1
|
Burton EM, Liang JH, Mitra B, Asara JM, Gewurz BE. Epstein-Barr Virus Latent Membrane Protein 1 Subverts IMPDH pathways to drive B-cell oncometabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622457. [PMID: 39574729 PMCID: PMC11581047 DOI: 10.1101/2024.11.07.622457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Epstein-Barr virus (EBV) is associated with multiple types of cancers, many of which express the key viral oncoprotein Latent Membrane Protein 1 (LMP1). LMP1 is the only EBV-encoded protein whose expression is sufficient to transform both epithelial and B-cells. Although metabolism reprogramming is a cancer hallmark, much remains to be learned about how LMP1 alters lymphocyte oncometabolism. To gain insights into key B-cell metabolic pathways subverted by LMP1, we performed systematic metabolomic analyses on B cells with conditional LMP1 expression. This approach highlighted that LMP highly induces de novo purine biosynthesis, with xanthosine-5-P (XMP) as one of the most highly LMP1-upregulated metabolites. Consequently, IMPDH inhibition by mycophenolic acid (MPA) triggered apoptosis of LMP1-expressing EBV-transformed lymphoblastoid cell lines (LCL), a key model for EBV-driven immunoblastic lymphomas. Whereas MPA instead caused growth arrest of Burkitt lymphoma cells with the EBV latency I program, conditional LMP1 expression triggered their apoptosis. Although both IMPDH isozymes are expressed in LCLs, only IMPDH2 was critical for LCL survival, whereas both contributed to proliferation of Burkitt cells with the EBV latency I program. Both LMP1 C-terminal cytoplasmic tail domains critical for primary human B-cell transformation were important for XMP production, and each contributed to LMP1-driven Burkitt cell sensitivity to MPA. MPA also de-repressed EBV lytic antigens including LMP1 in latency I Burkitt cells, highlighting crosstalk between the purine biosynthesis pathway and the EBV epigenome. These results suggest novel oncometabolism-based therapeutic approaches to LMP1-driven lymphomas. IMPORTANCE Altered metabolism is a hallmark of cancer, yet much remains to be learned about how EBV rewires host cell metabolism to support multiple malignancies. While the oncogene LMP1 is the only EBV-encoded gene that is sufficient to transform murine B-cells and rodent fibroblasts, knowledge has remained incomplete about how LMP1 alters host cell oncometabolism to aberrantly drive infected B-cell growth and survival. Likewise, it has remained unknown whether LMP1 expression creates metabolic vulnerabilities that can be targeted by small molecule approaches to trigger EBV-transformed B-cell programmed cell death. We therefore used metabolomic profiling to define how LMP1 signaling remodels the B-cell metabolome. We found that LMP1 upregulated purine nucleotide biosynthesis, likely to meet increased demand. Consequently, LMP1 expression sensitized Burkitt B-cells to growth arrest upon inosine monophosphate dehydrogenase blockade. Thus, while LMP1 itself may not be a therapeutic target, its signaling induces dependence on downstream druggable host cell nucleotide metabolism enzymes, suggesting rational therapeutic approaches.
Collapse
|
2
|
Alsaadawe M, Radman BA, Long J, Alsaadawi M, Fang W, Lyu X. Epstein Barr virus: A cellular hijacker in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189218. [PMID: 39549877 DOI: 10.1016/j.bbcan.2024.189218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Numerous studies have demonstrated the importance of the Epstein-Barr Virus (EBV), which was initially identified in 1964 while studying Burkitt's lymphoma, in the development of a number of cancers, including nasopharyngeal carcinoma, Hodgkin's lymphoma, Burkitt's lymphoma, and EBV-associated gastric carcinoma. Gammaherpesvirus EBV is extremely common; by adulthood, over 90 % of people worldwide have been infected. Usually, the virus causes a permanent latent infection in B cells, epithelial cells, and NK/T cells. It then contributes to oncogenesis by inhibiting apoptosis and promoting unchecked cell proliferation through its latent proteins, which include EBNA-1, LMP1, and LMP2A. Tumor progression further accelerated by EBV's capacity to transition between latent and lytic phases, especially in cases of nasopharyngeal carcinoma. Although our understanding of the molecular underpinnings of EBV has advanced, there are still difficulties in identifying latent infections and creating targeted therapeutics. To tackle EBV-associated malignancies, current research efforts are concentrated on developing vaccines, developing better diagnostic tools, and developing targeted treatments. In order to improve treatment approaches and lower the incidence of EBV-related cancers worldwide, more research into the relationship between EBV and immune evasion and cancer formation is necessary.
Collapse
Affiliation(s)
- Moyed Alsaadawe
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Al-Qadisiyah Education Directorate, Ministry of Education, Al-Qadisiyah, Iraq
| | - Bakeel A Radman
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Biology, College of Science and Education, Albaydha University, Albaydha, Yemen
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mohenned Alsaadawi
- Education College of Pure Science, Al-Muthanna University, Al-Muthanna, Iraq
| | - Weiyi Fang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Liao Y, Yan J, Beri NR, Giulino-Roth L, Cesarman E, Gewurz BE. Germinal center cytokine driven epigenetic control of Epstein-Barr virus latency gene expression. PLoS Pathog 2024; 20:e1011939. [PMID: 38683861 PMCID: PMC11081508 DOI: 10.1371/journal.ppat.1011939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/09/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.
Collapse
Affiliation(s)
- Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinjie Yan
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Nina R. Beri
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lisa Giulino-Roth
- Weill Cornell Medical College, New York, New York, United States of America
| | - Ethel Cesarman
- Weill Cornell Medical College, New York, New York, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Wang WT, Xing TY, Du KX, Hua W, Guo JR, Duan ZW, Wu YF, Wu JZ, Li Y, Yin H, Shen HR, Wang L, Li JY, Liang JH, Xu W. CD30 protects EBV-positive diffuse large B-cell lymphoma cells against mitochondrial dysfunction through BNIP3-mediated mitophagy. Cancer Lett 2024; 583:216616. [PMID: 38211650 DOI: 10.1016/j.canlet.2024.216616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Epstein-Barr virus (EBV) positive diffuse large B-cell lymphoma (EBV+ DLBCL) predicts poor prognosis and CD30 expression aggravates the worse consequences. Here, we reported that CD30 positivity was an independent prognostic indicator in EBV+ DLBCL patients in a retrospective cohort study. We harnessed CRISPR/Cas9 editing to engineer the first loss-of-function models of CD30 deficiency to identify that CD30 was critical for EBV+ DLBCL growth and survival. We established a pathway that EBV infection mediated CD30 expression through EBV-encoded latent membrane protein 1 (LMP1), which involved NF-κB signaling. CRISPR CD30 knockout significantly repressed BCL2 interacting protein 3 (BNIP3) expression and co-IP assay indicated a binding between CD30 and BNIP3. Moreover, silencing of CD30 induced mitochondrial dysfunction and suppressed mitophagy, resulting in the accumulation of damaged mitochondria by depressing BNIP3 expression. Additionally, CRISPR BNIP3 knockout caused proliferation defects and increased sensitivity to apoptosis. All the findings reveal a strong relationship between mitophagy and adverse prognosis of EBV+ DLBCL and discover a new regulatory mechanism of BNIP3-mediated mitophagy, which may help develop effective treatment regimens with anti-CD30 antibody brentuximab vedotin to improve the prognosis of CD30+ EBV+ DLBCL patients.
Collapse
Affiliation(s)
- Wei-Ting Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Tong-Yao Xing
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Kai-Xin Du
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Wei Hua
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jing-Ran Guo
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Zi-Wen Duan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yi-Fan Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jia-Zhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Hua Yin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Hao-Rui Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jin-Hua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
| |
Collapse
|
5
|
Yifei L, Jinjie Y, Beri NR, Roth LG, Ethel C, Benjamin E. G. Germinal Center Cytokines Driven Epigenetic Control of Epstein-Barr Virus Latency Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573986. [PMID: 38260430 PMCID: PMC10802360 DOI: 10.1101/2024.01.02.573986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.
Collapse
Affiliation(s)
- Liao Yifei
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Yan Jinjie
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Nina R. Beri
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Lisa G. Roth
- Weill Cornell Medical College, New York, NY 10065
| | | | - Gewurz Benjamin E.
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
- Harvard Program in Virology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
6
|
Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization of target gene regulation by the two Epstein-Barr virus oncogene LMP1 domains essential for B-cell transformation. mBio 2023; 14:e0233823. [PMID: 38009935 PMCID: PMC10746160 DOI: 10.1128/mbio.02338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus (EBV) causes multiple human cancers, including B-cell lymphomas. In cell culture, EBV converts healthy human B-cells into immortalized ones that grow continuously, which model post-transplant lymphomas. Constitutive signaling from two cytoplasmic tail domains of the EBV oncogene latent membrane protein 1 (LMP1) is required for this transformation, yet there has not been systematic analysis of their host gene targets. We identified that only signaling from the membrane proximal domain is required for survival of these EBV-immortalized cells and that its loss triggers apoptosis. We identified key LMP1 target genes, whose abundance changed significantly with loss of LMP1 signals, or that were instead upregulated in response to switching on signaling by one or both LMP1 domains in an EBV-uninfected human B-cell model. These included major anti-apoptotic factors necessary for EBV-infected B-cell survival. Bioinformatics analyses identified clusters of B-cell genes that respond differently to signaling by either or both domains.
Collapse
Affiliation(s)
- Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Rose Beri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization of Target Gene Regulation by the Two Epstein-Barr Virus Oncogene LMP1 Domains Essential for B-cell Transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536234. [PMID: 37090591 PMCID: PMC10120669 DOI: 10.1101/2023.04.10.536234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1) mimics CD40 signaling and is expressed by multiple malignancies. Two LMP1 C-terminal cytoplasmic tail regions, termed transformation essential sites (TES) 1 and 2, are critical for EBV transformation of B lymphocytes into immortalized lymphoblastoid cell lines (LCL). However, TES1 versus TES2 B-cell target genes have remained incompletely characterized, and whether both are required for LCL survival has remained unknown. To define LCL LMP1 target genes, we profiled transcriptome-wide effects of acute LMP1 CRISPR knockout (KO) prior to cell death. To then characterize specific LCL TES1 and TES2 roles, we conditionally expressed wildtype, TES1 null, TES2 null or double TES1/TES2 null LMP1 alleles upon endogenous LMP1 KO. Unexpectedly, TES1 but not TES2 signaling was critical for LCL survival. The LCL dependency factor cFLIP, which plays obligatory roles in blockade of LCL apoptosis, was highly downmodulated by loss of TES1 signaling. To further characterize TES1 vs TES2 roles, we conditionally expressed wildtype, TES1 and/or TES2 null LMP1 alleles in two Burkitt models. Systematic RNAseq analyses revealed gene clusters that responded more strongly to TES1 versus TES2, that respond strongly to both or that are oppositely regulated. Robust TES1 effects on cFLIP induction were again noted. TES1 and 2 effects on expression of additional LCL dependency factors, including BATF and IRF4, and on EBV super-enhancers were identified. Collectively, these studies suggest a model by which LMP1 TES1 and TES2 jointly remodel the B-cell transcriptome and highlight TES1 as a key therapeutic target.
Collapse
Affiliation(s)
- Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nina Rose Beri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
8
|
Liu S, Liu S, Yu Z, Zhou W, Zheng M, Gu R, Hong J, Yang Z, Chi X, Guo G, Li X, Chen N, Huang S, Wang S, Chen JL. STAT3 regulates antiviral immunity by suppressing excessive interferon signaling. Cell Rep 2023; 42:112806. [PMID: 37440406 DOI: 10.1016/j.celrep.2023.112806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
This study identifies interleukin-6 (IL-6)-independent phosphorylation of STAT3 Y705 at the early stage of infection with several viruses, including influenza A virus (IAV). Such activation of STAT3 is dependent on the retinoic acid-induced gene I/mitochondrial antiviral-signaling protein/spleen tyrosine kinase (RIG-I/MAVS/Syk) axis and critical for antiviral immunity. We generate STAT3Y705F/+ knockin mice that display a remarkably suppressed antiviral response to IAV infection, as evidenced by impaired expression of several antiviral genes, severe lung tissue injury, and poor survival compared with wild-type animals. Mechanistically, STAT3 Y705 phosphorylation restrains IAV pathogenesis by repressing excessive production of interferons (IFNs). Blocking phosphorylation significantly augments the expression of type I and III IFNs, potentiating the virulence of IAV in mice. Importantly, knockout of IFNAR1 or IFNLR1 in STAT3Y705F/+ mice protects the animals from lung injury and reduces viral load. The results indicate that activation of STAT3 by Y705 phosphorylation is vital for establishment of effective antiviral immunity by suppressing excessive IFN signaling induced by viral infection.
Collapse
Affiliation(s)
- Shasha Liu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siya Liu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziding Yu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenzhuo Zhou
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meichun Zheng
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongrong Gu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinxuan Hong
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhou Yang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaojuan Chi
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guijie Guo
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Li
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Song Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| |
Collapse
|
9
|
Zhang Y, Lyu H, Guo R, Cao X, Feng J, Jin X, Lu W, Zhao M. Epstein‒Barr virus-associated cellular immunotherapy. Cytotherapy 2023:S1465-3249(23)00099-3. [PMID: 37149797 DOI: 10.1016/j.jcyt.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Epstein‒Barr virus (EBV) is a human herpes virus that is saliva-transmissible and universally asymptomatic. It has been confirmed that more than 90% of the population is latently infected with EBV for life. EBV can cause a variety of related cancers, such as nasopharyngeal carcinoma, diffuse large B-cell lymphoma, and Burkitt lymphoma. Currently, many clinical studies have demonstrated that EBV-specific cytotoxic T lymphocytes and other cell therapies can be safely and effectively transfused to prevent and treat some diseases caused by EBV. This review will mainly focus on discussing EBV-specific cytotoxic T lymphocytes and will touch on therapeutic EBV vaccines and chimeric antigen receptor T-cell therapy briefly.
Collapse
Affiliation(s)
- Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, China.
| | - Hairong Lyu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Ruiting Guo
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Juan Feng
- Tianjin Jizhou District People's Hospital, Tianjin, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China.
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
10
|
Ferrara G, Longobardi C, Damiano S, Ciarcia R, Pagnini U, Montagnaro S. Modifications of the PI3K/Akt/mTOR axis during FeHV-1 infection in permissive cells. Front Vet Sci 2023; 10:1157350. [PMID: 37026095 PMCID: PMC10072329 DOI: 10.3389/fvets.2023.1157350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
FeHV-1 is the causative agent of infectious rhinotracheitis in cats. The relationship between viral infection and the PI3K/Akt/mTOR pathway, as well as its function in crucial physiological processes like as autophagy, apoptosis or the IFN induction cascade is known for other varicelloviruses. However, there is no information on whether autophagy is activated during FeHV-1 infection nor on how this infection modifies PI3K/Akt/mTOR pathway. In this work, we aim to elucidate the involvement of this pathway during cytolytic infection by FeHV-1 in permissive cell lines. Using a phenotypic approach, the expression of proteins involved in the PI3K/Akt/mTOR pathway was examined by Western blot analysis. The findings demonstrated the lack of modifications in relation to viral dose (except for phospho-mTOR), whereas there were changes in the expression of several markers in relation to time as well as a mismatch in the time of activation of this axis. These results suggest that FeHV-1 may interact independently with different autophagic signaling pathways. In addition, we found an early phosphorylation of Akt, approximately 3 h after infection, without a concomitant decrease in constitutive Akt. This result suggests a possible role for this axis in viral entry. In a second phase, the use of early autophagy inhibitors was examined for viral yield, cytotoxic effects, viral glycoprotein expression, and autophagy markers and resulted in inefficient inhibition of viral replication (12 h post-infection for LY294002 and 48 h post-infection for 3-methyladenine). The same markers were examined during Akt knockdown, and we observed no differences in viral replication. This result could be explained by the presence of a protein kinase in the FeHV-1 genome (encoded by the Us3 gene) that can phosphorylate various Akt substrates as an Akt surrogate, as has already been demonstrated in genetically related viruses (HSV-1, PRV, etc.). For the same reasons, the use of LY294002 at the beginning of infection did not affect FeHV-1-mediated Akt phosphorylation. Our findings highlight changes in the PI3K/Akt/mTOR pathway during FeHV-1 infection, although further research is needed to understand the importance of these changes and how they affect cellular processes and viral propagation.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
- *Correspondence: Gianmarco Ferrara
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Khalil S, Donthi D, Gru AA. Cutaneous Reactive B-cell Lymphoid Proliferations. J Cutan Pathol 2022; 49:898-916. [PMID: 35656820 DOI: 10.1111/cup.14264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Cutaneous lymphoid hyperplasia (CLH), also known as cutaneous pseudolymphoma, is a spectrum of benign conditions characterized by reactive B- and T-cell cutaneous lymphocytic infiltrates. B-cell lymphoid proliferations are a heterogenous group of non-neoplastic cutaneous diseases that must be histopathologically distinguished from cutaneous B-cell lymphomas. These proliferations can be observed as reactive phenomena to infections, medications, allergens, neoplasms, and more. Further, there are many inflammatory conditions that present with reactive B-cell infiltrates, including actinic prurigo, Zoon balanitis, Rosai-Dorfman, and cutaneous plasmacytosis. This review summarizes multiple cutaneous B-cell lymphoid proliferations within the major categories of reactive and disease-associated CLH. Further we discuss major discriminating features of atypical CLH and malignancy. Understanding the specific patterns of B-cell CLH is essential for the proper diagnosis and treatment of patients presenting with such lesions.
Collapse
Affiliation(s)
- Shadi Khalil
- Department of Dermatology, University of California San Diego
| | | | | |
Collapse
|
12
|
Garcia P, Harrod A, Jha S, Jenkins J, Barnhill A, Lee H, Thompson M, Williams JP, Barefield J, Mckinnon A, Suarez P, Shah A, Lowrey AJ, Bentz GL. Effects of targeting sumoylation processes during latent and induced Epstein-Barr virus infections using the small molecule inhibitor ML-792. Antiviral Res 2021; 188:105038. [PMID: 33577806 DOI: 10.1016/j.antiviral.2021.105038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
As the second leading cause of death in the United States, cancer has a considerable impact on society, and one cellular process that is commonly dysregulated in many cancers is the post-translational modification of proteins by the Small Ubiquitin-like Modifier (SUMO; sumoylation). We documented that sumoylation processes are up-regulated in lymphoma tissues in the presence of Latent Membrane Protein-1 (LMP1), the principal oncoprotein of Epstein-Barr virus (EBV). LMP1-mediated dysregulation of cellular sumoylation processes contributes to oncogenesis, modulates innate immune responses, and aids the maintenance of viral latency. Manipulation of protein sumoylation has been proposed for anti-cancer and anti-viral therapies; however, known inhibitors of sumoylation do not only target sumoylation processes. Recently, a specific and selective small-molecule inhibitor of sumoylation (ML-792) was identified; however, nothing is known about the effect of ML-792 on LMP1-mediated dysregulation of cellular sumoylation or the EBV life-cycle. We hypothesized that ML-792 modulates viral replication and the oncogenic potential of EBV LMP1 by inhibiting protein sumoylation. Results showed that ML-792 inhibited sumoylation processes in multiple EBV-positive B cell lines and EBV-positive nasopharyngeal carcinoma cell lines but not in their EBV-negative counterparts. Focusing on its effect on B cells, ML-792 inhibited B-cell growth and promoted cell death at very low doses. ML-792 also modulated LMP1-induced cell migration and cell adhesion, which suggests the abrogation of the oncogenic potential of LMP1. Finally, while higher concentrations of ML-792 were sufficient to induce low levels EBV spontaneous reactivation, they decreased the production of new infectious virus following an induced reactivation and the infection of new cells, suggesting that ML-792 has anti-viral potential. Together, these findings suggest that ML-792 may be a potential therapeutic drug to treat EBV-associated lymphoid malignancies by targeting oncogenesis and the EBV life-cycle.
Collapse
Affiliation(s)
- Peter Garcia
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Abigail Harrod
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Shruti Jha
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jessica Jenkins
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Alex Barnhill
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Holden Lee
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Merritt Thompson
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | | | - James Barefield
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Ashton Mckinnon
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Persia Suarez
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Ananya Shah
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Angela J Lowrey
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Gretchen L Bentz
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
13
|
Berditchevski F, Fennell E, Murray PG. Calcium-dependent signalling in B-cell lymphomas. Oncogene 2021; 40:6321-6328. [PMID: 34625709 PMCID: PMC8585665 DOI: 10.1038/s41388-021-02025-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
Induced waves of calcium fluxes initiate multiple signalling pathways that play an important role in the differentiation and maturation of B-cells. Finely tuned transient Ca+2 fluxes from the endoplasmic reticulum in response to B-cell receptor (BCR) or chemokine receptor activation are followed by more sustained calcium influxes from the extracellular environment and contribute to the mechanisms responsible for the proliferation of B-cells, their migration within lymphoid organs and their differentiation. Dysregulation of these well-balanced mechanisms in B-cell lymphomas results in uncontrolled cell proliferation and resistance to apoptosis. Consequently, several cytotoxic drugs (and anti-proliferative compounds) used in standard chemotherapy regimens for the treatment of people with lymphoma target calcium-dependent pathways. Furthermore, ~10% of lymphoma associated mutations are found in genes with functions in calcium-dependent signalling, including those affecting B-cell receptor signalling pathways. In this review, we provide an overview of the Ca2+-dependent signalling network and outline the contribution of its key components to B cell lymphomagenesis. We also consider how the oncogenic Epstein-Barr virus, which is causally linked to the pathogenesis of a number of B-cell lymphomas, can modify Ca2+-dependent signalling.
Collapse
Affiliation(s)
- Fedor Berditchevski
- grid.6572.60000 0004 1936 7486Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT UK
| | - Eanna Fennell
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland
| | - Paul G. Murray
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland ,grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
14
|
Kang Y, He W, Ren C, Qiao J, Guo Q, Hu J, Xu H, Jiang X, Wang L. Advances in targeted therapy mainly based on signal pathways for nasopharyngeal carcinoma. Signal Transduct Target Ther 2020; 5:245. [PMID: 33093441 PMCID: PMC7582884 DOI: 10.1038/s41392-020-00340-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the head and neck region which mainly distributes in southern China and Southeast Asia and has a crucial association with the Epstein-Barr virus. Based on epidemiological data, both incidence and mortality of NPC have significantly declined in recent decades grounded on the improvement of living standard and medical level in an endemic region, in particular, with the clinical use of individualized chemotherapy and intensity-modulated radiotherapy (IMRT) which profoundly contributes to the cure rate of NPC patients. To tackle the challenges including local recurrence and distant metastasis in the current NPC treatment, we discussed the implication of using targeted therapy against critical molecules in various signal pathways, and how they synergize with chemoradiotherapy in the NPC treatment. Combination treatment including targeted therapy and IMRT or concurrent chemoradiotherapy is presumably to be future options, which may reduce radiation or chemotherapy toxicities and open new avenues for the improvement of the expected functional outcome for patients with advanced NPC.
Collapse
Affiliation(s)
- Yuanbo Kang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Weihan He
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Caiping Ren
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Jincheng Qiao
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuyong Guo
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jingyu Hu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hongjuan Xu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xingjun Jiang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Lei Wang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
15
|
Yiu SPT, Dorothea M, Hui KF, Chiang AKS. Lytic Induction Therapy against Epstein-Barr Virus-Associated Malignancies: Past, Present, and Future. Cancers (Basel) 2020; 12:cancers12082142. [PMID: 32748879 PMCID: PMC7465660 DOI: 10.3390/cancers12082142] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) lytic induction therapy is an emerging virus-targeted therapeutic approach that exploits the presence of EBV in tumor cells to confer specific killing effects against EBV-associated malignancies. Efforts have been made in the past years to uncover the mechanisms of EBV latent-lytic switch and discover different classes of chemical compounds that can reactivate the EBV lytic cycle. Despite the growing list of compounds showing potential to be used in the lytic induction therapy, only a few are being tested in clinical trials, with varying degrees of success. This review will summarize the current knowledge on EBV lytic reactivation, the major hurdles of translating the lytic induction therapy into clinical settings, and highlight some potential strategies in the future development of this therapy for EBV-related lymphoid and epithelial malignancies.
Collapse
|
16
|
STAT3 Mutation Is Associated with STAT3 Activation in CD30 + ALK - ALCL. Cancers (Basel) 2020; 12:cancers12030702. [PMID: 32188095 PMCID: PMC7140109 DOI: 10.3390/cancers12030702] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCL) are a heterogeneous, and often aggressive group of non-Hodgkin lymphomas. Recent advances in the molecular and genetic characterization of PTCLs have helped to delineate differences and similarities between the various subtypes, and the JAK/STAT pathway has been found to play an important oncogenic role. Here, we aimed to characterize the JAK/STAT pathway in PTCL subtypes and investigate whether the activation of the pathway correlates with the frequency of STAT gene mutations. Patient samples from AITL (n = 30), ALCL (n = 21) and PTCL-NOS (n = 12) cases were sequenced for STAT3, STAT5B, JAK1, JAK3, and RHOA mutations using amplicon sequencing and stained immunohistochemically for pSTAT3, pMAPK, and pAKT. We discovered STAT3 mutations in 13% of AITL, 13% of ALK+ ALCL, 38% of ALK− ALCL and 17% of PTCL-NOS cases. However, no STAT5B mutations were found and JAK mutations were only present in ALK- ALCL (15%). Concurrent mutations were found in all subgroups except ALK+ ALCL where STAT3 mutations were always seen alone. High pY-STAT3 expression was observed especially in AITL and ALCL samples. When studying JAK-STAT pathway mutations, pY-STAT3 expression was highest in PTCLs harboring either JAK1 or STAT3 mutations and CD30+ phenotype representing primarily ALK− ALCLs. Further investigation is needed to elucidate the molecular mechanisms of JAK-STAT pathway activation in PTCL.
Collapse
|
17
|
Weed DJ, Damania B. Pathogenesis of Human Gammaherpesviruses: Recent Advances. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:166-174. [PMID: 33134035 PMCID: PMC7597832 DOI: 10.1007/s40588-019-00127-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF THIS REVIEW Human gammaherpesviruses have complex lifecycles that drive their pathogenesis. KSHV and EBV are the etiological agents of multiple cancers worldwide. There is no FDA-approved vaccine for either KSHV or EBV. This review will describe recent progress in understanding EBV and KSHV lifecycles during infection. RECENT FINDINGS Determining how latency is established, particularly how non-coding RNAs influence latent and lytic infection, is a rapidly growing area of investigation into how gammaherpesviruses successfully persist in the human population. Many factors have been identified as restrictors of reactivation from latency, especially innate immune antagonism. Finally, new host proteins that play a role in lytic replication have been identified. SUMMARY In this review we discuss recent findings over the last 5 years on both host and viral factors that are involved in EBV and KSHV pathogenesis.
Collapse
Affiliation(s)
- Darin J Weed
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
18
|
Zuo L, Xie Y, Tang J, Xin S, Liu L, Zhang S, Yan Q, Zhu F, Lu J. Targeting Exosomal EBV-LMP1 Transfer and miR-203 Expression via the NF-κB Pathway: The Therapeutic Role of Aspirin in NPC. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:175-184. [PMID: 31265948 PMCID: PMC6610683 DOI: 10.1016/j.omtn.2019.05.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an invasive head-and-neck tumor with Epstein-Barr virus (EBV) as an important etiological cause. The EBV oncoprotein Latent membrane protein 1 (LMP1) can be trafficked into exosomes with unclear roles, and this trafficking is a potential problem in NPC control. MicroRNA-203 (miR-203) was found by us to be downregulated by LMP1, and it functions as a tumor suppressor in NPC. In this study, aspirin reversed the epithelial-mesenchymal transition (EMT) by promoting miR-203 expression in cells, and, remarkably, it repressed exosomal LMP1 (exo-LMP1) secretion from EBV-positive cells. Nuclear factor κB (NF-κB) activation was required for the exo-LMP1 production. The exo-LMP1 uptake influenced the EMT potential of EBV-negative recipient NPC cells. The exo-LMP1 level was upregulated in clinical NPC plasma samples. Aspirin treatment observably inhibited NPC lung metastasis in nude mice. The study revealed that aspirin is a promising drug for NPC therapy via its targeting of exo-LMP1 transfer and the regulatory effect of LMP1 on miR-203 expression. EBV can regulate its own tumorigenesis via the LMP1/NF-κB/exo-LMP1 axis, opening a new avenue for understanding the pathogenesis of this tumor virus. Our study also provides a rationale for the use of exo-LMP1 or exosomal miR-203 (exo-miR203) in EBV-targeted therapy by aspirin in invasive NPC.
Collapse
Affiliation(s)
- Lielian Zuo
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, Hunan, China; Institute of Neuroscience, Medical College, University of South China, Hengyang 421001, Hunan, China
| | - Yan Xie
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, Hunan, China
| | - Jinyong Tang
- Department of Otolaryngology-Head and Neck Surgery, the First People's Hospital of Chenzhou, Chenzhou 423000, Hunan, China
| | - Shuyu Xin
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, Hunan, China
| | - Lingzhi Liu
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, Hunan, China
| | - Siwei Zhang
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, Hunan, China
| | - Qijia Yan
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China
| | - Fanxiu Zhu
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, Hunan, China; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jianhong Lu
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
19
|
Icaritin: A Novel Natural Candidate for Hematological Malignancies Therapy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4860268. [PMID: 31032347 PMCID: PMC6458936 DOI: 10.1155/2019/4860268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 01/14/2023]
Abstract
Hematological malignancies including leukemia and lymphoma can severely impact human health. With the current therapies combined with chemotherapy, stem cell transplantation, radiotherapy, and immunotherapy, the prognosis of hematologic malignancies improved significantly. However, most hematological malignancies are still incurable. Therefore, research for novel treatment options was continuing with the natural product as one source. Icaritin is a compound extracted from a traditional Chinese herb, Epimedium Genus, and demonstrated an antitumor effect in various neoplasms including hematological malignancies such as leukemia, lymphoma, and multiple myeloma. In hematological malignancies, icaritin showed multiple cytotoxic effects to induce apoptosis, arrest the cell cycle, inhibit proliferation, promote differentiation, restrict metastasis and infiltration, and suppress the oncogenic virus. The proved underlying mechanisms of the cytotoxic effects of icaritin are different in various cell types of hematological malignancies but associated with the critical cell signal pathway, including PI3K/Akt, JAK/STAT3, and MAPK/ERK/JNK. Although the primary target of icaritin is still unspecified, the existing evidence indicates that icaritin is a potential novel therapeutic agent for neoplasms as with hematological malignancies. Here, in the field of hematology, we reviewed the reported activity of icaritin in hematologic malignancies and the underlying mechanisms and recognized icaritin as a candidate for therapy of hematological malignancies.
Collapse
|
20
|
Lang F, Pei Y, Lamplugh ZL, Robertson ES. Molecular Biology of EBV in Relationship to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:81-103. [PMID: 30523622 DOI: 10.1007/978-3-030-03502-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herpesvirus-induced disease is one of the most lethal factors which leads to high mortality in HIV/AIDS patients. EBV, also known as human herpesvirus 4, can transform naive B cells into immortalized cells in vitro through the regulation of cell cycle, cell proliferation, and apoptosis. EBV infection is associated with several lymphoma and epithelial cancers in humans, which occurs at a much higher rate in immune deficient individuals than in healthy people, demonstrating that the immune system plays a vital role in inhibiting EBV activities. EBV latency infection proteins can mimic suppression cytokines or upregulate PD-1 on B cells to repress the cytotoxic T cells response. Many malignancies, including Hodgkin Lymphoma and non-Hodgkin's lymphomas occur at a much higher frequency in EBV positive individuals than in EBV negative people during the development of HIV infection. Importantly, understanding EBV pathogenesis at the molecular level will aid the development of novel therapies for EBV-induced diseases in HIV/AIDS patients.
Collapse
Affiliation(s)
- Fengchao Lang
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zachary L Lamplugh
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,, 3610 Hamilton Walk, 201E Johnson Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Jiang M, Lu H, Lu C, Geng X, Jia Y, Wang P, Qian W, Huang H, Shan X. Specific Soft-Tissue Invasion and LMP1 Expression Are Potential Indicators of Extranodal NK/T Cell Lymphoma, Nasal Type. Med Sci Monit 2018; 24:7603-7613. [PMID: 30356034 PMCID: PMC6213871 DOI: 10.12659/msm.909152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/21/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Extranodal NK/T cell lymphoma, nasal type (ENKTL-NT) is difficult to distinguish from nasal polyps and inverted papilloma, leading to its high misdiagnosis ratio. The aim of this study was to investigate its potential prognostic indicators. MATERIAL AND METHODS Kaplan-Meier method was used to calculate overall survival (OS) rate. Cox proportional hazards regression was used to analyze risk ratios (ORs) with 95% confidence intervals (CIs). RESULTS Nasal ala infiltration and nasal floor thickness >2.0 mm or nasal septum thickness >2.5 mm were potential prognostic factors for OS (p=0.0323 and 0.0072, respectively). Cox proportional-hazards regression indicated that high LMP1 expression and the nasal floor thickness >2.0 mm or nasal septum thickness >2.5 mm were the independent risk factors for poor OS of ENKTL-NT (HR=3.0655, p=0.028; HR=2.3650, p=0.0452, respectively). In the subgroup analysis, the OS rate was lower when the nasal floor thickness >2.0 mm or nasal septum thickness >2.5 mm in the patients who had high expression of LMP1 (p=0.0651), whereas high LMP1 expression increased the risk of worse prognostic outcome in patients with deep infiltration thickness. Thus, high LMP1 expression may contribute to the tissue invasion of ENKTL-NT. CONCLUSIONS Any patient with nasal ala soft-tissue invasion, nasal floor thickness >2.0 mm/nasal septum thickness >2.5 mm on CT imaging or high LMP1 expression should prompt immediate histopathologic diagnosis to rule out ENKTL-NT in clinical practice.
Collapse
Affiliation(s)
- Min Jiang
- Department of Medical Imaging, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Haoyue Lu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Chao Lu
- Department of Medical Imaging, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Xingdong Geng
- Department of Medical Imaging, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Yingjun Jia
- Department of Medical Imaging, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Peng Wang
- Department of Medical Imaging, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Wei Qian
- Department of Otorhinolaryngology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Hao Huang
- Department of Medical Imaging, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Xiuhong Shan
- Department of Medical Imaging, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
22
|
Modified Anoikis Assay That Functionally Segregates Epstein-Barr Virus LMP1 Strains into Two Groups. J Virol 2018; 92:JVI.00557-18. [PMID: 29950426 DOI: 10.1128/jvi.00557-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/21/2018] [Indexed: 12/28/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a metastatic Epstein-Barr virus (EBV)-associated cancer that expresses the viral oncogenic protein, latent membrane protein 1 (LMP1). During epithelial metastasis, detached cells must overcome anoikis-induced cell death and gain the ability to reattach and restore growth potential. Anoikis assays have revealed cell survival mechanisms during suspension, but few studies have tracked the fate of cells surviving anoikis-inducing conditions. In this study, a modified anoikis assay was used to examine if the expression of LMP1 confers the recovery of epithelial cells from anoikis. Cells expressing LMP1 mutants and strains were evaluated for distinguishing properties in survival during suspension, reattachment, and outgrowth potential. Expression of LMP1 promoted the outgrowth of the NPC cell line HK1 following anoikis induction that was not attributed to enhanced cell survival in suspension or reattachment. The mechanism of LMP1-induced outgrowth required Akt signaling and the conserved PXQXT motif on LMP1, which activates Akt. Deletion of any of the three LMP1 C-terminal activation regions (CTAR) abrogated anoikis recovery, suggesting that additional LMP1-regulated signaling pathways are likely involved. Of the seven LMP1 strains, only B958, China1, and Med+ promoted HK1 outgrowth from anoikis. This distinguishing biological property segregates LMP1 strains into two categories (anoikis recovering and nonrecovering) and suggests that LMP1 strain-specific sequences may be important in determining metastatic outgrowth potential in NPC tumors.IMPORTANCE LMP1 is one of the most divergent sequences in the EBV genome and phylogenetically segregates into seven LMP1 strains. The LMP1 strains differ in geographical distribution and NPC tumor prevalence, but the molecular basis for this potential selection is not clear. While there are signaling motifs conserved in all LMP1 sequences from circulating EBV isolates, phylogenetic studies of NPC also suggest that there may be sequence selection for tumor-associated LMP1 strains and polymorphisms. The present study describes a modified anoikis assay that can distinguish LMP1 strains into two groups by biological properties. The pleiotropic LMP1 signaling properties and sequence diversity may offer a unique opportunity to illuminate the complex mechanisms of metastasis. Although the host genomic landscape is variable between NPC tumors, the present functional-mapping studies on LMP1 support the notion that viral proteins could serve as molecular tool kits and potentially reveal sequence-associated risk factors in NPC metastatic progression.
Collapse
|
23
|
Espinoza JL, Kurokawa Y, Takami A. Rationale for assessing the therapeutic potential of resveratrol in hematological malignancies. Blood Rev 2018; 33:43-52. [PMID: 30005817 DOI: 10.1016/j.blre.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/27/2018] [Accepted: 07/03/2018] [Indexed: 02/05/2023]
Abstract
Promising results from pre-clinical studies on the naturally-occurring polyphenol resveratrol have generated considerable interest and somewhat excessive expectations regarding the therapeutic potential of this compound for treating or preventing various diseases, including cardiovascular and neurodegenerative disorders and cancer. Resveratrol has potent inhibitory activity in vitro against various tumor types, including cell lines derived from virtually all blood malignancies. Pharmacological studies have shown that resveratrol is safe for humans but has poor bioavailability, due to its extensive hepatic metabolism. Curiously, a substantial proportion of the orally administered resveratrol can reach the bone marrow compartment. Notably, various pathways dysregulated in blood cancers are known to be molecular targets of resveratrol, thus substantiating the potential utility of this agent in blood malignancies. In this review, we primarily focus on the scientific evidence that supports the potential utility of resveratrol for the management of select hematological malignancies. In addition, potential clinical trials with resveratrol are suggested.
Collapse
Affiliation(s)
- J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan.
| | - Yu Kurokawa
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Akiyoshi Takami
- Department of Internal Medicine, Division of Hematology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
24
|
Shair KHY, Reddy A, Cooper VS. New Insights from Elucidating the Role of LMP1 in Nasopharyngeal Carcinoma. Cancers (Basel) 2018; 10:cancers10040086. [PMID: 29561768 PMCID: PMC5923341 DOI: 10.3390/cancers10040086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV) oncogenic protein that has no intrinsic enzymatic activity or sequence homology to cellular or viral proteins. The oncogenic potential of LMP1 has been ascribed to pleiotropic signaling properties initiated through protein-protein interactions in cytosolic membrane compartments, but the effects of LMP1 extend to nuclear and extracellular processes. Although LMP1 is one of the latent genes required for EBV-immortalization of B cells, the biology of LMP1 in the pathogenesis of the epithelial cancer nasopharyngeal carcinoma (NPC) is more complex. NPC is prevalent in specific regions of the world with high incidence in southeast China. The epidemiology and time interval from seroconversion to NPC onset in adults would suggest the involvement of multiple risk factors that complement the establishment of a latent and persistent EBV infection. The contribution of LMP1 to EBV pathogenesis in polarized epithelia has only recently begun to be elucidated. Furthermore, the LMP1 gene has emerged as one of the most divergent sequences in the EBV genome. This review will discuss the significance of recent advances in NPC research from elucidating LMP1 function in epithelial cells and lessons that could be learned from mining LMP1 sequence diversity.
Collapse
Affiliation(s)
- Kathy H Y Shair
- Cancer Virology Program, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Akhil Reddy
- Cancer Virology Program, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
25
|
Kawada JI, Ando S, Torii Y, Watanabe T, Sato Y, Ito Y, Kimura H. Antitumor effects of duvelisib on Epstein-Barr virus-associated lymphoma cells. Cancer Med 2018. [PMID: 29522278 PMCID: PMC5911584 DOI: 10.1002/cam4.1311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epstein–Barr virus (EBV) is a ubiquitous oncogenic virus that is associated with B cell lymphomas, including Burkitt lymphoma and Hodgkin lymphoma. Previous studies have shown that the phosphatidylinositol 3‐kinase (PI3K)/Akt pathway is activated in EBV‐associated lymphomas and can be a novel therapeutic target. An oral dual inhibitor of PI3Kγ and PI3Kδ, duvelisib, is in clinical trials for the treatment of lymphoid malignancies. In this study, we evaluated how duvelisib affects the activity of the PI3K/Akt signaling pathway and if it has antitumor effects in EBV‐associated lymphoma cell lines. We found that the PI3K/Akt signaling pathway was activated in most of the B and T cell lymphoma cell lines tested. Additionally, duvelisib treatment inhibited cellular growth in the tested cell lines. Overall, B cell lines were more susceptible to duvelisib than T and NK cell lines in vitro regardless of EBV infection. However, the additional influence of duvelisib on the tumor microenvironment was not assessed. Duvelisib treatment induced both apoptosis and cell cycle arrest in EBV‐positive and ‐negative B cell lines, but not in T cell lines. Furthermore, duvelisib treatment reduced the expression of EBV lytic genes (BZLF1 and gp350/220) in EBV‐positive B cell lines, suggesting that duvelisib suppresses the lytic cycle of EBV induced by B cell receptor signaling. However, duvelisib did not induce a remarkable change in the expression of EBV latent genes. These results may indicate that there is therapeutic potential for duvelisib administration in the treatment of EBV‐associated B cell lymphomas and other B cell malignancies.
Collapse
Affiliation(s)
- Jun-Ichi Kawada
- Departments of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shotaro Ando
- Departments of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuka Torii
- Departments of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takahiro Watanabe
- Departments of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshitaka Sato
- Departments of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshinori Ito
- Departments of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroshi Kimura
- Departments of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
26
|
Margolskee E, Jobanputra V, Jain P, Chen J, Ganapathi K, Nahum O, Levy B, Morscio J, Murty V, Tousseyn T, Alobeid B, Mansukhani M, Bhagat G. Genetic landscape of T- and NK-cell post-transplant lymphoproliferative disorders. Oncotarget 2018; 7:37636-37648. [PMID: 27203213 PMCID: PMC5122338 DOI: 10.18632/oncotarget.9400] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
Abstract
Post-transplant lymphoproliferative disorders of T- or NK-cell origin (T/NK-PTLD) are rare entities and their genetic basis is unclear. We performed targeted sequencing of 465 cancer-related genes and high-resolution copy number analysis in 17 T-PTLD and 2 NK-PTLD cases. Overall, 377 variants were detected, with an average of 20 variants per case. Mutations of epigenetic modifier genes (TET2, KMT2C, KMT2D, DNMT3A, ARID1B, ARID2, KDM6B, n=11). and inactivation of TP53 by mutation and/or deletion(n=6) were the most frequent alterations, seen across disease subtypes, followed by mutations of JAK/STAT pathway genes (n=5). Novel variants, including mutations in TBX3 (n=3), MED12 (n=3) and MTOR (n=1), were observed as well. High-level microsatellite instability was seen in 1 of 14 (7%) cases, which had a heterozygous PMS2 mutation. Complex copy number changes were detected in 8 of 16 (50%) cases and disease subtype-specific aberrations were also identified. In contrast to B-cell PTLDs, the molecular and genomic alterations observed in T/NK-PTLD appear similar to those reported for peripheral T-cell lymphomas occurring in immunocompetent hosts, which may suggest common genetic mechanisms of lymphoma development.
Collapse
Affiliation(s)
- Elizabeth Margolskee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Preti Jain
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Jinli Chen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Karthik Ganapathi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Odelia Nahum
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Julie Morscio
- Department of Pathology, Translational Cell and Tissue Research Laboratory, UZ Leuven/KU Leuven, Leuven, Belgium
| | - Vundavalli Murty
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Thomas Tousseyn
- Department of Pathology, Translational Cell and Tissue Research Laboratory, UZ Leuven/KU Leuven, Leuven, Belgium
| | - Bachir Alobeid
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Mahesh Mansukhani
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
27
|
The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology 2018; 516:55-70. [PMID: 29329079 DOI: 10.1016/j.virol.2017.12.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/04/2017] [Accepted: 12/28/2017] [Indexed: 12/27/2022]
Abstract
Epstein-Barr virus LMP1 is an oncoprotein required for immortalizing B lymphocytes and also plays important roles in transforming non-lymphoid tissue. The discovery of LMP1 protein interactions will likely generate targets to treat EBV-associated cancers. Here, we define the broader LMP1 interactome using the recently developed BioID method. Combined with mass spectrometry, we identified over 1000 proteins across seven independent experiments with direct or indirect relationships to LMP1. Pathway analysis suggests that a significant number of the proteins identified are involved in signal transduction and protein or vesicle trafficking. Interestingly, a large number of proteins thought to be important in the formation of exosomes and protein targeting were recognized as probable LMP1 interacting partners, including CD63, syntenin-1, ALIX, TSG101, HRS, CHMPs, and sorting nexins. Therefore, it is likely that LMP1 modifies protein trafficking and exosome biogenesis pathways. In support of this, knock-down of syntenin-1 and ALIX resulted in reduced exosomal LMP1.
Collapse
|
28
|
Yoshida M, Murata T, Ashio K, Narita Y, Watanabe T, Masud HMAA, Sato Y, Goshima F, Kimura H. Characterization of a Suppressive Cis-acting Element in the Epstein-Barr Virus LMP1 Promoter. Front Microbiol 2017; 8:2302. [PMID: 29213259 PMCID: PMC5702780 DOI: 10.3389/fmicb.2017.02302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023] Open
Abstract
Latent membrane protein 1 (LMP1) is a major oncogene encoded by Epstein–Barr virus (EBV) and is essential for immortalization of B cells by the virus. Previous studies suggested that several transcription factors, such as PU.1, RBP-Jκ, NFκB, EBF1, AP-2 and STAT, are involved in LMP1 induction; however, the means by which the oncogene is negatively regulated remains unclear. Here, we introduced short mutations into the proximal LMP1 promoter that includes recognition sites for the E-box and Ikaros transcription factors in the context of EBV-bacterial artificial chromosome. Upon infection, the mutant exhibited increased LMP1 expression and EBV-mediated immortalization of B cells. However, single mutations of either the E-box or Ikaros sites had limited effects on LMP1 expression and transformation. Our results suggest that this region contains a suppressive cis-regulatory element, but other transcriptional repressors (apart from the E-box and Ikaros transcription factors) may remain to be discovered.
Collapse
Affiliation(s)
- Masahiro Yoshida
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Keiji Ashio
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Narita
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H M Abdullah Al Masud
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumi Goshima
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
29
|
Kobayashi T, Mori D, Ureshino H, Kido S, Ikeda S, Kimura S, Lefor AK, Matsuishi E. Primary effusion lymphoma-like lymphoma with a T cell phenotype. Ann Hematol 2017; 97:717-718. [DOI: 10.1007/s00277-017-3200-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022]
|
30
|
Hau PM, Tsao SW. Epstein-Barr Virus Hijacks DNA Damage Response Transducers to Orchestrate Its Life Cycle. Viruses 2017; 9:v9110341. [PMID: 29144413 PMCID: PMC5707548 DOI: 10.3390/v9110341] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
The Epstein–Barr virus (EBV) is a ubiquitous virus that infects most of the human population. EBV infection is associated with multiple human cancers, including Burkitt’s lymphoma, Hodgkin’s lymphoma, a subset of gastric carcinomas, and almost all undifferentiated non-keratinizing nasopharyngeal carcinoma. Intensive research has shown that EBV triggers a DNA damage response (DDR) during primary infection and lytic reactivation. The EBV-encoded viral proteins have been implicated in deregulating the DDR signaling pathways. The consequences of DDR inactivation lead to genomic instability and promote cellular transformation. This review summarizes the current understanding of the relationship between EBV infection and the DDR transducers, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase), and discusses how EBV manipulates the DDR signaling pathways to complete the replication process of viral DNA during lytic reactivation.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Sai Wah Tsao
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Abstract
Genetically engineered mice (GEMs) have provided valuable insights into the carcinogenic properties of various human tumor viruses, which, in aggregate, are etiologically associated with over 15% of all human cancers. This review provides an overview of seminal discoveries made through the use of GEM models for human DNA tumor viruses. Emphasis is placed on the discoveries made in the study of human papillomaviruses, Merkel cell carcinoma-associated polyomavirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus, because GEMs have contributed extensively to our understanding of how these DNA tumor viruses directly contribute to human cancers.
Collapse
Affiliation(s)
- Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705;
| |
Collapse
|
32
|
Foreman HCC, Armstrong J, Santana AL, Krug LT, Reich NC. The replication and transcription activator of murine gammaherpesvirus 68 cooperatively enhances cytokine-activated, STAT3-mediated gene expression. J Biol Chem 2017; 292:16257-16266. [PMID: 28821622 DOI: 10.1074/jbc.m117.786970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/04/2017] [Indexed: 12/15/2022] Open
Abstract
Gammaherpesviruses (γHVs) have a dynamic strategy for lifelong persistence, involving productive infection, latency, and intermittent reactivation. In latency reservoirs, such as B lymphocytes, γHVs exist as viral episomes and express few viral genes. Although the ability of γHV to reactivate from latency and re-enter the lytic phase is challenging to investigate and control, it is known that the γHV replication and transcription activator (RTA) can promote lytic reactivation. In this study, we provide first evidence that RTA of murine γΗV68 (MHV68) selectively binds and enhances the activity of tyrosine-phosphorylated host STAT3. STAT3 is a transcription factor classically activated by specific tyrosine 705 phosphorylation (pTyr705-STAT3) in response to cytokine stimulation. pTyr705-STAT3 forms a dimer that avidly binds a consensus target site in the promoters of regulated genes, and our results indicate that RTA cooperatively enhances the ability of pTyr705-STAT3 to induce expression of a STAT3-responsive reporter gene. As indicated by coimmunoprecipitation, in latently infected B cells that are stimulated to reactivate MHV68, RTA bound specifically to endogenous pTyr705-STAT3. An in vitro binding assay confirmed that RTA selectively recognizes pTyr705-STAT3 and indicated that the C-terminal transactivation domain of RTA was required for enhancing STAT3-directed gene expression. The cooperation of these transcription factors may influence both viral and host genes. During MHV68 de novo infection, pTyr705-STAT3 promoted the temporal expression of ORF59, a viral replication protein. Our results demonstrate that MHV68 RTA specifically recognizes and recruits activated pTyr705-STAT3 during the lytic phase of infection.
Collapse
Affiliation(s)
- Hui-Chen Chang Foreman
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Julie Armstrong
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Alexis L Santana
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Laurie T Krug
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Nancy C Reich
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
33
|
Huang D, Song SJ, Wu ZZ, Wu W, Cui XY, Chen JN, Zeng MS, Su SC. Epstein-Barr Virus-Induced VEGF and GM-CSF Drive Nasopharyngeal Carcinoma Metastasis via Recruitment and Activation of Macrophages. Cancer Res 2017; 77:3591-3604. [PMID: 28484077 DOI: 10.1158/0008-5472.can-16-2706] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/09/2017] [Accepted: 05/02/2017] [Indexed: 11/16/2022]
Abstract
Chronic inflammation induced by persistent microbial infection plays an essential role in tumor progression. Although it is well documented that Epstein-Barr virus (EBV) infection is closely associated with nasopharyngeal carcinoma (NPC), how EBV-induced inflammation promotes NPC progression remains largely unknown. Here, we report that tumor infiltration of tumor-associated macrophages (TAM) and expression of CCL18, the cytokine preferentially secreted by TAM, closely correlate with serum EBV infection titers and tumor progression in two cohorts of NPC patients. In vitro, compared with EBV- NPC cell lines, EBV+ NPC cell lines exhibited superior capacity to attract monocytes and skew them to differentiate to a TAM-like phenotype. Cytokine profiling analysis revealed that NPC cells with active EBV replications recruited monocytes by VEGF and induced TAM by GM-CSF in an NF-κB-dependent manner. Reciprocally, TAM induced epithelial-mesenchymal transition and furthered NF-κB activation of tumor cells by CCL18. In humanized mice, NPC cells with active EBV replications exhibited increased metastasis, and neutralization of CCL18, GM-CSF, and VEGF significantly reduced metastasis. Collectively, our work defines a feed-forward loop between tumor cells and macrophages in NPC, which shows how metastatic potential can evolve concurrently with virus-induced chronic inflammation. Cancer Res; 77(13); 3591-604. ©2017 AACR.
Collapse
Affiliation(s)
- Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Jian Song
- Guangdong Experimental High School, Guangzhou, China
| | - Zi-Zhao Wu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiu-Ying Cui
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Ning Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mu-Sheng Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, China
| | - Shi-Cheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
34
|
Epstein-Barr Virus-Encoded Latent Membrane Protein 1 Upregulates Glucose Transporter 1 Transcription via the mTORC1/NF-κB Signaling Pathways. J Virol 2017; 91:JVI.02168-16. [PMID: 28053105 DOI: 10.1128/jvi.02168-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence indicates that oncogenic viral protein plays a crucial role in activating aerobic glycolysis during tumorigenesis, but the underlying mechanisms are largely undefined. Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a transmembrane protein with potent cell signaling properties and has tumorigenic transformation property. Activation of NF-κB is a major signaling pathway mediating many downstream transformation properties of LMP1. Here we report that activation of mTORC1 by LMP1 is a key modulator for activation of NF-κB signaling to mediate aerobic glycolysis. NF-κB activation is involved in the LMP1-induced upregulation of glucose transporter 1 (Glut-1) transcription and growth of nasopharyngeal carcinoma (NPC) cells. Blocking the activity of mTORC1 signaling effectively suppressed LMP1-induced NF-κB activation and Glut-1 transcription. Interfering NF-κB signaling had no effect on mTORC1 activity but effectively altered Glut-1 transcription. Luciferase promoter assay of Glut-1 also confirmed that the Glut-1 gene is a direct target gene of NF-κB signaling. Furthermore, we demonstrated that C-terminal activating region 2 (CTAR2) of LMP1 is the key domain involved in mTORC1 activation, mainly through IKKβ-mediated phosphorylation of TSC2 at Ser939 Depletion of Glut-1 effectively led to suppression of aerobic glycolysis, inhibition of cell proliferation, colony formation, and attenuation of tumorigenic growth property of LMP1-expressing nasopharyngeal epithelial (NPE) cells. These findings suggest that targeting the signaling axis of mTORC1/NF-κB/Glut-1 represents a novel therapeutic target against NPC.IMPORTANCE Aerobic glycolysis is one of the hallmarks of cancer, including NPC. Recent studies suggest a role for LMP1 in mediating aerobic glycolysis. LMP1 expression is common in NPC. The delineation of essential signaling pathways induced by LMP1 in aerobic glycolysis contributes to the understanding of NPC pathogenesis. This study provides evidence that LMP1 upregulates Glut-1 transcription to control aerobic glycolysis and tumorigenic growth of NPC cells through mTORC1/NF-κB signaling. Our results reveal novel therapeutic targets against the mTORC1/NF-κB/Glut-1 signaling axis in the treatment of EBV-infected NPC.
Collapse
|
35
|
CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. J Virol 2017; 91:JVI.02251-16. [PMID: 27974566 DOI: 10.1128/jvi.02251-16] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV)-encoded oncoprotein that is packaged into small extracellular vesicles (EVs) called exosomes. Trafficking of LMP1 into multivesicular bodies (MVBs) alters the content and function of exosomes. LMP1-modified exosomes enhance the growth, migration, and invasion of malignant cells, demonstrating the capacity to manipulate the tumor microenvironment and enhance the progression of EBV-associated cancers. Despite the growing evidence surrounding the significance of LMP1-modified exosomes in cancer, very little is understood about the mechanisms that orchestrate LMP1 incorporation into these vesicles. Recently, LMP1 was shown to be copurified with CD63, a conserved tetraspanin protein enriched in late endosomal and lysosomal compartments. Here, we demonstrate the importance of CD63 presence for exosomal packaging of LMP1. Nanoparticle tracking analysis and gradient purification revealed an increase in extracellular vesicle secretion and exosomal proteins following LMP1 expression. Immunoisolation of CD63-positive exosomes exhibited accumulation of LMP1 in this vesicle population. Functionally, CRISPR/Cas9 knockout of CD63 resulted in a reduction of LMP1-induced particle secretion. Furthermore, LMP1 packaging was severely impaired in CD63 knockout cells, concomitant with a disruption in the perinuclear localization of LMP1. Importantly, LMP1 trafficking to lipid rafts and activation of NF-κB and PI3K/Akt pathways remained intact following CD63 knockout, while mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and noncanonical NF-κB activation were observed to be increased. These results suggest that CD63 is a critical player in LMP1 exosomal trafficking and LMP1-mediated enhancement of exosome production and may play further roles in limiting downstream LMP1 signaling.IMPORTANCE EBV is a ubiquitous gamma herpesvirus linked to malignancies such as nasopharyngeal carcinoma, Burkitt's lymphoma, and Hodgkin's lymphoma. In the context of cancer, EBV hijacks the exosomal pathway to modulate cell-to-cell signaling by secreting viral components such as an oncoprotein, LMP1, into host cell membrane-bound EVs. Trafficking of LMP1 into exosomes is associated with increased oncogenicity of these secreted vesicles. However, we have only a limited understanding of the mechanisms surrounding exosomal cargo packaging, including viral proteins. Here, we describe a role of LMP1 in EV production that requires CD63 and provide an extensive demonstration of CD63-mediated exosomal LMP1 release that is distinct from lipid raft trafficking. Finally, we present further evidence of the role of CD63 in limiting LMP1-induced noncanonical NF-κB and ERK activation. Our findings have implications for future investigations of physiological and pathological mechanisms of exosome biogenesis, protein trafficking, and signal transduction, especially in viral-associated tumorigenesis.
Collapse
|
36
|
Jha HC, Pei Y, Robertson ES. Epstein-Barr Virus: Diseases Linked to Infection and Transformation. Front Microbiol 2016; 7:1602. [PMID: 27826287 PMCID: PMC5078142 DOI: 10.3389/fmicb.2016.01602] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus (EBV) was first discovered in 1964, and was the first known human tumor virus now shown to be associated with a vast number of human diseases. Numerous studies have been conducted to understand infection, propagation, and transformation in various cell types linked to human diseases. However, a comprehensive lens through which virus infection, reactivation and transformation of infected host cells can be visualized is yet to be formally established and will need much further investigation. Several human cell types infected by EBV have been linked to associated diseases. However, whether these are a direct result of EBV infection or indirectly due to contributions by additional infectious agents will need to be fully investigated. Therefore, a thorough examination of infection, reactivation, and cell transformation induced by EBV will provide a more detailed view of its contributions that drive pathogenesis. This undoubtedly expand our knowledge of the biology of EBV infection and the signaling activities of targeted cellular factors dysregulated on infection. Furthermore, these insights may lead to identification of therapeutic targets and agents for clinical interventions. Here, we review the spectrum of EBV-associated diseases, the role of the encoded latent antigens, and the switch to latency or lytic replication which occurs in EBV infected cells. Furthermore, we describe the cellular processes and critical factors which contribute to cell transformation. We also describe the fate of B-cells and epithelial cells after EBV infection and the expected consequences which contribute to establishment of viral-associated pathologies.
Collapse
Affiliation(s)
- Hem C Jha
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
37
|
Abstract
A challenging property of gammaherpesviruses is their ability to establish lifelong persistence. The establishment of latency in B cells is thought to involve active virus engagement of host signaling pathways. Pathogenic effects of these viruses during latency or following reactivation can be devastating to the host. Many cancers, including those associated with members of the gammaherpesvirus family, Kaposi’s sarcoma-associated herpesvirus and Epstein-Barr virus, express elevated levels of active host signal transducer and activator of transcription-3 (STAT3). STAT3 is activated by tyrosine phosphorylation in response to many cytokines and can orchestrate effector responses that include proliferation, inflammation, metastasis, and developmental programming. However, the contribution of STAT3 to gammaherpesvirus pathogenesis remains to be completely understood. This is the first study to have identified STAT3 as a critical host determinant of the ability of gammaherpesvirus to establish long-term latency in an animal model of disease. Following an acute infection, murine gammaherpesvirus 68 (MHV68) established latency in resident B cells, but establishment of latency was dramatically reduced in animals with a B cell-specific STAT3 deletion. The lack of STAT3 in B cells did not impair germinal center responses for immunoglobulin (Ig) class switching in the spleen and did not reduce either total or virus-specific IgG titers. Although ablation of STAT3 in B cells did not have a global effect on these assays of B cell function, it had long-term consequences for the viral load of the host, since virus latency was reduced at 6 to 8 weeks postinfection. Our findings establish host STAT3 as a mediator of gammaherpesvirus persistence. The insidious ability of gammaherpesviruses to establish latent infections can have detrimental consequences for the host. Identification of host factors that promote viral latency is essential for understanding latency mechanisms and for therapeutic interventions. We provide the first evidence that STAT3 expression is needed for murine gammaherpesvirus 68 to establish latency in primary B cells during an active immune response to infection. STAT3 deletion in B cells does not impair adaptive immune control of the virus, but loss of STAT3 in B cells has a long-lasting impact on viral persistence. These results indicate a potential therapeutic benefit of STAT3 inhibitors for combating gammaherpesvirus latency and, thereby, associated pathologies.
Collapse
|
38
|
Li X, Bhaduri-McIntosh S. A Central Role for STAT3 in Gammaherpesvirus-Life Cycle and -Diseases. Front Microbiol 2016; 7:1052. [PMID: 27458446 PMCID: PMC4937026 DOI: 10.3389/fmicb.2016.01052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Having co-evolved with humans, herpesviruses have adapted to exploit the host molecular machinery to ensure viral persistence. The cellular protein Signal Transducer and Activator of Transcription 3 (STAT3) is a leading example. STAT3 is a prominent transcription factor that functions in a variety of physiologic processes including embryonic development, inflammation, immunity, and wound healing. Generally activated via growth factor and cytokine signaling, STAT3 can transcriptionally drive oncoproteins, pro-survival and pro-proliferative proteins as well as angiogenic factors, thereby contributing to cancer. As in most non-viral cancers, STAT3 is constitutively active in EBV-related B and epithelial cell cancers and in animal models of KSHV-cancers. Again, similar to non-viral cancers, STAT3 contributes to gammaherpesvirus (EBV and KSHV)-mediated cancers by driving cell proliferation, invasion and angiogenesis. Being herpesviruses, EBV and KSHV establish latency in humans with episodic lytic activation. Importantly, both viruses activate STAT3 almost immediately upon infection of primary cells. In the setting of infection of primary B cells by EBV, this rapidly activated STAT3 plays a key role in suppressing the DNA damage response (DDR) to EBV-oncogene triggered replication stress, thereby facilitating B cell proliferation and ultimately establishment of latency. STAT3 also contributes to maintenance of latency by curbing lytic activation of EBV and KSHV in latent cells that express high levels of STAT3. In this way, gammaherpesviruses exploit STAT3 to overcome cellular anti-proliferative and anti-lytic barriers to promote viral persistence. These investigations into gammaherpesviruses and STAT3 have simultaneously revealed a novel function for STAT3 in suppression of the DDR, a process fundamental to physiologic cell proliferation as well as development of cancer.
Collapse
Affiliation(s)
- Xiaofan Li
- Pediatric Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine Stony Brook, NY, USA
| | - Sumita Bhaduri-McIntosh
- Pediatric Infectious Diseases, Department of Pediatrics, Stony Brook University School of MedicineStony Brook, NY, USA; Department of Molecular Genetics and Microbiology, Stony Brook University School of MedicineStony Brook, NY, USA
| |
Collapse
|
39
|
Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget 2016; 6:17764-76. [PMID: 25980440 PMCID: PMC4627344 DOI: 10.18632/oncotarget.3776] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/13/2015] [Indexed: 01/05/2023] Open
Abstract
Extranodal NK/T-cell lymphoma nasal type (ENKL) is a rare type of non-Hodgkin lymphoma that more frequently occurs in East Asia and Latin America. Even though its molecular background has been discussed in the last few years, the current knowledge does not explain the disease pathogenesis in most cases of ENKL. Here, we performed multiple types of next-generation sequencing on 34 ENKL samples, including whole-exome sequencing (9 cancer tissues and 4 cancer cell lines), targeted sequencing (21 cancer tissues), and RNA sequencing (3 cancer tissues and 4 cancer cell lines). Mutations were found most frequently in 3 genes, STAT3, BCOR, and MLL2 (which were present in 9, 7, and 6 cancer samples, respectively), whereas there were only 2 cases of JAK3 mutation. In total, JAK/STAT pathway- and histone modification-related genes accounted for 55.9% and 38.2% of cancer samples, respectively, and their involvement in ENKL pathogenesis was also supported by gene expression analysis. In addition, we provided 177 genes upregulated only in cancer tissues, which appear to be linked with angiocentric and angiodestructive growth of ENKL. In this study, we propose several novel driver genes of ENKL, and show that these genes and their functional groups may be future therapeutic targets of this disease.
Collapse
|
40
|
Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor. J Virol 2016; 90:3873-3889. [PMID: 26819314 DOI: 10.1128/jvi.03227-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1.
Collapse
|
41
|
Togi S, Hatano Y, Muromoto R, Kawanishi E, Ikeda O, Hirashima K, Kon S, Kitai Y, Yasui T, Oritani K, Matsuda T. Caspase-dependent cleavage regulates protein levels of Epstein-Barr virus-derived latent membrane protein 1. FEBS Lett 2016; 590:808-18. [DOI: 10.1002/1873-3468.12119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Sumihito Togi
- Department of Immunology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Kita-Ku Sapporo Japan
| | - Yosuke Hatano
- Department of Immunology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Kita-Ku Sapporo Japan
| | - Ryuta Muromoto
- Department of Immunology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Kita-Ku Sapporo Japan
| | - Eri Kawanishi
- Department of Immunology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Kita-Ku Sapporo Japan
| | - Osamu Ikeda
- Department of Immunology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Kita-Ku Sapporo Japan
| | - Koki Hirashima
- Department of Immunology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Kita-Ku Sapporo Japan
| | - Shigeyuki Kon
- Department of Immunology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Kita-Ku Sapporo Japan
| | - Yuichi Kitai
- Department of Immunology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Kita-Ku Sapporo Japan
| | - Teruhito Yasui
- Department of Molecular Immunology; Research Institute for Microbial Diseases; Osaka University; Suita Osaka Japan
| | - Kenji Oritani
- Department of Hematology and Oncology; Graduate School of Medicine; Osaka University; Suita Osaka Japan
| | - Tadashi Matsuda
- Department of Immunology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Kita-Ku Sapporo Japan
| |
Collapse
|
42
|
Abstract
Almost exactly twenty years after the discovery of Epstein-Barr virus (EBV), the latent membrane protein 1 (LMP1) entered the EBV stage, and soon thereafter, it was recognized as the primary transforming gene product of the virus. LMP1 is expressed in most EBV-associated lymphoproliferative diseases and malignancies, and it critically contributes to pathogenesis and disease phenotypes. Thirty years of LMP1 research revealed its high potential as a deregulator of cellular signal transduction pathways leading to target cell proliferation and the simultaneous subversion of cell death programs. However, LMP1 has multiple roles beyond cell transformation and immortalization, ranging from cytokine and chemokine induction, immune modulation, the global alteration of gene and microRNA expression patterns to the regulation of tumor angiogenesis, cell-cell contact, cell migration, and invasive growth of tumor cells. By acting like a constitutively active receptor, LMP1 recruits cellular signaling molecules associated with tumor necrosis factor receptors such as tumor necrosis factor receptor-associated factor (TRAF) proteins and TRADD to mimic signals of the costimulatory CD40 receptor in the EBV-infected B lymphocyte. LMP1 activates NF-κB, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3-K), IRF7, and STAT pathways. Here, we review LMP1's molecular and biological functions, highlighting the interface between LMP1 and the cellular signal transduction network as an important factor of virus-host interaction and a potential therapeutic target.
Collapse
|
43
|
The translation inhibitor silvestrol exhibits direct anti-tumor activity while preserving innate and adaptive immunity against EBV-driven lymphoproliferative disease. Oncotarget 2015; 6:2693-708. [PMID: 25393910 PMCID: PMC4413611 DOI: 10.18632/oncotarget.2098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/11/2014] [Indexed: 01/25/2023] Open
Abstract
Treatment options for patients with Epstein-Barr Virus-driven lymphoproliferative diseases (EBV-LPD) are limited. Chemo-immunotherapeutic approaches often lead to immune suppression, risk of lethal infection and EBV reactivation, thus it is essential to identify agents that can deliver direct anti-tumor activity while preserving innate and adaptive host immune surveillance. Silvestrol possesses direct anti-tumor activity in multiple hematologic malignancies while causing minimal toxicity to normal mononuclear cells. However, the effects of silvestrol on immune function have not been described. We utilized in vitro and in vivo models of EBV-LPD to simultaneously examine the impact of silvestrol on both tumor and normal immune function. We show that silvestrol induces direct anti-tumor activity against EBV-transformed lymphoblastoid cell lines (LCL), with growth inhibition, decreased expression of the EBV oncogene latent membrane protein-1, and inhibition of the downstream AKT, STAT1 and STAT3 signaling pathways. Silvestrol promoted potent indirect anti-tumor effects by preserving expansion of innate and EBV antigen-specific adaptive immune effector subsets capable of effective clearance of LCL tumor targets in autologous co-cultures. In an animal model of spontaneous EBV-LPD, silvestrol demonstrated significant therapeutic activity dependent on the presence of CD8-positive T-cells. These findings establish a novel immune-sparing activity of silvestrol, justifying further exploration in patients with EBV-positive malignancies.
Collapse
|
44
|
Wang H, Li H, Xing X, Zhao C, Luo B. Genotypic analysis and latent membrane protein 1 expression of Epstein-Barr virus in extranodal NK/T-cell lymphoma from Northern Chinese patients. Arch Virol 2015; 160:2071-4. [PMID: 26008210 DOI: 10.1007/s00705-015-2451-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 05/17/2015] [Indexed: 11/29/2022]
Abstract
As the most common NK/T-cell lymphoma in Asian countries, extranodal NK/T-cell lymphoma, nasal type (ENKTL), has unique clinical features and a strong association with Epstein-Barr virus (EBV). In order to gain a preliminary understanding of the relationship between ENKTL and EBV, we performed genotypic analysis of EBV and investigated LMP1 expression in extranodal NK/T-cell lymphoma. Our study shows that ENKTL is an EBV-associated malignancy and that A, C and F are the predominant EBV genotypes in northern China. LMP1 expression is stronger in extranasal sites than nasal sites, and the expression level is strongly correlated to ENKTL and may play an important role in the development of ENKTL.
Collapse
Affiliation(s)
- Haijuan Wang
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | | | | | | | | |
Collapse
|
45
|
Regulation of DNA Damage Signaling and Cell Death Responses by Epstein-Barr Virus Latent Membrane Protein 1 (LMP1) and LMP2A in Nasopharyngeal Carcinoma Cells. J Virol 2015; 89:7612-24. [PMID: 25972552 DOI: 10.1128/jvi.00958-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 05/05/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Nasopharyngeal carcinoma (NPC) is closely associated with latent Epstein-Barr virus (EBV) infection. Although EBV infection of preneoplastic epithelial cells is not immortalizing, EBV can modulate oncogenic and cell death mechanisms. The viral latent membrane proteins 1 (LMP1) and LMP2A are consistently expressed in NPC and can cooperate in bitransgenic mice expressed from the keratin-14 promoter to enhance carcinoma development in an epithelial chemical carcinogenesis model. In this study, LMP1 and LMP2A were coexpressed in the EBV-negative NPC cell line HK1 and examined for combined effects in response to genotoxic treatments. In response to DNA damage activation, LMP1 and LMP2A coexpression reduced γH2AX (S139) phosphorylation and caspase cleavage induced by a lower dose (5 μM) of the topoisomerase II inhibitor etoposide. Regulation of γH2AX occurred before the onset of caspase activation without modulation of other DNA damage signaling mediators, including ATM, Chk1, or Chk2, and additionally was suppressed by inducers of DNA single-strand breaks (SSBs) and replication stress. Despite reduced DNA damage repair signaling, LMP1-2A coexpressing cells recovered from cytotoxic doses of etoposide; however, LMP1 expression was sufficient for this effect. LMP1 and LMP2A coexpression did not enhance cell growth, with a moderate increase of cell motility to fibronectin. This study supports that LMP1 and LMP2A jointly regulate DNA repair signaling and cell death activation with no further enhancement in the growth properties of neoplastic cells. IMPORTANCE NPC is characterized by clonal EBV infection and accounts for >78,000 annual cancer cases with increased incidence in regions where EBV is endemic, such as southeast Asia. The latent proteins LMP1 and LMP2A coexpressed in NPC can individually enhance growth or survival properties in epithelial cells, but their combined effects and potential regulation of DNA repair and checkpoint mechanisms are relatively undetermined. In this study, LMP1-2A coexpression suppressed activation of the DNA damage response (DDR) protein γH2AX induced by selective genotoxins that promote DNA replication stress or SSBs. Expression of LMP1 was sufficient to recover cells, resulting in outgrowth of LMP1 and LMP1-2A-coexpressing cells and indicating distinct LMP1-dependent effects in the restoration of replicative potential. These findings demonstrate novel properties for LMP1 and LMP2A in the cooperative modulation of DDR and apoptotic signaling pathways, further implicating both proteins in the progression of NPC and epithelial malignancies.
Collapse
|
46
|
Liu X, Cohen JI. The role of PI3K/Akt in human herpesvirus infection: From the bench to the bedside. Virology 2015; 479-480:568-77. [PMID: 25798530 PMCID: PMC4424147 DOI: 10.1016/j.virol.2015.02.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/25/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections.
Collapse
Affiliation(s)
- XueQiao Liu
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Wang L, Liu JL, Yu L, Liu XX, Wu HM, Lei FY, Wu S, Wang X. Downregulated miR-495 [Corrected] Inhibits the G1-S Phase Transition by Targeting Bmi-1 in Breast Cancer. Medicine (Baltimore) 2015; 94:e718. [PMID: 26020378 PMCID: PMC4616407 DOI: 10.1097/md.0000000000000718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bmi-1 (B cell-specific Moloney murine leukemia virus integration site 1) is upregulated in breast cancer and was involved in many malignant progressions of breast cells, including cell proliferation, stem cell pluripotency, and cancer initiation. However, the epigenetic regulatory mechanism of Bmi-1 in breast cancer remains unclear. After analysis of the ArrayExpress dataset GSE45666, we comparatively detected the expression levels of miR-495 in 9 examined breast cancer cell lines, normal breast epithelial cells and 8 pairs of fresh clinical tumor samples. Furthermore, to evaluate the effect of miR-495 on the progression of breast cancer, MCF-7 and MDA-MB-231 were transduced to stably overexpress miR-495. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, colony formation assays, 5-Bromo-2-deoxyUridine labeling and immunofluorescence, anchorage-independent growth ability assay, flow cytometry analysis, and luciferase assays were used to test the effect of miR-495 in MCF-7 and MDA-MB-231 cells in vitro. Xenografted tumor model was also used to evaluate the effect of miR-495 in breast cancer. Herein, we found that miR-495, a predicted regulator of Bmi-1, was frequently downregulated in malignant cells and tissues of breast. Upregulation of miR-495 significantly suppressed breast cancer cell proliferation and tumorigenicity via G1-S arrest. Further analysis revealed that miR-495 targeted Bmi-1 through its 3' untranslated region. Moreover, Bmi-1 could neutralize the suppressive effect of miR-495 on cell proliferation and tumorigenicity of breast cancer in vivo. These data suggested that miR-495 could inhibit the G1-S phase transition that leads to proliferation and tumorigenicity inhibition by targeting and suppressing Bmi-1 in breast cancer.
Collapse
Affiliation(s)
- Lan Wang
- From the Department of Pathogen Biology and Immunology, School of Basic Courses, Guangdong Pharmaceutical University (LW, H-MW); Department of Medical Oncology, Sun Yat-sen University Cancer Center (JLL); Department of Vascular and Breast Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou (LY); Department of Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University (X-XL); State Key Laboratory of Oncology in South China (F-YL, SW); State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China (XW)
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Han SS, Tompkins VS, Son DJ, Han S, Yun H, Kamberos NL, Dehoedt CL, Gu C, Holman C, Tricot G, Zhan F, Janz S. CDKN1A and FANCD2 are potential oncotargets in Burkitt lymphoma and multiple myeloma. Exp Hematol Oncol 2015; 4:9. [PMID: 25838973 PMCID: PMC4383050 DOI: 10.1186/s40164-015-0005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
Abstract
Background Comparative genetic and biological studies on malignant tumor counterparts in human beings and laboratory mice may be powerful gene discovery tools for blood cancers, including neoplasms of mature B-lymphocytes and plasma cells such as Burkitt lymphoma (BL) and multiple myeloma (MM). Methods We used EMSA to detect constitutive NF-κB/STAT3 activity in BL- and MM-like neoplasms that spontaneously developed in single-transgenic IL6 (interleukin-6) or MYC (c-Myc) mice, or in double-transgenic IL6MYC mice. qPCR measurements and analysis of clinical BL and MM datasets were employed to validate candidate NF-κB/STAT3 target genes. Results qPCR demonstrated that IL6- and/or MYC-dependent neoplasms in mice invariably contain elevated mRNA levels of the NF-κB target genes, Cdkn1a and Fancd2. Clinical studies on human CDKN1A, which encodes the cell cycle inhibitor and tumor suppressor p21, revealed that high p21 message predicts poor therapy response and survival in BL patients. Similarly, up-regulation of FANCD2, which encodes a key member of the Fanconi anemia and breast cancer pathway of DNA repair, was associated with poor outcome of patients with MM, particularly those with high-risk disease. Conclusions Our findings suggest that CDKN1A and FANCD2 are potential oncotargets in BL and MM, respectively. Additionally, the IL-6- and/or MYC-driven mouse models of human BL and MM used in this study may lend themselves to the biological validation of CDKN1A and FANCD2 as molecular targets for new approaches to cancer therapy and prevention. Electronic supplementary material The online version of this article (doi:10.1186/s40164-015-0005-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seong-Su Han
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Van S Tompkins
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Dong-Ju Son
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701 South Korea
| | - Sangwoo Han
- Department of Health and Human Physiology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Hwakyung Yun
- Department of Biological Sciences, Hanseo University, Choognam, South Korea
| | - Natalie L Kamberos
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Casey L Dehoedt
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Chunyan Gu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Carol Holman
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Guido Tricot
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Siegfried Janz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| |
Collapse
|
49
|
Martorelli D, Muraro E, Mastorci K, Dal Col J, Faè DA, Furlan C, Giagulli C, Caccuri F, Rusnati M, Fiorentini S, Carbone A, Caruso A, Dolcetti R. A natural HIV p17 protein variant up-regulates the LMP-1 EBV oncoprotein and promotes the growth of EBV-infected B-lymphocytes: implications for EBV-driven lymphomagenesis in the HIV setting. Int J Cancer 2015; 137:1374-85. [PMID: 25704763 DOI: 10.1002/ijc.29494] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/12/2015] [Indexed: 01/11/2023]
Abstract
Human immunodeficiency virus p17 matrix protein is released by infected cells and may accumulate within lymphoid tissues where it may deregulate the biological activities of different cell populations by binding to CXCR1 and CXCR2 cellular receptors. S75X, a natural p17 variant, was recently shown to enhance the malignant properties of lymphoma cells. We investigated a reference p17 protein and the S75X variant for their ability to bind to Epstein-Barr virus (EBV)-infected primary and fully transformed B-lymphocytes and trigger downstream effects of potential pathogenic relevance. We demonstrate that EBV infection of primary B-lymphocytes or the ectopic expression of the latent membrane protein-1 viral oncoprotein in EBV-negative B-cells up-regulates CXCR2, but not CXCR1. Multispectral imaging flow cytometry showed that EBV-infected primary B-cells more efficiently bind and internalize p17 proteins as compared with activated B-lymphocytes. The S75X variant bound more efficiently to EBV-infected primary and fully transformed B-lymphocytes compared with reference p17, because of a higher affinity to CXCR2, and enhanced the proliferation of these cells, an effect associated with cyclin D2 and D3 up-regulation and increased interleukin-6 production. Notably, the S75X variant markedly up-regulated latent membrane protein-1 expression at both mRNA and protein levels and enhanced the activation of Akt, ERK1/2 and STAT3 signaling, thereby contributing to EBV(+) B-cell growth promotion. These results indicate that EBV infection sensitizes B-lymphocytes to CXCR2-mediated effects of p17 proteins and provide evidence supporting a possible contribution of natural p17 variants to EBV-driven lymphomagenesis in the human immunodeficiency virus setting.
Collapse
Affiliation(s)
- Debora Martorelli
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Elena Muraro
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Katy Mastorci
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Jessica Dal Col
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Damiana Antonia Faè
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Chiara Furlan
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy.,Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Cinzia Giagulli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Simona Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Antonino Carbone
- Pathology Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| |
Collapse
|
50
|
Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation. Blood 2015; 125:2530-43. [PMID: 25742700 DOI: 10.1182/blood-2014-12-619783] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/01/2015] [Indexed: 12/15/2022] Open
Abstract
Epigenetic events that are essential drivers of lymphocyte transformation remain incompletely characterized. We used models of Epstein-Barr virus (EBV)-induced B-cell transformation to document the relevance of protein arginine methyltransferase 5 (PRMT5) to regulation of epigenetic-repressive marks during lymphomagenesis. EBV(+) lymphomas and transformed cell lines exhibited abundant expression of PRMT5, a type II PRMT enzyme that promotes transcriptional silencing of target genes by methylating arginine residues on histone tails. PRMT5 expression was limited to EBV-transformed cells, not resting or activated B lymphocytes, validating it as an ideal therapeutic target. We developed a first-in-class, small-molecule PRMT5 inhibitor that blocked EBV-driven B-lymphocyte transformation and survival while leaving normal B cells unaffected. Inhibition of PRMT5 led to lost recruitment of a PRMT5/p65/HDAC3-repressive complex on the miR96 promoter, restored miR96 expression, and PRMT5 downregulation. RNA-sequencing and chromatin immunoprecipitation experiments identified several tumor suppressor genes, including the protein tyrosine phosphatase gene PTPROt, which became silenced during EBV-driven B-cell transformation. Enhanced PTPROt expression following PRMT5 inhibition led to dephosphorylation of kinases that regulate B-cell receptor signaling. We conclude that PRMT5 is critical to EBV-driven B-cell transformation and maintenance of the malignant phenotype, and that PRMT5 inhibition shows promise as a novel therapeutic approach for B-cell lymphomas.
Collapse
|