1
|
Strnad M, Rudenko N, Rego RO. Pathogenicity and virulence of Borrelia burgdorferi. Virulence 2023; 14:2265015. [PMID: 37814488 PMCID: PMC10566445 DOI: 10.1080/21505594.2023.2265015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Infection with Borrelia burgdorferi often triggers pathophysiologic perturbations that are further augmented by the inflammatory responses of the host, resulting in the severe clinical conditions of Lyme disease. While our apprehension of the spatial and temporal integration of the virulence determinants during the enzootic cycle of B. burgdorferi is constantly being improved, there is still much to be discovered. Many of the novel virulence strategies discussed in this review are undetermined. Lyme disease spirochaetes must surmount numerous molecular and mechanical obstacles in order to establish a disseminated infection in a vertebrate host. These barriers include borrelial relocation from the midgut of the feeding tick to its body cavity and further to the salivary glands, deposition to the skin, haematogenous dissemination, extravasation from blood circulation system, evasion of the host immune responses, localization to protective niches, and establishment of local as well as distal infection in multiple tissues and organs. Here, the various well-defined but also possible novel strategies and virulence mechanisms used by B. burgdorferi to evade obstacles laid out by the tick vector and usually the mammalian host during colonization and infection are reviewed.
Collapse
Affiliation(s)
- Martin Strnad
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ryan O.M. Rego
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| |
Collapse
|
2
|
Khanal S, Taank V, Anderson JF, Sultana H, Neelakanta G. Rickettsial Pathogen Perturbs Tick Circadian Gene to Infect the Vertebrate Host. Int J Mol Sci 2022; 23:ijms23073545. [PMID: 35408905 PMCID: PMC8998576 DOI: 10.3390/ijms23073545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 11/20/2022] Open
Abstract
Ixodes scapularis is a medically important tick that transmits several microbes to humans, including rickettsial pathogen Anaplasma phagocytophilum. In nature, these ticks encounter several abiotic factors including changes in temperature, humidity, and light. Many organisms use endogenously generated circadian pathways to encounter abiotic factors. In this study, we provide evidence for the first time to show that A. phagocytophilum modulates the arthropod circadian gene for its transmission to the vertebrate host. We noted a circadian oscillation in the expression of arthropod clock, bmal1, period and timeless genes when ticks or tick cells were exposed to alternate 12 h light: 12 h dark conditions. Moreover, A. phagocytophilum significantly modulates the oscillation pattern of expression of these genes. In addition, increased levels of clock and bmal1 and decreased expression of Toll and JAK/STAT pathway immune genes such as pelle and jak, respectively, were noted during A. phagocytophilum transmission from ticks to the vertebrate host. RNAi-mediated knockdown of clock gene expression in ticks resulted in the reduced expression of jak and pelle that increased bacterial transmission from ticks to the murine host. Furthermore, clock-deficient ticks fed late and had less engorgement weights. These results indicate an important role for circadian modulation of tick gene expression that is critical for arthropod blood feeding and transmission of pathogens from vector to the vertebrate host.
Collapse
Affiliation(s)
- Supreet Khanal
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA; (S.K.); (V.T.); (H.S.)
| | - Vikas Taank
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA; (S.K.); (V.T.); (H.S.)
| | - John F. Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA;
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA; (S.K.); (V.T.); (H.S.)
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA 23529, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA; (S.K.); (V.T.); (H.S.)
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA 23529, USA
- Correspondence: ; Tel.: +1-(865)-974-5715
| |
Collapse
|
3
|
Antigenic sites in SARS-CoV-2 spike RBD show molecular similarity with pathogenic antigenic determinants and harbors peptides for vaccine development. Immunobiology 2021; 226:152091. [PMID: 34303920 PMCID: PMC8297981 DOI: 10.1016/j.imbio.2021.152091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
The spike protein of coronavirus is key target for drug development and other pharmacological interventions. In current study, we performed an integrative approach to predict antigenic sites in SARS-CoV-2 spike receptor binding domain and found nine potential antigenic sites. The predicted antigenic sites were then assessed for possible molecular similarity with other known antigens in different organisms. Out of nine sites, seven sites showed molecular similarity with 54 antigenic determinants found in twelve pathogenic bacterial species (Mycobacterium tuberculosis, Mycobacterium leprae, Bacillus anthracis, Borrelia burgdorferi, Clostridium perfringens, Clostridium tetani, Helicobacter Pylori, Listeria monocytogenes, Staphylococcus aureus, Streptococcus pyogenes, Vibrio cholera and Yersinia pestis), two malarial parasites (Plasmodium falciparum and Plasmodium knowlesi) and influenza virus A. Most of the bacterial antigens that displayed molecular similarity with antigenic sites in SARS-CoV-2 RBD (receptor binding domain) were toxins and virulent factors. Antigens from Mycobacterium that showed similarity were mainly involved in modulating host cell immune response and ensuring persistence and survival of pathogen in host cells. Presence of a large number of antigenic determinants, similar to those in highly pathogenic microorganisms, not merely accounts for complex etiology of the disease but also provides an explanation for observed pathophysiological complications, such as deregulated immune response, unleashed or dysregulated cytokine secretion (cytokine storm), multiple organ failure etc., that are more evident in aged and immune-compromised patients. Over-representation of antigenic determinants from Plasmodium and Mycobacterium in all antigenic sites suggests that anti-malarial and anti-TB drugs can prove to be clinical beneficial for COVID-19 treatment. Besides this, anti-leprosy, anti-lyme, anti-plague, anti-anthrax drugs/vaccine etc. are also expected to be beneficial in COVID-19 treatment. Moreover, individuals previously immunized/vaccinated or had previous history of malaria, tuberculosis or other disease caused by fifteen microorganisms are expected to display a considerable degree of resistance against SARS-CoV-2 infection. Out of the seven antigenic sites predicted in SARS-CoV-2, a part of two antigenic sites were also predicted as potent T-cell epitopes (KVGGNYNYL444-452 and SVLYNSASF366-374) against MHC class I and three (KRISNCVADYSVLYN356-370, DLCFTNVYADSFVI389-402, and YRVVVLSFELLHA508-520) against MHC class II. All epitopes possessed significantly lower predicted IC50 value which is a prerequisite for a preferred vaccine candidate for COVID-19.
Collapse
|
4
|
Ford L, Tufts DM. Lyme Neuroborreliosis: Mechanisms of B. burgdorferi Infection of the Nervous System. Brain Sci 2021; 11:brainsci11060789. [PMID: 34203671 PMCID: PMC8232152 DOI: 10.3390/brainsci11060789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Lyme borreliosis is the most prevalent tick-borne disease in the United States, infecting ~476,000 people annually. Borrelia spp. spirochetal bacteria are the causative agents of Lyme disease in humans and are transmitted by Ixodes spp ticks. Clinical manifestations vary depending on which Borrelia genospecies infects the patient and may be a consequence of distinct organotropism between species. In the US, B. burgdorferi sensu stricto is the most commonly reported genospecies and infection can manifest as mild to severe symptoms. Different genotypes of B. burgdorferi sensu stricto may be responsible for causing varying degrees of clinical manifestations. While the majority of Lyme borreliae-infected patients fully recover with antibiotic treatment, approximately 15% of infected individuals experience long-term neurological and psychological symptoms that are unresponsive to antibiotics. Currently, long-term antibiotic treatment remains the only FDA-approved option for those suffering from these chronic effects. Here, we discuss the current knowledge pertaining to B. burgdorferi sensu stricto infection in the central nervous system (CNS), termed Lyme neuroborreliosis (LNB), within North America and specifically the United States. We explore the molecular mechanisms of spirochete entry into the brain and the role B. burgdorferi sensu stricto genotypes play in CNS infectivity. Understanding infectivity can provide therapeutic targets for LNB treatment and offer public health understanding of the B. burgdorferi sensu stricto genotypes that cause long-lasting symptoms.
Collapse
Affiliation(s)
- Lenzie Ford
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Correspondence: (L.F.); (D.M.T.)
| | - Danielle M. Tufts
- Infectious Diseases and Microbiology Department, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (L.F.); (D.M.T.)
| |
Collapse
|
5
|
Helble JD, McCarthy JE, Hu LT. Interactions between Borrelia burgdorferi and its hosts across the enzootic cycle. Parasite Immunol 2021; 43:e12816. [PMID: 33368329 DOI: 10.1111/pim.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
The bacterial pathogen Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to humans through an Ixodes tick vector. B. burgdorferi is able to survive in both mammalian and tick hosts through careful modulation of its gene expression. This allows B. burgdorferi to adapt to the environmental and nutritional changes that occur when it is transmitted between the two hosts. Distinct interactions between the spirochete and its host occur at every step of the enzootic cycle and dictate the ability of the spirochete to survive until the next stage of the cycle. Studying the interface between B. burgdorferi, the Ixodes tick vector and the natural mammalian reservoirs has been made significantly more feasible through the complete genome sequences of the organisms and the advent of high throughput screening technologies. Ultimately, a thorough investigation of the interplay between the two domains (and two phyla within one domain) is necessary in order to completely understand how the pathogen is transmitted.
Collapse
Affiliation(s)
- Jennifer D Helble
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Julie E McCarthy
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| |
Collapse
|
6
|
Abstract
The genus Borrelia consists of evolutionarily and genetically diverse bacterial species that cause a variety of diseases in humans and domestic animals. These vector-borne spirochetes can be classified into two major evolutionary groups, the Lyme borreliosis clade and the relapsing fever clade, both of which have complex transmission cycles during which they interact with multiple host species and arthropod vectors. Molecular, ecological, and evolutionary studies have each provided significant contributions towards our understanding of the natural history, biology and evolutionary genetics of Borrelia species; however, integration of these studies is required to identify the evolutionary causes and consequences of the genetic variation within and among Borrelia species. For example, molecular and genetic studies have identified the adaptations that maximize fitness components throughout the Borrelia lifecycle and enhance transmission efficacy but provide limited insights into the evolutionary pressures that have produced them. Ecological studies can identify interactions between Borrelia species and the vertebrate hosts and arthropod vectors they encounter and the resulting impact on the geographic distribution and abundance of spirochetes but not the genetic or molecular basis underlying these interactions. In this review we discuss recent findings on the evolutionary genetics from both of the evolutionarily distinct clades of Borrelia species. We focus on connecting molecular interactions to the ecological processes that have driven the evolution and diversification of Borrelia species in order to understand the current distribution of genetic and molecular variation within and between Borrelia species.
Collapse
Affiliation(s)
- Zachary J. Oppler
- Department of Biology, University of Pennsylvania, 433 South University Ave, Philadelphia, PA 19104, USA
| | - Kayleigh R. O’Keeffe
- Department of Biology, University of Pennsylvania, 433 South University Ave, Philadelphia, PA 19104, USA
| | - Karen D. McCoy
- Centre for Research on the Ecology and Evolution of Diseases (CREES), MiVEGEC, University of Montpellier – CNRS - IRD, Montpellier, France
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, 433 South University Ave, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
8
|
O'Keeffe KR, Oppler ZJ, Brisson D. Evolutionary ecology of Lyme Borrelia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104570. [PMID: 32998077 PMCID: PMC8349510 DOI: 10.1016/j.meegid.2020.104570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023]
Abstract
The bacterial genus, Borrelia, is comprised of vector-borne spirochete species that infect and are transmitted from multiple host species. Some Borrelia species cause highly-prevalent diseases in humans and domestic animals. Evolutionary, ecological, and molecular research on many Borrelia species have resulted in tremendous progress toward understanding the biology and natural history of these species. Yet, many outstanding questions, such as how Borrelia populations will be impacted by climate and land-use change, will require an interdisciplinary approach. The evolutionary ecology research framework incorporates theory and data from evolutionary, ecological, and molecular studies while overcoming common assumptions within each field that can hinder integration across these disciplines. Evolutionary ecology offers a framework to evaluate the ecological consequences of evolved traits and to predict how present-day ecological processes may result in further evolutionary change. Studies of microbes with complex transmission cycles, like Borrelia, which interact with multiple vertebrate hosts and arthropod vectors, are poised to leverage the power of the evolutionary ecology framework to identify the molecular interactions involved in ecological processes that result in evolutionary change. Using existing data, we outline how evolutionary ecology theory can delineate how interactions with other species and the physical environment create selective forces or impact migration of Borrelia populations and result in micro-evolutionary changes. We further discuss the ecological and molecular consequences of those micro-evolutionary changes. While many of the currently outstanding questions will necessitate new experimental designs and additional empirical data, many others can be addressed immediately by integrating existing molecular and ecological data within an evolutionary ecology framework.
Collapse
Affiliation(s)
| | - Zachary J Oppler
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Narra HP, Sahni A, Alsing J, Schroeder CLC, Golovko G, Nia AM, Fofanov Y, Khanipov K, Sahni SK. Comparative transcriptomic analysis of Rickettsia conorii during in vitro infection of human and tick host cells. BMC Genomics 2020; 21:665. [PMID: 32977742 PMCID: PMC7519539 DOI: 10.1186/s12864-020-07077-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Pathogenic Rickettsia species belonging to the spotted fever group are arthropod-borne, obligate intracellular bacteria which exhibit preferential tropism for host microvascular endothelium in the mammalian hosts, resulting in disease manifestations attributed primarily to endothelial damage or dysfunction. Although rickettsiae are known to undergo evolution through genomic reduction, the mechanisms by which these pathogens regulate their transcriptome to ensure survival in tick vectors and maintenance by transovarial/transstadial transmission, in contrast to their ability to cause debilitating infections in human hosts remain unknown. In this study, we compare the expression profiles of rickettsial sRNAome/transcriptome and determine the transcriptional start sites (TSSs) of R. conorii transcripts during in vitro infection of human and tick host cells. RESULTS We performed deep sequencing on total RNA from Amblyomma americanum AAE2 cells and human microvascular endothelial cells (HMECs) infected with R. conorii. Strand-specific RNA sequencing of R. conorii transcripts revealed the expression 32 small RNAs (Rc_sR's), which were preferentially expressed above the limit of detection during tick cell infection, and confirmed the expression of Rc_sR61, sR71, and sR74 by quantitative RT-PCR. Intriguingly, a total of 305 and 132 R. conorii coding genes were differentially upregulated (> 2-fold) in AAE2 cells and HMECs, respectively. Further, enrichment for primary transcripts by treatment with Terminator 5'-Phosphate-dependent Exonuclease resulted in the identification of 3903 and 2555 transcription start sites (TSSs), including 214 and 181 primary TSSs in R. conorii during the infection to tick and human host cells, respectively. Seventy-five coding genes exhibited different TSSs depending on the host environment. Finally, we also observed differential expression of 6S RNA during host-pathogen and vector-pathogen interactions in vitro, implicating an important role for this noncoding RNA in the regulation of rickettsial transcriptome depending on the supportive host niche. CONCLUSIONS In sum, the findings of this study authenticate the presence of novel Rc_sR's in R. conorii, reveal the first evidence for differential expression of coding transcripts and utilization of alternate transcriptional start sites depending on the host niche, and implicate a role for 6S RNA in the regulation of coding transcriptome during tripartite host-pathogen-vector interactions.
Collapse
Affiliation(s)
- Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jessica Alsing
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Casey L C Schroeder
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anna M Nia
- Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
10
|
Dulipati V, Meri S, Panelius J. Complement evasion strategies of Borrelia burgdorferi sensu lato. FEBS Lett 2020; 594:2645-2656. [PMID: 32748966 DOI: 10.1002/1873-3468.13894] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023]
Abstract
Borreliosis (Lyme disease) is a spirochetal disease caused by the species complex of Borrelia burgdorferi transmitted by Ixodes spp. ticks. Recorded to be the most common tick-borne disease in the world, the last two decades have seen an increase in disease incidence and distribution, exceeding 360 000 cases in Europe alone. If untreated, infection may cause skin symptoms, arthritis, and neurological or cardiac complications. Borrelia spirochetes have developed strategies to evade the mammalian host immune system. These include the complement system, which is an important first-line defense mechanism against invading microbes. To evade the complement, spirochetes bind soluble complement regulators factor H (FH), factor H-like protein, and C4bp to their outer surfaces. B. burgdorferi spirochetes can inhibit the classical pathway of complement by the outer surface protein (Osp) BBK32, which blocks the activation of the C1 complex, composed of C1q, C1r, and C1s. The FH-binding proteins of borreliae include Osps OspE, CspA, and CspZ. Following repeated infections, antibodies against these proteins develop and may provide functional immunity against borreliosis. This review discusses critical immune evasion strategies, focusing on complement evasion by borreliae.
Collapse
Affiliation(s)
- Vinaya Dulipati
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Jaana Panelius
- Department of Dermatology and Allergology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to vertebrate hosts by Ixodes spp. ticks. The spirochaete relies heavily on its arthropod host for basic metabolic functions and has developed complex interactions with ticks to successfully colonize, persist and, at the optimal time, exit the tick. For example, proteins shield spirochaetes from immune factors in the bloodmeal and facilitate the transition between vertebrate and arthropod environments. On infection, B. burgdorferi induces selected tick proteins that modulate the vector gut microbiota towards an environment that favours colonization by the spirochaete. Additionally, the recent sequencing of the Ixodes scapularis genome and characterization of tick immune defence pathways, such as the JAK–STAT, immune deficiency and cross-species interferon-γ pathways, have advanced our understanding of factors that are important for B. burgdorferi persistence in the tick. In this Review, we summarize interactions between B. burgdorferi and I. scapularis during infection, as well as interactions with tick gut and salivary gland proteins important for establishing infection and transmission to the vertebrate host. Borrelia burgdorferi has a complex life cycle with several different hosts, causing Lyme disease when it infects humans. In this Review, Fikrig and colleagues discuss how B. burgdorferi infects and interacts with its tick vector to ensure onward transmission.
Collapse
|
12
|
Brangulis K, Akopjana I, Petrovskis I, Kazaks A, Zelencova D, Jekabsons A, Jaudzems K, Tars K. BBE31 from the Lyme disease agent Borrelia burgdorferi, known to play an important role in successful colonization of the mammalian host, shows the ability to bind glutathione. Biochim Biophys Acta Gen Subj 2019; 1864:129499. [PMID: 31785327 DOI: 10.1016/j.bbagen.2019.129499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022]
Abstract
Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu lato complex spirochetes. The spirochete is located in the gut of the tick; as the infected tick starts the blood meal, the spirochete must travel through the hemolymph to the salivary glands, where it can spread to and infect the new host organism. In this study, we determined the crystal structures of the key outer surface protein BBE31 from B. burgdorferi and its orthologous protein BSE31 (BSPA14S_RS05060 gene product) from B. spielmanii. BBE31 is known to be important for the transfer of B. burgdorferi from the gut to the hemolymph in the tick after a tick bite. While BBE31 exerts its function by interacting with the Ixodes scapularis tick gut protein TRE31, structural and mass spectrometry data revealed that BBE31 has a glutathione (GSH) covalently attached to Cys142 suggesting that the protein may have acquired some additional functions in contrast to its orthologous protein BSE31, which lacks any interactions with GSH. In the current study, in addition to analyzing the potential reasons for GSH binding, the three-dimensional structure of BBE31 provides new insights into the molecular details of the transmission process as the protein plays an important role in the initial phase before the spirochete is physically transferred to the new host. This knowledge will be potentially used for the development of new strategies to fight against Lyme disease.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia; Riga Stradins University, Department of Human Physiology and Biochemistry, Dzirciema 16, LV-1007 Riga, Latvia.
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| | - Ivars Petrovskis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| | - Diana Zelencova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Atis Jekabsons
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; University of Latvia, Faculty of Chemistry, Jelgavas 1, LV-1004 Riga, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia; University of Latvia, Faculty of Biology, Jelgavas 1, LV-1004 Riga, Latvia
| |
Collapse
|
13
|
Taank V, Zhou W, Zhuang X, Anderson JF, Pal U, Sultana H, Neelakanta G. Characterization of tick organic anion transporting polypeptides (OATPs) upon bacterial and viral infections. Parasit Vectors 2018; 11:593. [PMID: 30428915 PMCID: PMC6236954 DOI: 10.1186/s13071-018-3160-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Ixodes scapularis organic anion transporting polypeptides (OATPs) play important roles in tick-rickettsial pathogen interactions. In this report, we characterized the role of these conserved molecules in ticks infected with either Lyme disease agent Borrelia burgdorferi or tick-borne Langat virus (LGTV), a pathogen closely related to tick-borne encephalitis virus (TBEV). Results Quantitative real-time polymerase chain reaction analysis revealed no significant changes in oatps gene expression upon infection with B. burgdorferi in unfed ticks. Synchronous infection of unfed nymphal ticks with LGTV in vitro revealed no significant changes in oatps gene expression. However, expression of specific oatps was significantly downregulated upon LGTV infection of tick cells in vitro. Treatment of tick cells with OATP inhibitor significantly reduced LGTV loads, kynurenine amino transferase (kat), a gene involved in the production of tryptophan metabolite xanthurenic acid (XA), levels and expression of several oatps in tick cells. Furthermore, bioinformatics characterization of OATPs from some of the medically important vectors including ticks, mosquitoes and lice revealed the presence of several glycosylation, phosphorylation and myristoylation sites. Conclusions This study provides additional evidence on the role of arthropod OATPs in vector-intracellular pathogen interactions. Electronic supplementary material The online version of this article (10.1186/s13071-018-3160-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vikas Taank
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Wenshuo Zhou
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Xuran Zhuang
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - John F Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA. .,Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
14
|
Investigating disease severity in an animal model of concurrent babesiosis and Lyme disease. Int J Parasitol 2018; 49:145-151. [PMID: 30367867 DOI: 10.1016/j.ijpara.2018.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 02/04/2023]
Abstract
The incidence of babesiosis, Lyme disease and other tick-borne diseases has increased steadily in Europe and North America during the last five decades. Babesia microti is transmitted by species of Ixodes, the same ticks that transmit the Lyme disease-causing spirochete, Borrelia burgdorferi. B. microti can also be transmitted through transfusion of blood products and is the most common transfusion-transmitted infection in the U.S.A. Ixodes ticks are commonly infected with both B. microti and B. burgdorferi, and are competent vectors for transmitting them together into hosts. Few studies have examined the effects of coinfections on humans and they had somewhat contradictory results. One study linked coinfection with B. microti to a greater number of symptoms of overall disease in patients, while another report indicated that B. burgdorferi infection either did not affect babesiosis symptoms or decreased its severity. Mouse models of infection that manifest pathological effects similar to those observed in human babesiosis and Lyme disease offer a unique opportunity to thoroughly investigate the effects of coinfection on the host. Lyme disease has been studied using the susceptible C3H mouse infection model, which can also be used to examine B. microti infection to understand pathological mechanisms of human diseases, both during a single infection and during coinfections. We observed that high B. microti parasitaemia leads to low haemoglobin levels in infected mice, reflecting the anaemia observed in human babesiosis. Similar to humans, B. microti coinfection appears to enhance the severity of Lyme disease-like symptoms in mice. Coinfected mice have lower peak B. microti parasitaemia compared to mice infected with B. microti alone, which may reflect attenuation of babesiosis symptoms reported in some human coinfections. These findings suggest that B. burgdorferi coinfection attenuates parasite growth while B. microti presence exacerbates Lyme disease-like symptoms in mice.
Collapse
|
15
|
Jacquet M, Genné D, Belli A, Maluenda E, Sarr A, Voordouw MJ. The abundance of the Lyme disease pathogen Borrelia afzelii declines over time in the tick vector Ixodes ricinus. Parasit Vectors 2017; 10:257. [PMID: 28545520 PMCID: PMC5445446 DOI: 10.1186/s13071-017-2187-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/11/2017] [Indexed: 11/28/2022] Open
Abstract
Background The population dynamics of vector-borne pathogens inside the arthropod vector can have important consequences for vector-to-host transmission. Tick-borne spirochete bacteria of the Borrelia burgdorferi (sensu lato) species complex cause Lyme borreliosis in humans and spend long periods of time (>12 months) in their Ixodes tick vectors. To date, few studies have investigated the dynamics of Borrelia spirochete populations in unfed Ixodes nymphal ticks. Methods Larval ticks from our laboratory colony of I. ricinus were experimentally infected with B. afzelii, and killed at 1 month and 4 months after the larva-to-nymph moult. The spirochete load was also compared between engorged larval ticks and unfed nymphs (from the same cohort) and between unfed nymphs and unfed adult ticks (from the same cohort). The spirochete load of B. afzelii in each tick was estimated using qPCR. Results The mean spirochete load in the 1-month-old nymphs (~14,000 spirochetes) was seven times higher than the 4-month-old nymphs (~2000 spirochetes). Thus, the nymphal spirochete load declined by 80% over a period of 3 months. An engorged larval tick acquired ~100 spirochetes, and this population was 20 times larger in a young, unfed nymph. The spirochete load also appeared to decline in adult ticks. Comparison between wild and laboratory populations found that lab ticks were more susceptible to acquiring B. afzelii. Conclusion The spirochete load of B. afzelii declines dramatically over time in domesticated I. ricinus nymphs under laboratory conditions. Future studies should investigate whether temporal declines in spirochete load occur in wild Ixodes ticks under natural conditions and whether these declines influence the tick-to-host transmission of Borrelia. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2187-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maxime Jacquet
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alessandro Belli
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Elodie Maluenda
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
16
|
Stewart PE, Rosa PA. Physiologic and Genetic Factors Influencing the Zoonotic Cycle of Borrelia burgdorferi. Curr Top Microbiol Immunol 2017; 415:63-82. [PMID: 28864829 DOI: 10.1007/82_2017_43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Borrelia burgdorferi is a symbiont of ticks of the Ixodes ricinus complex. These ticks serve as vectors to disseminate the spirochete to a variety of susceptible vertebrate hosts, which, in turn, act as reservoirs for naïve ticks to become infected, perpetuating the infectious life cycle of B. burgdorferi. The pivotal role of ticks in this life cycle and tick-spirochete interactions are the focus of this chapter. Here, we describe the challenging physiological environment that spirochetes encounter within Ixodes ticks, and the genetic factors that B. burgdorferi uses to successfully infect, persist, and be transmitted from the vector.
Collapse
Affiliation(s)
- Philip E Stewart
- Laboratory of Zoonotic Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th St., Hamilton, MT, 59840, USA.
| | - Patricia A Rosa
- Laboratory of Zoonotic Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th St., Hamilton, MT, 59840, USA.
| |
Collapse
|
17
|
Abstract
Lipoproteins are lipid-modified proteins that dominate the spirochetal proteome. While found in all bacteria, spirochetal lipoproteins have unique features and play critical roles in spirochete biology. For this reason, considerable effort has been devoted to determining how the lipoproteome is generated. Essential features of the structural elements of lipoproteins are now understood with greater clarity, enabling greater confidence in identification of lipoproteins from genomic sequences. The journey from the ribosome to the outer membrane, and in some cases, to the cellular surface has been defined, including secretion, lipidation, sorting, and export across the outer membrane. Given their abundance and importance, it is not surprising that spirochetes have developed a number of strategies for regulating the spatiotemporal expression of lipoproteins. In some cases, lipoprotein expression is tied to various environmental cues, while in other cases, it is linked to growth rate. This regulation enables spirochetes to express certain lipoproteins at high levels in one phase of the spirochete lifecycle, while dramatically downregulating the same lipoproteins in other phases. The mammalian host has developed specialized mechanisms for recognizing lipoproteins and triggering an immune response. Evasion of that immune response is essential for spirochete persistence. For this reason, spirochetes have developed mechanisms for altering lipoproteins. Lipoproteins recognized by antibodies formed during infection are key serodiagnostic antigens. In addition, lipoprotein vaccines have been developed for generating an immune response to control or prevent a spirochete infection. This chapter summarizes our current understanding of lipoproteins in interactions of spirochetes with their hosts.
Collapse
|
18
|
Regulation of Gene and Protein Expression in the Lyme Disease Spirochete. Curr Top Microbiol Immunol 2017; 415:83-112. [PMID: 29064060 DOI: 10.1007/82_2017_49] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The infectious cycle of Borrelia burgdorferi necessitates persistent infection of both vertebrates and ticks, and efficient means of transmission between those two very different types of hosts. The Lyme disease spirochete has evolved mechanisms to sense its location in the infectious cycle, and use that information to control production of the proteins and other factors required for each step. Numerous components of borrelial regulatory pathways have been characterized to date. Their effects are being pieced together, thereby providing glimpses into a complex web of cooperative and antagonistic interactions. In this chapter, we present a broad overview of B. burgdorferi gene and protein regulation during the natural infectious cycle, discussions of culture-based methods for elucidating regulatory mechanisms, and summaries of many of the known regulatory proteins and small molecules. We also highlight areas that are in need of substantially more research.
Collapse
|
19
|
Evidence that BosR (BB0647) Is a Positive Autoregulator in Borrelia burgdorferi. Infect Immun 2016; 84:2566-74. [PMID: 27324485 DOI: 10.1128/iai.00297-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/16/2016] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi survives in nature through a complex tick-mammalian life cycle. During its transit between ticks and mammalian hosts, B. burgdorferi must dramatically alter its outer surface profile in order to interact with and adapt to these two diverse niches. It has been established that the regulator BosR (BB0647) in B. burgdorferi plays important roles in modulating borrelial host adaptation. However, to date, how bosR expression itself is controlled in B. burgdorferi remains largely unknown. Previously, it has been shown that DNA sequences upstream of BosR harbor multiple sites for the binding of recombinant BosR, suggesting that BosR may influence its own expression in B. burgdorferi However, direct experimental evidence supporting this putative autoregulation of BosR has been lacking. Here, we investigated the expression of bosR throughout the tick-mammal life cycle of B. burgdorferi via quantitative reverse transcription (RT)-PCR analyses. Our data indicated that bosR is expressed not only during mouse infection, but also during the tick acquisition, intermolt, and transmission phases. Further investigation revealed that bosR expression in B. burgdorferi is influenced by environmental stimuli, such as temperature shift and pH change. By employing luciferase reporter assays, we also identified two promoters potentially driving bosR transcription. Our study offers strong support for the long-postulated function of BosR as an autoregulator in B. burgdorferi.
Collapse
|
20
|
Troy EB, Lin T, Gao L, Lazinski DW, Lundt M, Camilli A, Norris SJ, Hu LT. Global Tn-seq analysis of carbohydrate utilization and vertebrate infectivity of Borrelia burgdorferi. Mol Microbiol 2016; 101:1003-23. [PMID: 27279039 DOI: 10.1111/mmi.13437] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 02/05/2023]
Abstract
Borrelia burgdorferi maintains a complex life cycle between tick and vertebrate hosts. Although some genes have been identified as contributing to bacterial adaptation in the different hosts, the list is incomplete. In this manuscript, we report the first use of transposon mutagenesis combined with high-throughput sequencing (Tn-seq) in B. burgdorferi. We utilize the technique to investigate mechanisms of carbohydrate utilization in B. burgdorferi and the role of carbohydrate metabolism during mouse infection. We performed genetic fitness analyses to identify genes encoding factors contributing to growth on glucose, maltose, mannose, trehalose and N-acetyl-glucosamine. We obtained insight into the potential functions of proteins predicted to be involved in carbohydrate utilization and identified additional factors previously unrecognized as contributing to the metabolism of the tested carbohydrates. Strong phenotypes were observed for the putative carbohydrate phosphotransferase transporters BB0408 and BBB29 as well as the response regulator Rrp1. We further validated Tn-seq for use in mouse studies and were able to correctly identify known infectivity factors as well as additional transporters and genes on lp54 that may contribute to optimal mouse infection. As such, this study establishes Tn-seq as a powerful method for both in vitro and in vivo studies of B. burgdorferi.
Collapse
Affiliation(s)
- Erin B Troy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Tao Lin
- Department of Pathology and Laboratory Medicine, University of Texas Medical Center at Houston, Houston, TX
| | - Lihui Gao
- Department of Pathology and Laboratory Medicine, University of Texas Medical Center at Houston, Houston, TX
| | - David W Lazinski
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Maureen Lundt
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA.,Howard Hughes Medical Institute, Boston, MA
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical Center at Houston, Houston, TX.,Department of Microbiology and Molecular Genetics, University of Texas Medical Center at Houston, Houston, TX
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA.
| |
Collapse
|
21
|
Tilly K, Bestor A, Rosa PA. Functional Equivalence of OspA and OspB, but Not OspC, in Tick Colonization by Borrelia burgdorferi. Infect Immun 2016; 84:1565-1573. [PMID: 26953324 PMCID: PMC4862709 DOI: 10.1128/iai.00063-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/26/2016] [Indexed: 01/21/2023] Open
Abstract
Borrelia burgdorferi, a Lyme disease agent, makes different major outer surface lipoproteins at different stages of its mouse-tick infectious cycle. Outer surface protein A (OspA) coats the spirochetes from the time they enter ticks until they are transmitted to a mammal. OspA is required for normal tick colonization and has been shown to bind a tick midgut protein, indicating that OspA may serve as a tick midgut adhesin. Tick colonization by spirochetes lacking OspA is increased when the infecting blood meal is derived from mice that do not produce antibody, indicating that OspA may protect the spirochetes from host antibody, which will not recognize tick-specific proteins such as OspA. To further study the importance of OspA during tick colonization, we constructed a form of B. burgdorferi in which the ospA open reading frame, on lp54, was replaced with the ospC gene or the ospB gene, encoding a mammal-specific or tick-specific lipoprotein, respectively. These fusions yielded a strain that produces OspC within a tick (from the fusion gene) and during early mammalian infection (from the normal ospC locus) and a strain that produces OspB in place of OspA within ticks. Here we show that the related, tick-specific protein OspB can fully substitute for OspA, whereas the unrelated, mammal-specific protein OspC cannot. These data were derived from three different methods of infecting ticks, and they confirm and extend previous studies indicating that OspA both protects spirochetes within ticks from mammalian antibody and serves an additional role during tick colonization.
Collapse
Affiliation(s)
- Kit Tilly
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Aaron Bestor
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Patricia A Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| |
Collapse
|
22
|
Toledo A, Pérez A, Coleman JL, Benach JL. The lipid raft proteome of Borrelia burgdorferi. Proteomics 2015; 15:3662-75. [PMID: 26256460 DOI: 10.1002/pmic.201500093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/09/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022]
Abstract
Eukaryotic lipid rafts are membrane microdomains that have significant amounts of cholesterol and a selective set of proteins that have been associated with multiple biological functions. The Lyme disease agent, Borrelia burgdorferi, is one of an increasing number of bacterial pathogens that incorporates cholesterol onto its membrane, and form cholesterol glycolipid domains that possess all the hallmarks of eukaryotic lipid rafts. In this study, we isolated lipid rafts from cultured B. burgdorferi as a detergent resistant membrane (DRM) fraction on density gradients, and characterized those molecules that partitioned exclusively or are highly enriched in these domains. Cholesterol glycolipids, the previously known raft-associated lipoproteins OspA and OpsB, and cholera toxin partitioned into the lipid rafts fraction indicating compatibility with components of the DRM. The proteome of lipid rafts was analyzed by a combination of LC-MS/MS or MudPIT. Identified proteins were analyzed in silico for parameters that included localization, isoelectric point, molecular mass and biological function. The proteome provided a consistent pattern of lipoproteins, proteases and their substrates, sensing molecules and prokaryotic homologs of eukaryotic lipid rafts. This study provides the first analysis of a prokaryotic lipid raft and has relevance for the biology of Borrelia, other pathogenic bacteria, as well as for the evolution of these structures. All MS data have been deposited in the ProteomeXchange with identifier PXD002365 (http://proteomecentral.proteomexchange.org/dataset/PXD002365).
Collapse
Affiliation(s)
- Alvaro Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Alberto Pérez
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - James L Coleman
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.,New York State Department of Health, Stony Brook University, Stony Brook, NY, USA
| | - Jorge L Benach
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
23
|
Ouyang Z, Zhou J. BadR (BB0693) controls growth phase-dependent induction of rpoS and bosR in Borrelia burgdorferi via recognizing TAAAATAT motifs. Mol Microbiol 2015; 98:1147-67. [PMID: 26331438 DOI: 10.1111/mmi.13206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 12/15/2022]
Abstract
In Borrelia burgdorferi (Bb), the alternative sigma factor RpoS plays a central role during Bb's adaptation to ticks and mammals. Previous studies have demonstrated that RpoS is not expressed during the early stages of spirochetal growth or when Bb resides in ticks during the intermolt phase, but the molecular details of these events remain unknown. In the current study, biomagnetic bead separation of rpoS promoter-binding proteins, coupled with genetic inactivation, was employed to identify BadR (BB0693) as a negative regulator that controls growth phase-dependent induction of rpoS and bosR in Bb. When badR was inactivated, the expression of rpoS and bosR was induced only during the early stages of bacterial growth, but not during the stationary growth phase. Recombinant BadR bound to the promoter DNA of rpoS and the regulatory region upstream of bosR via AT-rich TAAAATAT motifs. Mutations in this motif markedly inhibited or abolished rBadR binding. These results suggest that BadR directly influences the expression of both rpoS and bosR in Bb. This newly recognized role for BadR to fine-tune the activation of the RpoN-RpoS pathway at strategic times in Bb's life cycle potentially represents another layer of gene control over σ(54)-dependent gene regulation.
Collapse
Affiliation(s)
- Zhiming Ouyang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jianli Zhou
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
24
|
Abstract
Lyme disease/borreliosis (LD) is a well-known arthropod-transmitted entity in the northern hemisphere. The incidence of LD is reportedly rising throughout the world, although better diagnostic facilities may be contributory. The disease distribution is expanding in Europe, with its presence being now documented at higher altitudes and latitudes. Borrelia burgdorferi sensu lato is the most important genospecies leading to LD, although newer ones continue to be discovered. The variations in clinical spectrum with genospecies involved are an interesting feature. The alteration in gene expression while the organism cycles between two very different hosts is intriguing and has been described. The disease presents in three stages-namely, the early localized, early disseminated, and late stage. Erythema chronicum migrans is the pathognomic early lesion, and its diagnosis is purely clinical; however, laboratory diagnosis is essential for later manifestations. Two-tier serologic testing using an enzyme-linked immunosorbent assay (ELISA) as the first tier and immunoglobulin M (IgM) and IgG immunoblot as the second, if ELISA is positive or equivocal, is the mainstay of diagnosis. Doxycycline is the cornerstone of treatment, whereas parenteral therapy, mainly with ceftriaxone, is indicated in a few specific scenarios.
Collapse
Affiliation(s)
- Virendra N Sehgal
- Dermato-Venereology (Skin/VD) Center, Sehgal Nursing Home, A/6 Panchwati, Delhi, 110 033, India.
| | - Ananta Khurana
- Department of Dermatology, 1 Dr RML Hospital and Postgraduate Institute of Medical Education and research (PGIMER), New Delhi
| |
Collapse
|
25
|
Estrada-Peña A, de la Fuente J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Res 2014; 108:104-28. [DOI: 10.1016/j.antiviral.2014.05.016] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/08/2014] [Accepted: 05/24/2014] [Indexed: 12/30/2022]
|
26
|
Narasimhan S, Rajeevan N, Liu L, Zhao YO, Heisig J, Pan J, Eppler-Epstein R, Deponte K, Fish D, Fikrig E. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe 2014; 15:58-71. [PMID: 24439898 DOI: 10.1016/j.chom.2013.12.001] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 10/11/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
Arthopods such as Ixodes scapularis ticks serve as vectors for many human pathogens. The arthropod gut presents a pivotal microbial entry point and determines pathogen colonization and survival. We show that the gut microbiota of I. scapularis, a major vector of the Lyme disease spirochete Borrelia burgdorferi, influence spirochete colonization of ticks. Perturbing the gut microbiota of larval ticks reduced Borrelia colonization, and dysbiosed larvae displayed decreased expression of the transcription factor signal transducer and activator of transcription (STAT). Diminished STAT expression corresponded to lower expression of peritrophin, a key glycoprotein scaffold of the glycan-rich mucus-like peritrophic matrix (PM) that separates the gut lumen from the epithelium. The integrity of the I. scapularis PM was essential for B. burgdorferi to efficiently colonize the gut epithelium. These data elucidate a functional link between the gut microbiota, STAT-signaling, and pathogen colonization in the context of the gut epithelial barrier of an arthropod vector.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA.
| | - Nallakkandi Rajeevan
- Yale Center for Medical Informatics, Yale University School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Lei Liu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Yang O Zhao
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Julia Heisig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Jingyi Pan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Rebecca Eppler-Epstein
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Kathleen Deponte
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Durland Fish
- School of Epidemiology and Public Health, Yale University, New Haven, CT 06520, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA; The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
27
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
28
|
Kovacs-Simon A, Leuzzi R, Kasendra M, Minton N, Titball RW, Michell SL. Lipoprotein CD0873 is a novel adhesin of Clostridium difficile. J Infect Dis 2014; 210:274-84. [PMID: 24482399 DOI: 10.1093/infdis/jiu070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is a cause of antibiotic-associated diarrhea and colitis, a healthcare-associated intestinal disease. Colonization of the gut is a critical step in the course of infection. The C. difficile lipoprotein CD0873 was identified as a putative adhesin through a bioinformatics approach. Surface exposure of CD0873 was confirmed and a CD0873 mutant was generated. The CD0873 mutant showed a significant reduction in adherence to Caco-2 cells and wild-type bacteria preincubated with anti-CD0873 antibodies showed significantly decreased adherence to Caco-2 cells. In addition, we demonstrated that purified recombinant CD0873 protein alone associates with Caco-2 cells. This is the first definitive identification of a C. difficile adhesin, which now allows work to devise improved measures for preventing and treating disease.
Collapse
Affiliation(s)
- Andrea Kovacs-Simon
- Biosciences, College of Life and Environmental Sciences, University of Exeter
| | - Rosanna Leuzzi
- Research Center, Novartis Vaccines and Diagnostics, Siena, Italy
| | | | - Nigel Minton
- Clostridia Research Group, School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, United Kingdom
| | - Richard W Titball
- Biosciences, College of Life and Environmental Sciences, University of Exeter
| | - Stephen L Michell
- Biosciences, College of Life and Environmental Sciences, University of Exeter
| |
Collapse
|
29
|
Kung F, Anguita J, Pal U. Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector. Future Microbiol 2013; 8:41-56. [PMID: 23252492 DOI: 10.2217/fmb.12.121] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Borrelia burgdorferi, a pathogen transmitted by Ixodes ticks, is responsible for a prevalent illness known as Lyme disease, and a vaccine for human use is unavailable. Recently, genome sequences of several B. burgdorferi strains and Ixodes scapularis ticks have been determined. In addition, remarkable progress has been made in developing molecular genetic tools to study the pathogen and vector, including their intricate relationship. These developments are helping unravel the mechanisms by which Lyme disease pathogens survive in a complex enzootic infection cycle. Notable discoveries have already contributed to understanding the spirochete gene regulation accounting for the temporal and spatial expression of B. burgdorferi genes during distinct phases of the lifecycle. A number of pathogen and vector gene products have also been identified that contribute to microbial virulence and/or persistence. These research directions will enrich our knowledge of vector-borne infections and contribute towards the development of preventative strategies against Lyme disease.
Collapse
Affiliation(s)
- Faith Kung
- Department of Veterinary Medicine & Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
30
|
Borrelia burgdorferi bba66 gene inactivation results in attenuated mouse infection by tick transmission. Infect Immun 2013; 81:2488-98. [PMID: 23630963 DOI: 10.1128/iai.00140-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The impact of the Borrelia burgdorferi surface-localized immunogenic lipoprotein BBA66 on vector and host infection was evaluated by inactivating the encoding gene, bba66, and characterizing the mutant phenotype throughout the natural mouse-tick-mouse cycle. The BBA66-deficient mutant isolate, Bb(ΔA66), remained infectious in mice by needle inoculation of cultured organisms, but differences in spirochete burden and pathology in the tibiotarsal joint were observed relative to the parental wild-type (WT) strain. Ixodes scapularis larvae successfully acquired Bb(ΔA66) following feeding on infected mice, and the organisms persisted in these ticks through the molt to nymphs. A series of tick transmission experiments (n = 7) demonstrated that the ability of Bb(ΔA66)-infected nymphs to infect laboratory mice was significantly impaired compared to that of mice fed upon by WT-infected ticks. trans-complementation of Bb(ΔA66) with an intact copy of bba66 restored the WT infectious phenotype in mice via tick transmission. These results suggest a role for BBA66 in facilitating B. burgdorferi dissemination and transmission from the tick vector to the mammalian host as part of the disease process for Lyme borreliosis.
Collapse
|
31
|
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, exists in a zoonotic cycle involving an arthropod tick and mammalian host. Dissemination of the organism within and between these hosts depends upon the spirochete's ability to traverse through complex tissues. Additionally, the spirochete outruns the host immune cells while migrating through the dermis, suggesting the importance of B. burgdorferi motility in evading host clearance. B. burgdorferi's periplasmic flagellar filaments are composed primarily of a major protein, FlaB, and minor protein, FlaA. By constructing a flaB mutant that is nonmotile, we investigated for the first time the absolute requirement for motility in the mouse-tick life cycle of B. burgdorferi. We found that whereas wild-type cells are motile and have a flat-wave morphology, mutant cells were nonmotile and rod shaped. These mutants were unable to establish infection in C3H/HeN mice via either needle injection or tick bite. In addition, these mutants had decreased viability in fed ticks. Our studies provide substantial evidence that the periplasmic flagella, and consequently motility, are critical not only for optimal survival in ticks but also for infection of the mammalian host by the arthropod tick vector.
Collapse
|
32
|
Mannelli A, Bertolotti L, Gern L, Gray J. Ecology ofBorrelia burgdorferi sensu latoin Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiol Rev 2012; 36:837-61. [DOI: 10.1111/j.1574-6976.2011.00312.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 09/28/2011] [Accepted: 10/18/2011] [Indexed: 11/30/2022] Open
|
33
|
Kenedy MR, Lenhart TR, Akins DR. The role of Borrelia burgdorferi outer surface proteins. ACTA ACUST UNITED AC 2012; 66:1-19. [PMID: 22540535 DOI: 10.1111/j.1574-695x.2012.00980.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/13/2012] [Accepted: 04/25/2012] [Indexed: 12/18/2022]
Abstract
Human pathogenic spirochetes causing Lyme disease belong to the Borrelia burgdorferi sensu lato complex. Borrelia burgdorferi organisms are extracellular pathogens transmitted to humans through the bite of Ixodes spp. ticks. These spirochetes are unique in that they can cause chronic infection and persist in the infected human, even though a robust humoral and cellular immune response is produced by the infected host. How this extracellular pathogen is able to evade the host immune response for such long periods of time is currently unclear. To gain a better understanding of how this organism persists in the infected human, many laboratories have focused on identifying and characterizing outer surface proteins of B. burgdorferi. As the interface between B. burgdorferi and its human host is its outer surface, proteins localized to the outer membrane must play an important role in dissemination, virulence, tissue tropism, and immune evasion. Over the last two decades, numerous outer surface proteins from B. burgdorferi have been identified, and more recent studies have begun to elucidate the functional role(s) of many borrelial outer surface proteins. This review summarizes the outer surface proteins identified in B. burgdorferi to date and provides detailed insight into the functions of many of these proteins as they relate to the unique parasitic strategy of this spirochetal pathogen.
Collapse
Affiliation(s)
- Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | |
Collapse
|
34
|
Casjens SR, Mongodin EF, Qiu WG, Luft BJ, Schutzer SE, Gilcrease EB, Huang WM, Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF, Dimitrov GI, Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One 2012; 7:e33280. [PMID: 22432010 PMCID: PMC3303823 DOI: 10.1371/journal.pone.0033280] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/06/2012] [Indexed: 11/21/2022] Open
Abstract
Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33–40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Neelakanta G, Hudson AM, Sultana H, Cooley L, Fikrig E. Expression of Ixodes scapularis antifreeze glycoprotein enhances cold tolerance in Drosophila melanogaster. PLoS One 2012; 7:e33447. [PMID: 22428051 PMCID: PMC3302814 DOI: 10.1371/journal.pone.0033447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/09/2012] [Indexed: 11/23/2022] Open
Abstract
Drosophila melanogaster experience cold shock injury and die when exposed to low non-freezing temperatures. In this study, we generated transgenic D. melanogaster that express putative Ixodes scapularis antifreeze glycoprotein (IAFGP) and show that the presence of IAFGP increases the ability of flies to survive in the cold. Male and female adult iafgp-expressing D. melanogaster exhibited higher survival rates compared with controls when placed at non-freezing temperatures. Increased hatching rates were evident in embryos expressing IAFGP when exposed to the cold. The TUNEL assay showed that flight muscles from iafgp-expressing female adult flies exhibited less apoptotic damage upon exposure to non-freezing temperatures in comparison to control flies. Collectively, these data suggest that expression of iafgp increases cold tolerance in flies by preventing apoptosis. This study defines a molecular basis for the role of an antifreeze protein in cryoprotection of flies.
Collapse
Affiliation(s)
- Girish Neelakanta
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Andrew M. Hudson
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hameeda Sultana
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular, Cellular, and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Kumar M, Kaur S, Kariu T, Yang X, Bossis I, Anderson JF, Pal U. Borrelia burgdorferi BBA52 is a potential target for transmission blocking Lyme disease vaccine. Vaccine 2011; 29:9012-9. [PMID: 21945261 DOI: 10.1016/j.vaccine.2011.09.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022]
Abstract
The surface-exposed antigens of Borrelia burgdorferi represent important targets for induction of protective host immune responses. BBA52 is preferentially expressed by B. burgdorferi in the feeding tick, and a targeted deletion of bba52 interferes with vector-host transitions in vivo. In this study, we demonstrate that BBA52 is an outer membrane surface-exposed protein and that disulfide bridges take part in the homo-oligomeric assembly of native protein. BBA52 antibodies lack detectable borreliacidal activities in vitro. However, active immunization studies demonstrated that BBA52 vaccinated mice were significantly less susceptible to subsequent tick-borne challenge infection. Similarly, passive transfer of BBA52 antibodies in ticks completely blocked B. burgdorferi transmission from feeding ticks to naïve mice. Taken together, these studies highlight the role of BBA52 in spirochete dissemination from ticks to mice and demonstrate the potential of BBA52 antibody-mediated strategy to complement the ongoing efforts to develop vaccines for blocking the transmission of B. burgdorferi.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, United States
| | | | | | | | | | | | | |
Collapse
|
37
|
He M, Ouyang Z, Troxell B, Xu H, Moh A, Piesman J, Norgard MV, Gomelsky M, Yang XF. Cyclic di-GMP is essential for the survival of the lyme disease spirochete in ticks. PLoS Pathog 2011; 7:e1002133. [PMID: 21738477 PMCID: PMC3128128 DOI: 10.1371/journal.ppat.1002133] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/18/2011] [Indexed: 11/19/2022] Open
Abstract
Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that modulates many biological processes. Although its role in bacterial pathogenesis during mammalian infection has been documented, the role of c-di-GMP in a pathogen's life cycle within a vector host is less understood. The enzootic cycle of the Lyme disease pathogen Borrelia burgdorferi involves both a mammalian host and an Ixodes tick vector. The B. burgdorferi genome encodes a single copy of the diguanylate cyclase gene (rrp1), which is responsible for c-di-GMP synthesis. To determine the role of c-di-GMP in the life cycle of B. burgdorferi, an Rrp1-deficient B. burgdorferi strain was generated. The rrp1 mutant remains infectious in the mammalian host but cannot survive in the tick vector. Microarray analyses revealed that expression of a four-gene operon involved in glycerol transport and metabolism, bb0240-bb0243, was significantly downregulated by abrogation of Rrp1. In vitro, the rrp1 mutant is impaired in growth in the media containing glycerol as the carbon source (BSK-glycerol). To determine the contribution of the glycerol metabolic pathway to the rrp1 mutant phenotype, a glp mutant, in which the entire bb0240-bb0243 operon is not expressed, was generated. Similar to the rrp1 mutant, the glp mutant has a growth defect in BSK-glycerol medium. In vivo, the glp mutant is also infectious in mice but has reduced survival in ticks. Constitutive expression of the bb0240-bb0243 operon in the rrp1 mutant fully rescues the growth defect in BSK-glycerol medium and partially restores survival of the rrp1 mutant in ticks. Thus, c-di-GMP appears to govern a catabolic switch in B. burgdorferi and plays a vital role in the tick part of the spirochetal enzootic cycle. This work provides the first evidence that c-di-GMP is essential for a pathogen's survival in its vector host.
Collapse
Affiliation(s)
- Ming He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Zhiming Ouyang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, Unites States of America
| | - Bryan Troxell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Haijun Xu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Akira Moh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph Piesman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Michael V. Norgard
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, Unites States of America
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
38
|
Patton TG, Dietrich G, Dolan MC, Piesman J, Carroll JA, Gilmore RD. Functional analysis of the Borrelia burgdorferi bba64 gene product in murine infection via tick infestation. PLoS One 2011; 6:e19536. [PMID: 21559293 PMCID: PMC3086921 DOI: 10.1371/journal.pone.0019536] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/31/2011] [Indexed: 11/26/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme borreliosis, is transmitted to humans from the bite of Ixodes spp. ticks. During the borrelial tick-to-mammal life cycle, B. burgdorferi must adapt to many environmental changes by regulating several genes, including bba64. Our laboratory recently demonstrated that the bba64 gene product is necessary for mouse infectivity when B. burgdorferi is transmitted by an infected tick bite, but not via needle inoculation. In this study we investigated the phenotypic properties of a bba64 mutant strain, including 1) replication during tick engorgement, 2) migration into the nymphal salivary glands, 3) host transmission, and 4) susceptibility to the MyD88-dependent innate immune response. Results revealed that the bba64 mutant's attenuated infectivity by tick bite was not due to a growth defect inside an actively feeding nymphal tick, or failure to invade the salivary glands. These findings suggested there was either a lack of spirochete transmission to the host dermis or increased susceptibility to the host's innate immune response. Further experiments showed the bba64 mutant was not culturable from mouse skin taken at the nymphal bite site and was unable to establish infection in MyD88-deficient mice via tick infestation. Collectively, the results of this study indicate that BBA64 functions at the salivary gland-to-host delivery interface of vector transmission and is not involved in resistance to MyD88-mediated innate immunity.
Collapse
Affiliation(s)
- Toni G. Patton
- Microbiology and Pathogenesis Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Gabrielle Dietrich
- Tick-Borne Diseases Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Marc C. Dolan
- Tick-Borne Diseases Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Joseph Piesman
- Tick-Borne Diseases Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - James A. Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert D. Gilmore
- Microbiology and Pathogenesis Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
39
|
Biškup UG, Strle F, Ružić-Sabljić E. Loss of plasmids of Borrelia burgdorferi sensu lato during prolonged in vitro cultivation. Plasmid 2011; 66:1-6. [PMID: 21419795 DOI: 10.1016/j.plasmid.2011.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 11/17/2022]
Abstract
In the present study we analyzed stability of plasmid content in 34 Borrelia strains of three different species (13 Borrelia afzelii, 10 Borrelia garinii and 11 Borrelia burgodorferi sensu stricto) using pulse field gel electrophoresis (PFGE). During long-term in vitro cultivation consisting of 50 passages, plasmid loss was established in 46% of B. afzelii, 40% of B. garinii and 36% of B. burgdorferi sensu stricto strains. Loss of plasmids occurred as early as between the 5th and 10th passage, affected only plasmids in the range 9-41 kb but not plasmids in the range 50-68 kb and manifested with the loss of one to up to three plasmids.
Collapse
Affiliation(s)
- Urška Glinšek Biškup
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
40
|
Fukunaga M, Tabuchi N. [Molecular mechanism of the borrelial proteins at interface with host and vector tick interactions]. Nihon Saikingaku Zasshi 2010; 65:343-353. [PMID: 20808056 DOI: 10.3412/jsb.65.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Masahito Fukunaga
- Laboratory of Molecular Microbiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Gakuen-cho, Fukuyama, Hiroshima
| | | |
Collapse
|
41
|
Abstract
Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases.
Collapse
|
42
|
Neelakanta G, Sultana H, Fish D, Anderson JF, Fikrig E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J Clin Invest 2010; 120:3179-90. [PMID: 20739755 DOI: 10.1172/jci42868] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/16/2010] [Indexed: 11/17/2022] Open
Abstract
In the United States, Ixodes scapularis ticks overwinter in the Northeast and Upper Midwest and transmit the agent of human granulocytic anaplasmosis, Anaplasma phagocytophilum, among other pathogens. We now show that the presence of A. phagocytophilum in I. scapularis ticks increases their ability to survive in the cold. We identified an I. scapularis antifreeze glycoprotein, designated IAFGP, and demonstrated via RNAi knockdown studies the importance of IAFGP for the survival of I. scapularis ticks in a cold environment. Transfection studies also show that IAFGP increased the viability of yeast cells subjected to cold temperature. Remarkably, A. phagocytophilum induced the expression of iafgp, thereby increasing the cold tolerance and survival of I. scapularis. These data define a molecular basis for symbiosis between a human pathogenic bacterium and its arthropod vector and delineate what we believe to be a new pathway that may be targeted to alter the life cycle of this microbe and its invertebrate host.
Collapse
Affiliation(s)
- Girish Neelakanta
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA
| | | | | | | | | |
Collapse
|
43
|
Sultana H, Neelakanta G, Kantor FS, Malawista SE, Fish D, Montgomery RR, Fikrig E. Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. ACTA ACUST UNITED AC 2010; 207:1727-43. [PMID: 20660616 PMCID: PMC2916137 DOI: 10.1084/jem.20100276] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anaplasma phagocytophilum, the agent of human anaplasmosis, persists in ticks and mammals. We show that A. phagocytophilum induces the phosphorylation of actin in an Ixodes ricinus tick cell line and Ixodes scapularis ticks, to alter the ratio of monomeric/filamentous (G/F) actin. A. phagocytophilum–induced actin phosphorylation was dependent on Ixodes p21-activated kinase (IPAK1)–mediated signaling. A. phagocytophilum stimulated IPAK1 activity via the G protein–coupled receptor Gβγ subunits, which mediated phosphoinositide 3-kinase (PI3K) activation. Disruption of Ixodes gβγ, pi3k, and pak1 reduced actin phosphorylation and bacterial acquisition by ticks. A. phagocytophilum–induced actin phosphorylation resulted in increased nuclear G actin and phosphorylated actin. The latter, in association with RNA polymerase II (RNAPII), enhanced binding of TATA box–binding protein to RNAPII and selectively promoted expression of salp16, a gene crucial for A. phagocytophilum survival. These data define a mechanism that A. phagocytophilum uses to selectively alter arthropod gene expression for its benefit and suggest new strategies to interfere with the life cycle of this intracellular pathogen, and perhaps other Rickettsia-related microbes of medical importance.
Collapse
Affiliation(s)
- Hameeda Sultana
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Analysis of the
dbpBA
Upstream Regulatory Region Controlled by RpoS in
Borrelia burgdorferi. J Bacteriol 2010. [DOI: 10.1128/jb.00331-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Xu Q, McShan K, Liang FT. Two regulatory elements required for enhancing ospA expression in Borrelia burgdorferi grown in vitro but repressing its expression during mammalian infection. MICROBIOLOGY-SGM 2010; 156:2194-2204. [PMID: 20395273 PMCID: PMC3068683 DOI: 10.1099/mic.0.036608-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During cycling between the tick vector and a mammal, the Lyme disease spirochaete Borrelia burgdorferi must coordinate expression of outer-surface proteins (Osps) A and B to quickly respond to environmental changes. The pathogen abundantly produces OspA/B in the tick, but represses their expression during mammalian infection. This paper reports a regulatory structure, consisting of two sequences flanking the ospAB promoter, that is required for enhancing ospA expression in B. burgdorferi grown in vitro, but repressing its expression during murine infection. Deletion or replacement of either the upstream or downstream sequence of the ospAB promoter caused a significant decrease in ospA expression in vitro, but a dramatic increase during murine infection. Fusion of either sequence with the flaB reporter promoter led to increased expression of an ospA reporter gene in vitro, but a decrease in the murine host. Furthermore, simultaneous fusion of both sequences with the reporter promoter showed a synergistic effect in enhancing expression of the ospA reporter in vitro, but repressing its expression during murine infection. Taken together, the results demonstrate that the regulatory structure functions oppositely in the two different environments and potentially provides B. burgdorferi with a molecular mechanism to quickly adapt to the distinct environments during its enzootic life cycle.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kristy McShan
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fang Ting Liang
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
46
|
The bba64 gene of Borrelia burgdorferi, the Lyme disease agent, is critical for mammalian infection via tick bite transmission. Proc Natl Acad Sci U S A 2010; 107:7515-20. [PMID: 20368453 DOI: 10.1073/pnas.1000268107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spirochetal agent of Lyme disease, Borrelia burgdorferi, is transmitted by bites of Ixodes ticks to mammalian reservoir hosts and humans. The mechanism(s) by which the organism is trafficked from vector to host is poorly understood. In this study, we demonstrate that a B. burgdorferi mutant strain deficient in the synthesis of the bba64 gene product was incapable of infecting mice via tick bite even though the mutant was (i) infectious in mice when introduced by needle inoculation, (ii) acquired by larval ticks feeding on infected mice, and (iii) able to persist through tick molting stages. This finding of a B. burgdorferi gene required for pathogen transfer and/or survival from the tick to the susceptible host represents an important breakthrough toward understanding transmission mechanisms involved for the Lyme disease agent.
Collapse
|
47
|
Sequences essential for transmission of Spiroplasma citri by its leafhopper vector, Circulifer haematoceps, revealed by plasmid curing and replacement based on incompatibility. Appl Environ Microbiol 2010; 76:3198-205. [PMID: 20305023 DOI: 10.1128/aem.00181-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spiroplasma citri GII3 contains highly related low-copy-number plasmids pSci1 to -6. Despite the strong similarities between their replication regions, these plasmids coexist in the spiroplasma cells, indicating that they are mutually compatible. The pSci1 to -6 plasmids encode the membrane proteins known as S. citri adhesion-related proteins (ScARPs) (pSci1 to -5) and the hydrophilic protein P32 (pSci6), which had been tentatively associated with insect transmission, as they were not detected in non-insect-transmissible strains. With the aim of further investigating the role of plasmid-encoded determinants in insect transmission, we have constructed S. citri mutant strains that differ in their plasmid contents by developing a plasmid curing/replacement strategy based on the incompatibility of plasmids having identical replication regions. Experimental transmission of these S. citri plasmid mutants through injection into the leafhopper vector Circulifer haematoceps revealed that pSci6, more precisely, the pSci6_06 coding sequence, encoding a protein of unknown function, was essential for transmission. In contrast, ScARPs and P32 were dispensable for both acquisition and transmission of the spiroplasmas by the leafhopper vector, even though S. citri mutants lacking pSci1 to -5 (encoding ScARPs) were acquired and transmitted at lower efficiencies than the wild-type strain GII3.
Collapse
|
48
|
Analysis of the dbpBA upstream regulatory region controlled by RpoS in Borrelia burgdorferi. J Bacteriol 2010; 192:1965-74. [PMID: 20118265 DOI: 10.1128/jb.01616-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Decorin-binding proteins B and A (DbpB and DbpA) are thought to play important roles in Borrelia burgdorferi pathogenesis by serving as adhesins for the extracellular matrix. It has been established that the expression of DbpBA is governed by the Rrp2-RpoN-RpoS regulatory pathway. However, the precise mechanism underlying the control of DbpBA expression has been unclear. In particular, it has been unknown whether RpoS influences DbpBA expression directly or indirectly (through an additional regulatory molecule[s]). Here, employing a wild-type B. burgdorferi strain and a dbpBA-deficient mutant, we analyzed the 5' genetic elements of the dbpBA operon using deletion analysis, coupled with luciferase reporter assays, quantitative reverse transcription PCR, and immunoblot analyses. A minimal promoter, encompassed within 70 bp upstream of the ATG start codon of dbpBA, was identified and found to be necessary and sufficient to initiate dbpBA transcription. The minimal dbpBA promoter was responsive to environmental stimuli such as temperature, pH, and whole blood. Two in silico-identified inverted repeat elements were not involved in the response of dbpBA expression to in vitro stimulation by environmental factors. The expression of dbpBA from the minimal promoter was abolished when rpoS was inactivated. In addition, the targeted mutagenesis of a C at position -14 within the extended -10 region of dbpBA, which has been postulated to be strategic for Esigma(S) binding in Escherichia coli, abolished dbpBA expression in B. burgdorferi. These combined data suggest that the Rrp2-RpoN-RpoS pathway controls dbpBA expression by the direct binding of RpoS to an RpoS-dependent promoter. However, given that there remains a distinct difference between the expression of DbpBA and other genes under the direct control of RpoS (e.g., OspC), our findings do not preclude the existence of another layer of gene regulation that may contribute to the modulation of DbpBA expression via an as-yet unknown mechanism.
Collapse
|
49
|
Rhodes RG, Atoyan JA, Nelson DR. The chitobiose transporter, chbC, is required for chitin utilization in Borrelia burgdorferi. BMC Microbiol 2010; 10:21. [PMID: 20102636 PMCID: PMC2845121 DOI: 10.1186/1471-2180-10-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 01/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bacterium Borrelia burgdorferi, the causative agent of Lyme disease, is a limited-genome organism that must obtain many of its biochemical building blocks, including N-acetylglucosamine (GlcNAc), from its tick or vertebrate host. GlcNAc can be imported into the cell as a monomer or dimer (chitobiose), and the annotation for several B. burgdorferi genes suggests that this organism may be able to degrade and utilize chitin, a polymer of GlcNAc. We investigated the ability of B. burgdorferi to utilize chitin in the absence of free GlcNAc, and we attempted to identify genes involved in the process. We also examined the role of RpoS, one of two alternative sigma factors present in B. burgdorferi, in the regulation of chitin utilization. RESULTS Using fluorescent chitinase substrates, we demonstrated an inherent chitinase activity in rabbit serum, a component of the B. burgdorferi growth medium (BSK-II). After inactivating this activity by boiling, we showed that wild-type cells can utilize chitotriose, chitohexose or coarse chitin flakes in the presence of boiled serum and in the absence of free GlcNAc. Further, we replaced the serum component of BSK-II with a lipid extract and still observed growth on chitin substrates without free GlcNAc. In an attempt to knockout B. burgdorferi chitinase activity, we generated mutations in two genes (bb0002 and bb0620) predicted to encode enzymes that could potentially cleave the beta-(1,4)-glycosidic linkages found in chitin. While these mutations had no effect on the ability to utilize chitin, a mutation in the gene encoding the chitobiose transporter (bbb04, chbC) did block utilization of chitin substrates by B. burgdorferi. Finally, we provide evidence that chitin utilization in an rpoS mutant is delayed compared to wild-type cells, indicating that RpoS may be involved in the regulation of chitin degradation by this organism. CONCLUSIONS The data collected in this study demonstrate that B. burgdorferi can utilize chitin as a source of GlcNAc in the absence of free GlcNAc, and suggest that chitin is cleaved into dimers before being imported across the cytoplasmic membrane via the chitobiose transporter. In addition, our data suggest that the enzyme(s) involved in chitin degradation are at least partially regulated by the alternative sigma factor RpoS.
Collapse
Affiliation(s)
- Ryan G Rhodes
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | | | | |
Collapse
|
50
|
Verma A, Brissette CA, Bowman A, Stevenson B. Borrelia burgdorferi BmpA is a laminin-binding protein. Infect Immun 2009; 77:4940-6. [PMID: 19703983 PMCID: PMC2772523 DOI: 10.1128/iai.01420-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/02/2009] [Accepted: 08/16/2009] [Indexed: 11/20/2022] Open
Abstract
The Borrelia burgdorferi BmpA outer surface protein plays a significant role in mammalian infection by the Lyme disease spirochete and is an important antigen for the serodiagnosis of human infection. B. burgdorferi adheres to host extracellular matrix components, including laminin. The results of our studies indicate that BmpA and its three paralogous proteins, BmpB, BmpC, and BmpD, all bind to mammalian laminin. BmpA did not bind mammalian type I or type IV collagens or fibronectin. BmpA-directed antibodies significantly inhibited the adherence of live B. burgdorferi to laminin. The laminin-binding domain of BmpA was mapped to the carboxy-terminal 80 amino acids. Solubilized collagen inhibited BmpA-laminin binding, suggesting interactions through the collagen-binding domains of laminin. These results, together with previous data, indicate that BmpA and its paralogs are targets for the development of preventative and curative therapies for Lyme disease.
Collapse
Affiliation(s)
- Ashutosh Verma
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Catherine A. Brissette
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Amy Bowman
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| |
Collapse
|