Ahern S, Browne J, Murphy A, Teljeur C, Ryan M. An economic evaluation and incremental analysis of the cost effectiveness of three universal childhood varicella vaccination strategies for Ireland.
Vaccine 2024;
42:3321-3332. [PMID:
38609807 DOI:
10.1016/j.vaccine.2024.04.027]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND
The cost effectiveness of childhood varicella vaccination is uncertain, as evidenced by variation in national health policies. Within the European Economic Area (EEA), only 10 of 30 countries offer universally funded childhood varicella vaccination. This study estimates the cost effectiveness of universal childhood varicella vaccination for one EEA country (Ireland), highlighting the difference in cost effectiveness between alternative vaccination strategies.
METHODS
An age-structured dynamic transmission model, simulating varicella zoster virus transmission, was developed to analyse the impact of three vaccination strategies; one-dose at 12 months old, two-dose at 12 and 15 months old (short-interval), and two-dose at 12 months and five years old (long-interval). The analysis adopted an 80-year time horizon and considered payer and societal perspectives. Clinical effectiveness was based on cases of varicella and subsequently herpes zoster and post-herpetic neuralgia avoided, and outcomes were expressed in quality-adjusted life-years (QALYs). Costs were presented in 2022 Irish Euro and cost effectiveness was interpreted with reference to a willingness-to-pay threshold of €20,000 per QALY gained.
RESULTS
From the payer perspective, the incremental cost-effectiveness ratio (ICER) for a one-dose strategy, compared with no vaccination, was estimated at €8,712 per QALY gained. The ICER for the next least expensive strategy, two-dose long-interval, compared with one-dose, was estimated at €45,090 per QALY gained. From a societal perspective, all three strategies were cost-saving compared with no vaccination; the two-dose short-interval strategy dominated, yielding the largest cost savings and health benefits. Results were stable across a range of sensitivity and scenario analyses.
CONCLUSION
A one-dose strategy was highly cost effective from the payer perspective, driven by a reduction in hospitalisations. Two-dose strategies were cost saving from the societal perspective. These results should be considered alongside other factors such as acceptability of a new vaccine within the overall childhood immunisation schedule, programme objectives and budget impact.
Collapse