safety concerns.
Collapse
Affiliation(s)
- Mabel Nyit Yi Liew
- Pharmacy Unit, Puchong Health Clinic, Petaling District Health Office, Ministry of Health Malaysia, Petaling, Selangor, Malaysia
| | - Kok Pim Kua
- Pharmacy Unit, Puchong Health Clinic, Petaling District Health Office, Ministry of Health Malaysia, Petaling, Selangor, Malaysia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University, Subang Jaya, Selangor, Malaysia
- Health and Well-being Cluster, Monash University, Subang Jaya, Selangor, Malaysia
- Gerontechnology Laboratory, Monash University, Bandar Sunway, Selangor, Malaysia
- Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kon Ken Wong
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Pierre V, Draica F, Di Fusco M, Yang J, Nunez-Gonzalez S, Kamar J, Lopez S, Moran MM, Nguyen J, Alvarez P, Cha-Silva A, Gavaghan M, Yehoshua A, Stapleton N, Burnett H. The impact of vaccination and outpatient treatment on the economic burden of Covid-19 in the United States omicron era: a systematic literature review. J Med Econ 2023; 26:1519-1531. [PMID: 37964554 DOI: 10.1080/13696998.2023.2281882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
AIMS To identify and synthesize evidence regarding how coronavirus disease 2019 (COVID-19) interventions, including vaccines and outpatient treatments, have impacted healthcare resource use (HCRU) and costs in the United States (US) during the Omicron era. MATERIALS AND METHODS A systematic literature review (SLR) was performed to identify articles published between 1 January 2021 and 10 March 2023 that assessed the impact of vaccination and outpatient treatment on costs and HCRU outcomes associated with COVID-19. Screening was performed by two independent researchers using predefined inclusion/exclusion criteria. RESULTS Fifty-eight unique studies were included in the SLR, of which all reported HCRU outcomes, and one reported costs. Overall, there was a significant reduction in the risk of COVID-19-related hospitalization for patients who received an original monovalent primary series vaccine plus booster dose vs. no vaccination. Moreover, receipt of a booster vaccine was associated with a lower risk of hospitalization vs. primary series vaccination. Evidence also indicated a significantly reduced risk of hospitalizations among recipients of nirmatrelvir/ritonavir (NMV/r), remdesivir, sotrovimab, and molnupiravir compared to non-recipients. Treated and/or vaccinated patients also experienced reductions in intensive care unit (ICU) admissions, length of stay, and emergency department (ED)/urgent care clinic encounters. LIMITATIONS The identified studies may not represent unique patient populations as many utilized the same regional/national data sources. Synthesis of the evidence was also limited by differences in populations, outcome definitions, and varying duration of follow-up across studies. Additionally, significant gaps, including HCRU associated with long COVID and various high-risk populations and cost data, were observed. CONCLUSIONS Despite evidence gaps, findings from the SLR highlight the significant positive impact that vaccination and outpatient treatment have had on HCRU in the US, including periods of Omicron predominance. Continued research is needed to inform clinical and policy decision-making in the US as COVID-19 continues to evolve as an endemic disease.
Collapse
Affiliation(s)
- Vicki Pierre
- Evidence Synthesis, Modeling & Communication, Evidera Inc., Bethesda, MD, USA
| | - Florin Draica
- Vaccine Clinical Research, Pfizer Inc., New York, NY, USA
| | | | - Jingyan Yang
- Vaccine Clinical Research, Pfizer Inc., New York, NY, USA
| | | | - Joanna Kamar
- Evidence Synthesis, Modeling & Communication, Evidera Inc., Bethesda, MD, USA
| | - Santiago Lopez
- Vaccine Clinical Research, Pfizer Inc., New York, NY, USA
| | - Mary M Moran
- Vaccine Clinical Research, Pfizer Inc., New York, NY, USA
| | | | - Piedad Alvarez
- Evidence Synthesis, Modeling & Communication, Evidera Inc., Bethesda, MD, USA
| | | | | | - Alon Yehoshua
- Vaccine Clinical Research, Pfizer Inc., New York, NY, USA
| | - Naomi Stapleton
- Evidence Synthesis, Modeling & Communication, Evidera Inc., Bethesda, MD, USA
| | - Heather Burnett
- Evidence Synthesis, Modeling & Communication, Evidera Inc., Bethesda, MD, USA
| |
Collapse
|