1
|
Buasriyot P, Supiwong W, Muanglen N, Donbundit N, Ditcharoen S, Chumpol P, Saenjundaeng P, Tongnunui S, Arunsang S, Thongnetr W, Juntharat S, Seetapan K, Liehr T, Cioffi MB, Rab P, Tanomtong A. Microsatellite repeat mapping shows inner chromosomal diversification in highly conserved karyotypes of Asian cyprinid fishes. COMPARATIVE CYTOGENETICS 2025; 19:29-50. [PMID: 40201068 PMCID: PMC11976306 DOI: 10.3897/compcytogen.19.141557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
The barbels of the subfamilies ´Poropuntinae´ and Smiliogastrinae within the family Cyprinidae play a significant role as a food source for fish in artisanal fisheries and are highly valued as ornamental fish in Thailand. In this study, we employed both conventional and molecular cytogenetics to analyze the karyotype of 15 fish species from two cyprinid lineages. All analyzed species had a diploid chromosome number of 2n = 50. Despite sharing the same 2n, our analyses revealed species-specific distribution patterns of the mapped microsatellite motifs [(CA)₁₅, (TA)₁₅, (CAC)₁₀, and (CGG)₁₀]. They were predominantly found at telomeric sites of all-to-few chromosomes. Additionally, some species exhibited a widespread distribution of the mapped microsatellites across the chromosomes while others showed no signal. These variations reflect the evolutionary divergence and chromosomal diversity within the cyprinids. Thus, our findings support the 2n stability in cyprinoid lineages while emphasizing the intrachromosomal evolutionary diversity accompanied by species-specific microsatellite distribution.
Collapse
Affiliation(s)
- Phichaya Buasriyot
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Weerayuth Supiwong
- Faculty of Interdisciplinary Studies, Nong Khai Campus, Khon Kaen University, Muang, Nong Khai 43000, Thailand
| | - Nawarat Muanglen
- Department of Fisheries, Faculty of Agricultural Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand
| | - Nattasuda Donbundit
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Sukhonthip Ditcharoen
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Phonluang Chumpol
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Pasakorn Saenjundaeng
- Faculty of Interdisciplinary Studies, Nong Khai Campus, Khon Kaen University, Muang, Nong Khai 43000, Thailand
| | - Sampan Tongnunui
- Department of Conservation Biology, Mahidol University, Kanchanaburi Campus, Sai Yok, Kanchanaburi 71150, Thailand
| | - Sathit Arunsang
- Department of Program in Animal Science, Faculty of Agricultural Technology and Agro-industry, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya, Ayutthaya 13000, Thailand
| | - Weera Thongnetr
- Division of Biology, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand
| | - Sitthisak Juntharat
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Mueng, Pattani 94000, Thailand
| | - Kriengkrai Seetapan
- School of Agriculture and Natural Resources, University of Phayao, Tumbol Maeka, Muang District, Phayao Province 56000, Thailand
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Marcelo B. Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Petr Rab
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, Czech Academy of Sciences, Rumburska´, Liběchov, Czech Republic
- Deceased
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Jankásek M, Kočárek P, Št’áhlavský F. Comparative cytogenetics of three Zoraptera species as a basis for understanding chromosomal evolution in Polyneoptera insects. PeerJ 2024; 12:e18051. [PMID: 39399435 PMCID: PMC11471171 DOI: 10.7717/peerj.18051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
Zoraptera (also called "angel insects") is one of the most unexplored insect orders. However, it holds promise for understanding the evolution of insect karyotypes and genome organization given its status as an early branching group of Polyneoptera and Pterygota (winged insects) during the Paleozoic. Here, we provide karyotype descriptions of three Zorapteran species: Brazilozoros huxleyi (2n♂; ♀ = 42; 42), B. kukalovae (2n♂; ♀ = 43; 44) and Latinozoros cacaoensis (2n♂; ♀ = 36; 36). These species represent two of the four recently recognized Zorapteran subfamilies. Contrary to an earlier suggestion that Zoraptera has holocentric chromosomes, we found karyotypes that were always monocentric. Interestingly, we detected both X0 (B. kukalovae) and XY (B. huxleyi, L. cacaoensis) sex chromosome systems. In addition to conventional karyotype descriptions, we applied fluorescent in situ hybridization for the first time in Zoraptera to map karyotype distributions of 18S rDNA, histone H3 genes, telomeres and (CAG)n and (GATA)n microsatellites. This study provides a foundation for cytogenetic research in Zoraptera.
Collapse
Affiliation(s)
- Marek Jankásek
- Department of Zoology, Charles University Prague, Praha 2, Czech Republic
| | - Petr Kočárek
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | | |
Collapse
|
3
|
Takagui FH, Viana P, Haerter CAG, Zuanon J, Birindelli JLO, Lui RL, Feldberg E, Margarido VP. Chromosomal analysis of two Acanthodoras species (Doradidae, Siluriformes): Insights into the oldest thorny catfish clade and its karyotype evolution. JOURNAL OF FISH BIOLOGY 2024; 105:1109-1119. [PMID: 39007200 DOI: 10.1111/jfb.15863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
The Doradidae fishes constitute one of the most diverse groups of Neotropical freshwater environments. Acanthodoradinae is the oldest lineage and the sister group to all other thorny catfishes, and it includes only the genus Acanthodoras. The diversity of Acanthodoras remains underestimated, and the use of complementary approaches, including genetic studies, is an important step to better characterize this diversity and the relationships among the species within the genus. Therefore, we conducted a comprehensive analysis using conventional cytogenetic techniques and physical mapping of three multigene families (18S and 5S ribosomal DNA [rDNA], U2 small nuclear DNA [snDNA]) and four microsatellite motifs, namely (AC)n, (AT)n, (GA)n, and (GATA)n, in two sympatric species from the Negro River: Acanthodoras cataphractus and Acanthodoras cf. polygrammus. We found significant differences in constitutive heterochromatin (CH) content, distribution of the microsatellite (AT)n, and the number of 5S rDNA and U2 snDNA sites. These differences may result from chromosome rearrangements and repetitive DNA dispersal mechanisms. Furthermore, the characterization of the diploid number (2n) of these Acanthodoras species enables us to propose 2n = 58 chromosomes as the plesiomorphic 2n state in Doradidae based on ancestral state reconstruction. Acanthodoradinae is the oldest lineage of the thorny catfishes, and knowledge about its cytogenetic patterns is crucial for disentangling the karyotype evolution of the whole group. Thus, this study contributes to the understanding of the mechanisms behind chromosome diversification of Doradidae and highlights the importance of Acanthodoradinae in the evolutionary history of thorny catfishes.
Collapse
Affiliation(s)
- Fábio Hiroshi Takagui
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Patrik Viana
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Jansen Zuanon
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - José Luís Olivan Birindelli
- Museu de Zoologia, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina, Londrina, Brazil
| | - Roberto Laridondo Lui
- Laboratório de Citogenética, Centro de Ciĉncias Biológicas e da Saúde, Cascavel, Brazil
| | - Eliana Feldberg
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | |
Collapse
|
4
|
Lima RC, de Lima SR, Rocha MS, Dos Anjos HDB, Dantas YCA, Benites IDN, Queiroz CDCS, Fraga EDC, Batista JDS. Identification of fish specimens of the Tocantins River, Brazil, using DNA barcoding. JOURNAL OF FISH BIOLOGY 2024; 104:1924-1939. [PMID: 38551122 DOI: 10.1111/jfb.15721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/03/2023] [Accepted: 02/25/2024] [Indexed: 06/27/2024]
Abstract
The fish fauna of the Tocantins River possesses many endemic species; however, it is little studied in molecular terms and is quite threatened by the construction of several hydroelectric dams. Therefore, the objective of this study was to identify the ichthyofauna of the Tocantins River using DNA barcoding. For this, collections were carried out in five points of this river, which resulted in the capture of 725 individuals from which partial sequences of the cytochrome oxidase subunit I (COI) gene were obtained for genetic analysis. A total of 443 haplotypes were recovered with the mean intraspecific K2P genetic distance of 1.82%. Altogether, 138 species were identified based on morphological criteria, which was a quantity that was much lower than that indicated by the four molecular methods (assemble species by automatic partitioning [ASAP], barcode index number [BIN], generalized mixed Yule coalescent (GMYC), and Bayesian Poisson tree processes [bPTP]) through which 152-157 molecular entities were identified. In all, 41 unique BINs were obtained based on the data generated in the BOLDSystems platform. According to the result indicated by ASAP (species delimitation approach considered the most appropriate in the present study), there was an increase of 17 molecular entities (12.32%), when compared to the number of species identified through their morphological criteria, as it can show cryptic diversity, candidates for new species, and misidentifications. There were 21 incongruities indicated between the different identification approaches for species. Therefore, it is suggested that these taxonomic problems be cautiously evaluated by experts to solve such taxonomic issues.
Collapse
Affiliation(s)
- Renato Corrêia Lima
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG-GCBEv), Laboratório Temático de Biologia Molecular (LTBM), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Sabrina Rufino de Lima
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG-GCBEv), Laboratório Temático de Biologia Molecular (LTBM), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Marcelo Salles Rocha
- Coordenação de Ciências Biológicas, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | | | | | | | | | - Elmary da Costa Fraga
- Departamento de Química e Biologia, Universidade Estadual do Maranhão (UEMA), Caxias, Brazil
| | - Jacqueline da Silva Batista
- Coordenação de Biodiversidade (COBIO), Laboratório Temático de Biologia Molecular (LTBM), Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG-GCBEv), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| |
Collapse
|
5
|
Dulz TA, Azambuja M, Lorscheider CA, Noleto RB, Moreira-Filho O, Nogaroto V, Nascimento VD, Diniz D, de Mello Affonso PRA, Vicari MR. Repetitive DNAs and chromosome evolution in Megaleporinus obtusidens and M. reinhardti (Characiformes: Anostomidae). Genetica 2024; 152:63-70. [PMID: 38587599 DOI: 10.1007/s10709-024-00206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The high dynamism of repetitive DNAs is a major driver of chromosome evolution. In particular, the accumulation of repetitive DNA sequences has been reported as part of the differentiation of sex-specific chromosomes. In turn, the fish species of the genus Megaleporinus are a monophyletic clade in which the presence of differentiated ZZ/ZW sex chromosomes represents a synapomorphic condition, thus serving as a suitable model to evaluate the dynamic evolution of repetitive DNA classes. Therefore, transposable elements (TEs) and in tandem repeats were isolated and located on chromosomes of Megaleporinus obtusidens and M. reinhardti to infer their role in chromosome differentiation with emphasis on sex chromosome systems. Despite the conserved karyotype features of both species, the location of repetitive sequences - Rex 1, Rex 3, (TTAGGG)n, (GATA)n, (GA)n, (CA)n, and (A)n - varied both intra and interspecifically, being mainly accumulated in Z and W chromosomes. The physical mapping of repetitive sequences confirmed the remarkable dynamics of repetitive DNA classes on sex chromosomes that might have promoted chromosome diversification and reproductive isolation in Megaleporinus species.
Collapse
Affiliation(s)
- Thais Aparecida Dulz
- Graduate Program in Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Matheus Azambuja
- Graduate Program in Animal Science, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Carla Andrea Lorscheider
- Department of Biological Sciences, Universidade Estadual do Paraná, União da Vitória, PR, Brazil
| | - Rafael Bueno Noleto
- Department of Biological Sciences, Universidade Estadual do Paraná, União da Vitória, PR, Brazil
| | - Orlando Moreira-Filho
- Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Viviane Nogaroto
- Graduate Program in Animal Science, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | | | - Débora Diniz
- Graduate Program in Genetics, Biodiversity and Conservation, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brazil
| | | | - Marcelo Ricardo Vicari
- Graduate Program in Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Animal Science, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| |
Collapse
|
6
|
Ferreira AMV, Viana PF, Marajó L, Feldberg E. First Karyotypic Insights into Potamotrygon schroederi Fernández-Yépez, 1958: Association of Different Classes of Repetitive DNA. Cytogenet Genome Res 2024; 164:60-68. [PMID: 38744250 DOI: 10.1159/000539331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Currently, there are 38 valid species of freshwater stingrays, and these belong to the subfamily Potamotrygoninae. However, cytogenetic information about this group is limited, with studies mainly using classical techniques, Giemsa, and C-banding. METHODS In this study, we used classical and molecular cytogenetic techniques - mapping of 18S and 5S rDNA and simple sequence repeats (SSRs) - in order to investigate the karyotypic composition of Potamotrygon schroederi and reveal the karyoevolutionary trends of this group. RESULTS The species presented 2n = 66 chromosomes with 18m + 12sm + 16st + 20a, heterochromatic blocks distributed in the centromeric regions of all the chromosomes, and terminal blocks in the q arm of pairs 2 and 3. Mapping of 18S rDNA regions revealed multiple clusters on pairs 2 and 7 and a homolog of pair 24. The 5S rDNA region was found in the pericentromeric portion of the subtelocentric pair 16. Furthermore, dinucleotide SSRs sequences were found in the centromeric and terminal regions of different chromosomal pairs, with preferential accumulation in pair 17. In addition, we identified conspicuous blocks of (GATA)n and (GACA)n sequences colocalized with the 5S rDNA (pair 16). CONCLUSION In general, this study corroborates the general trend of a reduction in 2n in the species of Potamotrygoninae subfamily. Moreover, we found that the location of rDNA regions is very similar among Potamotrygon species, and the SSRs accumulation in the second subtelocentric pair (17) seems to be a common trait in this genus.
Collapse
Affiliation(s)
- Alex M V Ferreira
- Programa de Pós-graduação em Genética Conservação e Biologia Evolutiva - PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| | - Patrik F Viana
- Programa de Pós-graduação em Genética Conservação e Biologia Evolutiva - PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| | - Leandro Marajó
- Programa de Pós-graduação em Genética Conservação e Biologia Evolutiva - PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| | - Eliana Feldberg
- Programa de Pós-graduação em Genética Conservação e Biologia Evolutiva - PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| |
Collapse
|
7
|
Panzera F, Cuadrado Á, Mora P, Palomeque T, Lorite P, Pita S. Differential Spreading of Microsatellites in Holocentric Chromosomes of Chagas Disease Vectors: Genomic and Evolutionary Implications. INSECTS 2023; 14:772. [PMID: 37754740 PMCID: PMC10531928 DOI: 10.3390/insects14090772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
This study focused on analyzing the distribution of microsatellites in holocentric chromosomes of the Triatominae subfamily, insect vectors of Chagas disease. We employed a non-denaturing FISH technique to determine the chromosomal distribution of sixteen microsatellites across twenty-five triatomine species, involving five genera from the two principal tribes: Triatomini and Rhodniini. Three main hybridization patterns were identified: strong signals in specific chromosomal regions, dispersed signals dependent on microsatellite abundance and the absence of signals in certain chromosomal regions or entire chromosomes. Significant variations in hybridization patterns were observed between Rhodniini and Triatomini species. Rhodniini species displayed weak and scattered hybridization signals, indicating a low abundance of microsatellites in their genomes. In contrast, Triatomini species exhibited diverse and abundant hybridization patterns, suggesting that microsatellites are a significant repetitive component in their genomes. One particularly interesting finding was the high abundance of GATA repeats, and to a lesser extent AG repeats, in the Y chromosome of all analyzed Triatomini species. In contrast, the Y chromosome of Rhodniini species did not show enrichment in GATA and AG repeats. This suggests that the richness of GATA repeats on the Y chromosome likely represents an ancestral trait specific to the Triatomini tribe. Furthermore, this information can be used to elucidate the evolutionary relationships between Triatomini and other groups of reduviids, contributing to the understanding of the subfamily's origin. Overall, this study provides a comprehensive understanding of the composition and distribution of microsatellites within Triatominae genomes, shedding light on their significance in the evolutionary processes of these species.
Collapse
Affiliation(s)
- Francisco Panzera
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay;
| | - Ángeles Cuadrado
- Department of Biomedicine and Biotechnology, University of Alcalá (UAH), Alcalá de Henares, 28805 Madrid, Spain;
| | - Pablo Mora
- Department of Experimental Biology, Genetics, University of Jaén, 23071 Jaén, Spain; (P.M.); (T.P.)
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics, University of Jaén, 23071 Jaén, Spain; (P.M.); (T.P.)
| | - Pedro Lorite
- Department of Experimental Biology, Genetics, University of Jaén, 23071 Jaén, Spain; (P.M.); (T.P.)
| | - Sebastián Pita
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay;
| |
Collapse
|