1
|
Pla-Díaz M, Akgül G, Molak M, du Plessis L, Panagiotopoulou H, Doan K, Bogdanowicz W, Dąbrowski P, Oziembłowski M, Kwiatkowska B, Szczurowski J, Grzelak J, Arora N, Majander K, González-Candelas F, Schuenemann VJ. Insights into Treponema pallidum genomics from modern and ancient genomes using a novel mapping strategy. BMC Biol 2025; 23:7. [PMID: 39780098 PMCID: PMC11716147 DOI: 10.1186/s12915-024-02108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Treponemal diseases are a significant global health risk, presenting challenges to public health and severe consequences to individuals if left untreated. Despite numerous genomic studies on Treponema pallidum and the known possible biases introduced by the choice of the reference genome used for mapping, few investigations have addressed how these biases affect phylogenetic and evolutionary analysis of these bacteria. In this study, we ascertain the importance of selecting an appropriate genomic reference on phylogenetic and evolutionary analyses of T. pallidum. RESULTS We designed a multiple-reference-based (MRB) mapping strategy using four different reference genomes and compared it to traditional single-reference mapping. To conduct this comparison, we created a genomic dataset comprising 77 modern and ancient genomes from the three subspecies of T. pallidum, including a newly sequenced seventeenth century genome (35X mean coverage) of a syphilis-causing strain (designated as W86). Our findings show that recombination detection was consistent across different references, but the choice of reference significantly affected ancient genome reconstruction and phylogenetic inferences. The high-coverage W86 genome introduced in this study also provided a new calibration point for Bayesian molecular clock dating, improving the reconstruction of the evolutionary history of treponemal diseases. Additionally, we identified novel recombination events, positive selection targets, and refined dating estimates for key events in the species' history. CONCLUSIONS This study highlights the importance of considering methodological implications and reference genome bias in high-throughput sequencing-based whole-genome analysis of T. pallidum, especially of ancient or low-coverage samples, contributing to a deeper understanding of the treponemal pathogen and its subspecies.
Collapse
Affiliation(s)
- Marta Pla-Díaz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Unidad Mixta Infección y Salud Pública FISABIO, Universidad de Valencia-I2SysBio, Valencia, Spain
- CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Gülfirde Akgül
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Martyna Molak
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Karolina Doan
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Paweł Dąbrowski
- Department of Anatomy, Wrocław Medical University, Wrocław, Poland
| | - Maciej Oziembłowski
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Barbara Kwiatkowska
- Department of Anthropology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek Szczurowski
- Department of Anthropology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Joanna Grzelak
- Department of Anatomy, Wrocław Medical University, Wrocław, Poland
| | - Natasha Arora
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Kerttu Majander
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO, Universidad de Valencia-I2SysBio, Valencia, Spain.
- CIBER in Epidemiology and Public Health, Valencia, Spain.
| | - Verena J Schuenemann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Delgado KN, Vicente CF, Hennelly CM, Aghakhanian F, Parr JB, Claffey KP, Radolf JD, Hawley KL, Caimano MJ. Development and utilization of Treponema pallidum expressing green fluorescent protein to study spirochete-host interactions and antibody-mediated clearance: expanding the toolbox for syphilis research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619476. [PMID: 39484466 PMCID: PMC11526989 DOI: 10.1101/2024.10.21.619476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Syphilis is a sexually transmitted infection caused by the highly invasive and immunoevasive spirochetal pathogen Treponema pallidum subsp. pallidum (TPA). Untreated syphilis can lead to infection of multiple organ systems, including the central nervous system. The alarming increase in syphilis cases globally underscores the importance of developing novel strategies to understand the complexities of syphilis pathogenesis. In this study, we took advantage of recent advances in in vitro cultivation and genetic manipulation of syphilis spirochetes to engineer a TPA strain that constitutively expresses green fluorescent protein (GFP). GFP+ TPA grew identically to the Nichols parent strain in vitro and exhibited wild-type infectivity in the rabbit model. We then used the GFP+ strain to visualize TPA interactions with host cells during co-cultivation in vitro, within infected rabbit testes, and following opsonophagocytosis by murine bone marrow-derived macrophages. Development of fluorescent strain also enabled us to develop a flow cytometric-based assay to assess antibody-mediated damage to the spirochete's fragile outer membrane (OM), demonstrating dose-dependent growth inhibition and OM disruption in vitro. Notably, we observed greater OM disruption of GFP+ TPA with sera from immune rabbits infected with the TPA Nichols strain compared to sera generated against the genetically distinct SS14 strain. These latter findings highlight the importance of OM protein-specific antibody responses for clearance of TPA during syphilitic infection. The availability of fluorescent TPA strains paves the way for future studies investigating spirochete-host interactions as well as functional characterization of antibodies directed treponemal OM proteins, the presumptive targets for protective immunity.
Collapse
Affiliation(s)
- Kristina N. Delgado
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Crystal F. Vicente
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA
| | - Christopher M. Hennelly
- Institute for Global Health and Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Farhang Aghakhanian
- Institute for Global Health and Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan B. Parr
- Institute for Global Health and Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin P. Claffey
- Department of Cell Biology,University of Connecticut Health, Farmington, CT, USA
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
- Department of Molecular Biology and Biophysics,University of Connecticut Health, Farmington, CT, USA
- Department of Immunology,University of Connecticut Health, Farmington, CT, USA
- Genetics and Genome Sciences, University of Connecticut Health, Farmington, CT, USA
- Connecticut Children’s Research Institute, Connecticut Children’s, Hartford, Connecticut, USA
| | - Kelly L. Hawley
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA
- Department of Immunology,University of Connecticut Health, Farmington, CT, USA
- Connecticut Children’s Research Institute, Connecticut Children’s, Hartford, Connecticut, USA
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA
- Department of Molecular Biology and Biophysics,University of Connecticut Health, Farmington, CT, USA
- Connecticut Children’s Research Institute, Connecticut Children’s, Hartford, Connecticut, USA
| |
Collapse
|
3
|
Velasquez MR, De Lay BD, Edmondson DG, Wormser GP, Norris SJ, Cafferky K, Munzer E, Rizk CC, Keller M. A Novel Treponema pallidum Subspecies pallidum Strain Associated With a Painful Oral Lesion Is a Member of a Potentially Emerging Nichols-Related Subgroup. Sex Transm Dis 2024; 51:486-492. [PMID: 38829929 PMCID: PMC11542556 DOI: 10.1097/olq.0000000000001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
BACKGROUND Early syphilitic lesions are typically painless; however, several recent case studies have included patients with tender lesions and no evidence of concurrent infections. Here we present the manifestations and serological and molecular findings of a patient from New York State with a painful tongue lesion. METHODS The diagnosis of syphilis was based on a combination of physical examination, serologic, pathologic, and immunohistochemical findings. DNA obtained from a formalin-fixed, paraffin-embedded biopsy was used to characterize the infecting pathogen using polymerase chain reaction, multilocus sequence typing, and whole-genome sequencing methods. RESULTS Polymerase chain reaction and multilocus sequence typing of the biopsy specimen confirmed infection with T. pallidum subspecies pallidum ( T. pallidum ) of the Nichols cluster. Whole-genome sequencing analysis of this strain (herein called NYMC01) showed that it contained 17 unique single nucleotide variations and 4 more complex genetic differences; this novel genotype matched only 2 specimens, both from a patient in Seattle, Washington. The presence of this rare genotype in 2 geographically distinct locations suggests the potential emergence and spread of a new subgroup of the Nichols cluster. CONCLUSIONS To our knowledge, this is the first genomic sequence obtained from a T. pallidum strain linked to a painful lesion, and the third description of whole-genome sequencing of T. pallidum from formalin-fixed, paraffin-embedded tissue. Analysis of additional specimens may reveal that the NYMC01-related genotype represents an emerging T. pallidum subgroup and may also aid in determining whether the painful clinical presentation of primary syphilis is related to specific T. pallidum genotypes.
Collapse
Affiliation(s)
- Maria Rosa Velasquez
- Department of Internal Medicine, Division of Infectious Diseases, New York Medical College, Westchester Medical Center, Valhalla, New York, USA
| | - Bridget D. De Lay
- Department of Pathology and Laboratory Medicine, McGovern Medical School, UT Health Houston, Houston, Texas, USA
| | - Diane G. Edmondson
- Department of Pathology and Laboratory Medicine, McGovern Medical School, UT Health Houston, Houston, Texas, USA
| | - Gary P. Wormser
- Department of Internal Medicine, Division of Infectious Diseases, New York Medical College, Westchester Medical Center, Valhalla, New York, USA
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, UT Health Houston, Houston, Texas, USA
| | | | - Eric Munzer
- Otolaryngology/ENT, New Windsor, New York, USA
| | | | - Marina Keller
- Department of Internal Medicine, Division of Infectious Diseases, New York Medical College, Westchester Medical Center, Valhalla, New York, USA
| |
Collapse
|
4
|
Dionne JA, Giacani L, Tamhane A, Workowski K, Lieberman NAP, Greninger AL, Perlowski C, Newman L, Hook EW. Prevalence and Predictors of Oral Treponema pallidum Detection by Quantitative Polymerase Chain Reaction in Early Syphilis. J Infect Dis 2024; 229:1628-1636. [PMID: 38124508 PMCID: PMC11175664 DOI: 10.1093/infdis/jiad582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Treponema pallidum prevalence and burden at oral and lesion sites in adults with early syphilis were assessed by quantitative polymerase chain reaction (qPCR). Factors associated with oral shedding were also examined. METHODS Pretreatment oral and lesion swabs were collected from adults with early syphilis in a US multicenter syphilis treatment trial. Oral swabs were collected in the presence and absence of oral lesions. Following DNA extraction, qPCR and whole-genome sequencing (WGS) were performed to assess burden and strain variability. RESULTS All 32 participants were male, mean age was 35 years, and 90.6% with human immunodeficiency virus (HIV). T. pallidum oral PCR positivity varied by stage: 16.7% primary, 44.4% secondary, and 62.5% in early latent syphilis. Median oral T. pallidum burden was highest in secondary syphilis at 63.2 copies/µL. Lesion PCR positivity was similar in primary (40.0%) and secondary syphilis (38.5%). Age 18-29 years was significantly associated with oral shedding (vs age 40+ years) in adjusted models. WGS identified 2 distinct strains. CONCLUSIONS T. pallidum DNA was directly detected at oral and lesion sites in a significant proportion of men with early syphilis. Younger age was associated with oral shedding. Ease of oral specimen collection and increased PCR availability suggest opportunities to improve syphilis diagnostic testing. Clinical Trials Registration. NCT03637660.
Collapse
Affiliation(s)
- Jodie A Dionne
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Ashutosh Tamhane
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kimberly Workowski
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Nicole A P Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Lori Newman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Edward W Hook
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Houston S, Gomez A, Geppert A, Goodyear MC, Cameron CE. In-Depth Proteome Coverage of In Vitro-Cultured Treponema pallidum and Quantitative Comparison Analyses with In Vivo-Grown Treponemes. J Proteome Res 2024; 23:1725-1743. [PMID: 38636938 PMCID: PMC11077495 DOI: 10.1021/acs.jproteome.3c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Previous mass spectrometry (MS)-based global proteomics studies have detected a combined total of 86% of all Treponema pallidum proteins under infection conditions (in vivo-grown T. pallidum). Recently, a method was developed for the long-term culture of T. pallidum under in vitro conditions (in vitro-cultured T. pallidum). Herein, we used our previously reported optimized MS-based proteomics approach to characterize the T. pallidum global protein expression profile under in vitro culture conditions. These analyses provided a proteome coverage of 94%, which extends the combined T. pallidum proteome coverage from the previously reported 86% to a new combined total of 95%. This study provides a more complete understanding of the protein repertoire of T. pallidum. Further, comparison of the in vitro-expressed proteome with the previously determined in vivo-expressed proteome identifies only a few proteomic changes between the two growth conditions, reinforcing the suitability of in vitro-cultured T. pallidum as an alternative to rabbit-based treponemal growth. The MS proteomics data have been deposited in the MassIVE repository with the data set identifier MSV000093603 (ProteomeXchange identifier PXD047625).
Collapse
Affiliation(s)
- Simon Houston
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Alloysius Gomez
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Andrew Geppert
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mara C. Goodyear
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Caroline E. Cameron
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Department
of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Xie Q, Tang Y, Shen L, Yang D, Zhang J, Luo Q. Immunophenotypic variations in syphilis: insights from Mendelian randomization analysis. Front Immunol 2024; 15:1380720. [PMID: 38694502 PMCID: PMC11061532 DOI: 10.3389/fimmu.2024.1380720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Background Infection with Treponema pallidum instigates complex immune responses. Prior research has suggested that persistent Treponema pallidum infection can manipulate host immune responses and circumvent host defenses. However, the precise role of immune cells in Treponema pallidum infection across different stages remains a contentious issue. Methods Utilizing summary data from genome-wide association studies, we employed a two-sample Mendelian randomization method to investigate the association between 731 immunophenotypes and syphilis. Syphilis was categorized into early and late stages in this study to establish a more robust correlation and minimize bias in database sources. Results Our findings revealed that 33, 36, and 27 immunophenotypes of peripheral blood were associated with syphilis (regardless of disease stage), early syphilis and late syphilis, respectively. Subsequent analysis demonstrated significant variations between early and late syphilis in terms of immunophenotypes. Specifically, early syphilis showcased activated, secreting, and resting regulatory T cells, whereas late syphilis was characterized by resting Treg cells. More B cells subtypes emerged in late syphilis. Monocytes in early syphilis exhibited an intermediate and non-classical phenotype, transitioning to classical in late syphilis. Early syphilis featured naive T cells, effector memory T cells, and terminally differentiated T cells, while late syphilis predominantly presented terminally differentiated T cells. Immature myeloid-derived suppressor cells were evident in early syphilis, whereas the dendritic cell immunophenotype was exclusive to late syphilis. Conclusion Multiple immunophenotypes demonstrated associations with syphilis, showcasing substantial disparities between the early and late stages of the disease. These findings hold promise for informing immunologically oriented treatment strategies, paving the way for more effective and efficient syphilis interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingqiong Luo
- Department of Clinical Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Lynch MJ, Deshpande M, Kurniyati K, Zhang K, James M, Miller M, Zhang S, Passalia FJ, Wunder EA, Charon NW, Li C, Crane BR. Lysinoalanine cross-linking is a conserved post-translational modification in the spirochete flagellar hook. PNAS NEXUS 2023; 2:pgad349. [PMID: 38047041 PMCID: PMC10691653 DOI: 10.1093/pnasnexus/pgad349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
Spirochetes cause Lyme disease, leptospirosis, syphilis, and several other human illnesses. Unlike other bacteria, spirochete flagella are enclosed within the periplasmic space where the filaments distort and push the cell body by the action of the flagellar motors. We previously demonstrated that the oral pathogen Treponema denticola (Td) and Lyme disease pathogen Borreliella burgdorferi (Bb) form covalent lysinoalanine (Lal) cross-links between conserved cysteine and lysine residues of the FlgE protein that composes the flagellar hook. In Td, Lal is unnecessary for hook assembly but is required for motility, presumably due to the stabilizing effect of the cross-link. Herein, we extend these findings to other, representative spirochete species across the phylum. We confirm the presence of Lal cross-linked peptides in recombinant and in vivo-derived samples from Treponema spp., Borreliella spp., Brachyspira spp., and Leptospira spp. As was observed with Td, a mutant strain of Bb unable to form the cross-link has greatly impaired motility. FlgE from Leptospira spp. does not conserve the Lal-forming cysteine residue which is instead substituted by serine. Nevertheless, Leptospira interrogans FlgE also forms Lal, with several different Lal isoforms being detected between Ser-179 and Lys-145, Lys-148, and Lys-166, thereby highlighting species or order-specific differences within the phylum. Our data reveal that the Lal cross-link is a conserved and necessary posttranslational modification across the spirochete phylum and may thus represent an effective target for the development of spirochete-specific antimicrobials.
Collapse
Affiliation(s)
- Michael J Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Maithili Deshpande
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kurni Kurniyati
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, VA 23298, USA
| | - Kai Zhang
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, VA 23298, USA
| | - Milinda James
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Michael Miller
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Felipe J Passalia
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Elsio A Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Nyles W Charon
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Chunhao Li
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, VA 23298, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Lynch MJ, Deshpande M, Kyrniyati K, Zhang K, James M, Miller M, Zhang S, Passalia FJ, Wunder EA, Charon NW, Li C, Crane BR. Lysinoalanine crosslinking is a conserved post-translational modification in the spirochete flagellar hook. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544825. [PMID: 37398457 PMCID: PMC10312707 DOI: 10.1101/2023.06.13.544825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Spirochete bacteria cause Lyme disease, leptospirosis, syphilis and several other human illnesses. Unlike other bacteria, spirochete flagella are enclosed within the periplasmic space where the filaments distort and push the cell body by action of the flagellar motors. We previously demonstrated that the oral pathogen Treponema denticola (Td) catalyzes the formation of covalent lysinoalanine (Lal) crosslinks between conserved cysteine and lysine residues of the FlgE protein that composes the flagellar hook. Although not necessary for hook assembly, Lal is required for motility of Td, presumably due to the stabilizing effect of the crosslink. Herein, we extend these findings to other, representative spirochete species across the phylum. We confirm the presence of Lal crosslinked peptides in recombinant and in vivo -derived samples from Treponema spp., Borreliella spp., Brachyspira spp., and Leptospira spp.. Like with Td, a mutant strain of the Lyme disease pathogen Borreliella burgdorferi unable to form the crosslink has impaired motility. FlgE from Leptospira spp. does not conserve the Lal-forming cysteine residue which is instead substituted by serine. Nevertheless, Leptospira interrogans also forms Lal, with several different Lal isoforms being detected between Ser-179 and Lys-145, Lys-148, and Lys-166, thereby highlighting species or order-specific differences within the phylum. Our data reveals that the Lal crosslink is a conserved and necessary post-translational modification across the spirochete phylum and may thus represent an effective target for spirochete-specific antimicrobials. Significance Statement The phylum Spirochaetota contains bacterial pathogens responsible for a variety of diseases, including Lyme disease, syphilis, periodontal disease, and leptospirosis. Motility of these pathogens is a major virulence factor that contributes to infectivity and host colonization. The oral pathogen Treponema denticola produces a post-translational modification (PTM) in the form of a lysinoalanine (Lal) crosslink between neighboring subunits of the flagellar hook protein FlgE. Herein, we demonstrate that representative spirochetes species across the phylum all form Lal in their flagellar hooks. T. denticola and B. burgdorferi cells incapable of forming the crosslink are non-motile, thereby establishing the general role of the Lal PTM in the unusual type of flagellar motility evolved by spirochetes.
Collapse
|