1
|
Fiacre L, Lowenski S, Bahuon C, Dumarest M, Lambrecht B, Dridi M, Albina E, Richardson J, Zientara S, Jiménez-Clavero MÁ, Pardigon N, Gonzalez G, Lecollinet S. Evaluation of NS4A, NS4B, NS5 and 3'UTR Genetic Determinants of WNV Lineage 1 Virulence in Birds and Mammals. Viruses 2023; 15:v15051094. [PMID: 37243180 DOI: 10.3390/v15051094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
West Nile virus (WNV) is amplified in an enzootic cycle involving birds as amplifying hosts. Because they do not develop high levels of viremia, humans and horses are considered to be dead-end hosts. Mosquitoes, especially from the Culex genus, are vectors responsible for transmission between hosts. Consequently, understanding WNV epidemiology and infection requires comparative and integrated analyses in bird, mammalian, and insect hosts. So far, markers of WNV virulence have mainly been determined in mammalian model organisms (essentially mice), while data in avian models are still missing. WNV Israel 1998 (IS98) is a highly virulent strain that is closely genetically related to the strain introduced into North America in 1999, NY99 (genomic sequence homology > 99%). The latter probably entered the continent at New York City, generating the most impactful WNV outbreak ever documented in wild birds, horses, and humans. In contrast, the WNV Italy 2008 strain (IT08) induced only limited mortality in birds and mammals in Europe during the summer of 2008. To test whether genetic polymorphism between IS98 and IT08 could account for differences in disease spread and burden, we generated chimeric viruses between IS98 and IT08, focusing on the 3' end of the genome (NS4A, NS4B, NS5, and 3'UTR regions) where most of the non-synonymous mutations were detected. In vitro and in vivo comparative analyses of parental and chimeric viruses demonstrated a role for NS4A/NS4B/5'NS5 in the decreased virulence of IT08 in SPF chickens, possibly due to the NS4B-E249D mutation. Additionally, significant differences between the highly virulent strain IS98 and the other three viruses were observed in mice, implying the existence of additional molecular determinants of virulence in mammals, such as the amino acid changes NS5-V258A, NS5-N280K, NS5-A372V, and NS5-R422K. As previously shown, our work also suggests that genetic determinants of WNV virulence can be host-dependent.
Collapse
Affiliation(s)
- Lise Fiacre
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, 97170 Petit-Bourg, France
- ASTRE, CIRAD, INRAe, University of Montpellier, 34000 Montpellier, France
| | - Steeve Lowenski
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Céline Bahuon
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Marine Dumarest
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | | | - Maha Dridi
- SCIENSANO, Avian Virology and Immunology, 1180 Brussels, Belgium
| | - Emmanuel Albina
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, 97170 Petit-Bourg, France
- ASTRE, CIRAD, INRAe, University of Montpellier, 34000 Montpellier, France
| | - Jennifer Richardson
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Stéphan Zientara
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Miguel-Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Carretera Algete-El Casar s/n, 28130 Valdeolmos, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28001 Madrid, Spain
| | | | - Gaëlle Gonzalez
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Sylvie Lecollinet
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| |
Collapse
|
2
|
Park A, Graceffa O, Rawle RJ. Kinetic Modeling of West Nile Virus Fusion Indicates an Off-Pathway State. ACS Infect Dis 2020; 6:3260-3268. [PMID: 33201665 DOI: 10.1021/acsinfecdis.0c00637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
West Nile virus (WNV) is a prominent mosquito-borne flavivirus that causes febrile illness in humans. To infect host cells, WNV virions first bind to plasma membrane receptors, then initiate membrane fusion following endocytosis. The viral transmembrane E protein, triggered by endosomal pH, catalyzes fusion while undergoing a dimer-to-trimer transition. Previously, single-particle WNV fusion data was interrogated with a stochastic cellular automaton simulation, which modeled the E proteins during the fusion process. The results supported a linear fusion mechanism, with E protein trimerization being rate-limiting. Here, we present corrections to the previous simulation, and apply them to the WNV fusion data. We observe that a linear mechanism is no longer sufficient to fit the data. Instead, an off-pathway state is necessary; these results are corroborated by per virus chemical kinetics modeling. When compared with a similar Zika virus fusion model, this suggests that off-pathway fusion mechanisms may characterize flaviviruses more broadly.
Collapse
Affiliation(s)
- Abraham Park
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| | - Olivia Graceffa
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| | - Robert J. Rawle
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| |
Collapse
|
3
|
Bensaoud C, Martins LA, Aounallah H, Hackenberg M, Kotsyfakis M. Emerging roles of non-coding RNAs in vector-borne infections. J Cell Sci 2020; 134:134/5/jcs246744. [PMID: 33154170 DOI: 10.1242/jcs.246744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are nucleotide sequences that are known to assume regulatory roles previously thought to be reserved for proteins. Their functions include the regulation of protein activity and localization and the organization of subcellular structures. Sequencing studies have now identified thousands of ncRNAs encoded within the prokaryotic and eukaryotic genomes, leading to advances in several fields including parasitology. ncRNAs play major roles in several aspects of vector-host-pathogen interactions. Arthropod vector ncRNAs are secreted through extracellular vesicles into vertebrate hosts to counteract host defense systems and ensure arthropod survival. Conversely, hosts can use specific ncRNAs as one of several strategies to overcome arthropod vector invasion. In addition, pathogens transmitted through vector saliva into vertebrate hosts also possess ncRNAs thought to contribute to their pathogenicity. Recent studies have addressed ncRNAs in vectors or vertebrate hosts, with relatively few studies investigating the role of ncRNAs derived from pathogens and their involvement in establishing infections, especially in the context of vector-borne diseases. This Review summarizes recent data focusing on pathogen-derived ncRNAs and their role in modulating the cellular responses that favor pathogen survival in the vertebrate host and the arthropod vector, as well as host ncRNAs that interact with vector-borne pathogens.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice (Budweis), Czechia
| | - Larissa Almeida Martins
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice (Budweis), Czechia
| | - Hajer Aounallah
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie.,Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Michael Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento s/n, Granada 18100, Spain
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice (Budweis), Czechia
| |
Collapse
|
4
|
Ellwanger JH, Kulmann-Leal B, Kaminski VDL, Rodrigues AG, Bragatte MADS, Chies JAB. Beyond HIV infection: Neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases. Virus Res 2020; 286:198040. [PMID: 32479976 PMCID: PMC7260533 DOI: 10.1016/j.virusres.2020.198040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CCR5 regulates multiple cell types (e.g., T regulatory and Natural Killer cells) and immune responses. The effects of CCR5, CCR5Δ32 (variant associated with reduced CCR5 expression) and CCR5 antagonists vary between infections. CCR5 affects the pathogenesis of flaviviruses, especially in the brain. The genetic variant CCR5Δ32 increases the risk of symptomatic West Nile virus infection. The triad “CCR5, extracellular vesicles and infections” is an emerging topic.
The interactions between chemokine receptors and their ligands may affect susceptibility to infectious diseases as well as their clinical manifestations. These interactions mediate both the traffic of inflammatory cells and virus-associated immune responses. In the context of viral infections, the human C-C chemokine receptor type 5 (CCR5) receives great attention from the scientific community due to its role as an HIV-1 co-receptor. The genetic variant CCR5Δ32 (32 base-pair deletion in CCR5 gene) impairs CCR5 expression on the cell surface and is associated with protection against HIV infection in homozygous individuals. Also, the genetic variant CCR5Δ32 modifies the CCR5-mediated inflammatory responses in various conditions, such as inflammatory and infectious diseases. CCR5 antagonists mimic, at least in part, the natural effects of the CCR5Δ32 in humans, which explains the growing interest in the potential benefits of using CCR5 modulators for the treatment of different diseases. Nevertheless, beyond HIV infection, understanding the effects of the CCR5Δ32 variant in multiple viral infections is essential to shed light on the potential effects of the CCR5 modulators from a broader perspective. In this context, this review discusses the involvement of CCR5 and the effects of the CCR5Δ32 in human infections caused by the following pathogens: West Nile virus, Influenza virus, Human papillomavirus, Hepatitis B virus, Hepatitis C virus, Poliovirus, Dengue virus, Human cytomegalovirus, Crimean-Congo hemorrhagic fever virus, Enterovirus, Japanese encephalitis virus, and Hantavirus. Subsequently, this review addresses the impacts of CCR5 gene editing and CCR5 modulation on health and viral diseases. Also, this article connects recent findings regarding extracellular vesicles (e.g., exosomes), viruses, and CCR5. Neglected and emerging topics in “CCR5 research” are briefly described, with focus on Rocio virus, Zika virus, Epstein-Barr virus, and Rhinovirus. Finally, the potential influence of CCR5 on the immune responses to coronaviruses is discussed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Kulmann-Leal
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunologia Aplicada, Instituto de Ciência e Tecnologia - ICT, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Andressa Gonçalves Rodrigues
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Marcelo Alves de Souza Bragatte
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Núcleo de Bioinformática do Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
5
|
Lewy TG, Offerdahl DK, Grabowski JM, Kellman E, Mlera L, Chiramel A, Bloom ME. PERK-Mediated Unfolded Protein Response Signaling Restricts Replication of the Tick-Borne Flavivirus Langat Virus. Viruses 2020; 12:v12030328. [PMID: 32197325 PMCID: PMC7150897 DOI: 10.3390/v12030328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) maintains protein-folding homeostasis in the endoplasmic reticulum (ER) and has been implicated as both beneficial and detrimental to flavivirus infection. Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a sensor of the UPR, is commonly associated with antiviral effects during mosquito-borne flavivirus (MBFV) infection, but its relation to tick-borne flavivirus (TBFV) infection remains largely unexplored. In this study, we identified changes in UPR and autophagic activity during Langat virus (LGTV) infection. LGTV robustly activated UPR and altered autophagic flux. Knockdown of endogenous PERK in human cells resulted in increased LGTV replication, but not that of closely related Powassan virus (POWV). Finally, on examining changes in protein levels of components associated with UPR and autophagy in the absence of PERK, we could show that LGTV-infected cells induced UPR but did not lead to expression of C/EBP homologous protein (CHOP), an important downstream transcription factor of multiple stress pathways. From these data, we hypothesize that LGTV can antagonize other kinases that target eukaryotic initiation factor 2α (eIF2α), but not PERK, implicating PERK as a potential mediator of intrinsic immunity. This effect was not apparent for POWV, a more pathogenic TBFV, suggesting it may be better equipped to mitigate the antiviral effects of PERK.
Collapse
Affiliation(s)
- Tyler G. Lewy
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA; (T.G.L.); (D.K.O.); (E.K.); (L.M.)
| | - Danielle K. Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA; (T.G.L.); (D.K.O.); (E.K.); (L.M.)
| | - Jeffrey M. Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA; (T.G.L.); (D.K.O.); (E.K.); (L.M.)
- Correspondence: (J.M.G.); (M.E.B.); Tel.: +1-406-375-9789 (J.M.G.); +1-406-375-9707 (M.E.B.)
| | - Eliza Kellman
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA; (T.G.L.); (D.K.O.); (E.K.); (L.M.)
| | - Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA; (T.G.L.); (D.K.O.); (E.K.); (L.M.)
| | - Abhilash Chiramel
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA;
| | - Marshall E. Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA; (T.G.L.); (D.K.O.); (E.K.); (L.M.)
- Correspondence: (J.M.G.); (M.E.B.); Tel.: +1-406-375-9789 (J.M.G.); +1-406-375-9707 (M.E.B.)
| |
Collapse
|
6
|
Condotta SA, Richer MJ. The immune battlefield: The impact of inflammatory cytokines on CD8+ T-cell immunity. PLoS Pathog 2017; 13:e1006618. [PMID: 29073270 PMCID: PMC5658174 DOI: 10.1371/journal.ppat.1006618] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Stephanie A. Condotta
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, Rosalind and Morris Goodman Cancer Research Centre McGill University, Montreal, Quebec, Canada
| | - Martin J. Richer
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, Rosalind and Morris Goodman Cancer Research Centre McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Pavitrakar DV, Ayachit VM, Mundhra S, Bondre VP. Development and characterization of reverse genetics system for the Indian West Nile virus lineage 1 strain 68856. J Virol Methods 2015; 226:31-9. [DOI: 10.1016/j.jviromet.2015.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
|
8
|
Rizzoli A, Jimenez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, Martina B, Moreno A, Nowotny N, Pardigon N, Sanders N, Ulbert S, Tenorio A. The challenge of West Nile virus in Europe: knowledge gaps and research priorities. ACTA ACUST UNITED AC 2015; 20. [PMID: 26027485 DOI: 10.2807/1560-7917.es2015.20.20.21135] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
West Nile virus (WNV) is continuously spreading across Europe, and other continents, i.e. North and South America and many other regions of the world. Despite the overall sporadic nature of outbreaks with cases of West Nile neuroinvasive disease (WNND) in Europe, the spillover events have increased and the virus has been introduced into new areas. The high genetic diversity of the virus, with remarkable phenotypic variation, and its endemic circulation in several countries, require an intensification of the integrated and multidisciplinary research efforts built under the 7th Framework Programme of the European Union (FP7). It is important to better clarify several aspects of WNV circulation in Europe, including its ecology, genomic diversity, pathogenicity, transmissibility, diagnosis and control options, under different environmental and socio-economic scenarios. Identifying WNV endemic as well as infection-free areas is becoming a need for the development of human vaccines and therapeutics and the application of blood and organs safety regulations. This review, produced as a joint initiative among European experts and based on analysis of 118 scientific papers published between 2004 and 2014, provides the state of knowledge on WNV and highlights the existing knowledge and research gaps that need to be addressed with high priority in Europe and neighbouring countries.
Collapse
Affiliation(s)
- A Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, San Michele all Adige (TN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Souto S, Mérour E, Biacchesi S, Brémont M, Olveira JG, Bandín I. In vitro and in vivo characterization of molecular determinants of virulence in reassortant betanodavirus. J Gen Virol 2015; 96:1287-1296. [PMID: 25626678 DOI: 10.1099/vir.0.000064] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/19/2015] [Indexed: 01/25/2023] Open
Abstract
We previously reported that betanodavirus reassortant strains [redspotted grouper nervous necrosis virus/striped jack nervous necrosis virus (SJNNV)] isolated from Senegalese sole (Solea senegalensis) exhibited a modified SJNNV capsid amino acid sequence, with changes at aa 247 and 270. In the current study, we investigated the possible role of both residues as putative virulence determinants. Three recombinant viruses harbouring site-specific mutations in the capsid protein sequence, rSs160.03247 (S247A), rSs160.03270 (S270N) and rSs160.03247+270 (S247A/S270N), were generated using a reverse genetics system. These recombinant viruses were studied in cell culture and in vivo in the natural fish host. The three mutant viruses were shown to be infectious and able to replicate in E-11 cells, reaching final titres similar to the WT virus, although with a somewhat slower kinetics of replication. When the effect of the amino acid substitutions on virus pathogenicity was evaluated in Senegalese sole, typical clinical signs of betanodavirus infection were observed in all groups. However, fish mortality induced by all three mutant viruses was clearly affected. Roughly 40 % of the fish survived in these three groups in contrast with the WT virus which killed 100 % of the fish. These data demonstrated that aa 247 and 270 play a major role in betanodavirus virulence although when both mutated aa 247 and 270 are present, corresponding recombinant virus was not further attenuated.
Collapse
Affiliation(s)
- Sandra Souto
- Instituto de Acuicultura, Universidad de Santiago de Compostela, A Coruña, Spain
| | - Emilie Mérour
- Unité de Virologie et Immunologie Moléculaires, INRA, Jouy en Josas, France
| | - Stéphane Biacchesi
- Unité de Virologie et Immunologie Moléculaires, INRA, Jouy en Josas, France
| | - Michel Brémont
- Unité de Virologie et Immunologie Moléculaires, INRA, Jouy en Josas, France
| | - José G Olveira
- Instituto de Acuicultura, Universidad de Santiago de Compostela, A Coruña, Spain
| | - Isabel Bandín
- Instituto de Acuicultura, Universidad de Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
10
|
Gaensbauer JT, Lindsey NP, Messacar K, Staples JE, Fischer M. Neuroinvasive arboviral disease in the United States: 2003 to 2012. Pediatrics 2014; 134:e642-50. [PMID: 25113294 PMCID: PMC5662468 DOI: 10.1542/peds.2014-0498] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To describe the epidemiologic and clinical syndromes associated with pediatric neuroinvasive arboviral infections among children in the United States from 2003 through 2012. METHODS We reviewed data reported by state health departments to ArboNET, the national arboviral surveillance system, for 2003 through 2012. Children (<18 years) with neuroinvasive arboviral infections (eg, meningitis, encephalitis, or acute flaccid paralysis) were included. Demographic, clinical syndrome, outcome, geographic, and temporal data were analyzed for all cases. RESULTS During the study period, 1217 cases and 22 deaths due to pediatric neuroinvasive arboviral infection were reported from the 48 contiguous states. La Crosse virus (665 cases; 55%) and West Nile virus (505 cases; 41%) were the most common etiologies identified. Although less common, Eastern equine encephalitis virus (30 cases; 2%) resulted in 10 pediatric deaths. La Crosse virus primarily affected younger children, whereas West Nile virus was more common in older children and adolescents. West Nile virus disease cases occurred throughout the country, whereas La Crosse and the other arboviruses were more focally distributed. CONCLUSIONS Neuroinvasive arboviral infections were an important cause of pediatric disease from 2003 through 2012. Differences in the epidemiology and clinical disease result from complex interactions among virus, vector, host, and the environment. Decreasing the morbidity and mortality from these agents depends on vector control, personal protection to reduce mosquito and tick bites, and blood donor screening. Effective surveillance is critical to inform clinicians and public health officials about the epidemiologic features of these diseases and to direct prevention efforts.
Collapse
Affiliation(s)
- James T. Gaensbauer
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Nicole P. Lindsey
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Kevin Messacar
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - J. Erin Staples
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Marc Fischer
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
11
|
Chugh PE, Damania BA, Dittmer DP. Toll-like receptor-3 is dispensable for the innate microRNA response to West Nile virus (WNV). PLoS One 2014; 9:e104770. [PMID: 25127040 PMCID: PMC4134228 DOI: 10.1371/journal.pone.0104770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 07/16/2014] [Indexed: 12/28/2022] Open
Abstract
The innate immune response to West Nile virus (WNV) infection involves recognition through toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), leading to establishment of an antiviral state. MiRNAs (miRNAs) have been shown to be reliable biomarkers of TLR activation. Here, we sought to evaluate the contribution of TLR3 and miRNAs to the host response to WNV infection. We first analyzed HEK293-NULL and HEK293-TLR3 cells for changes in the innate immune response to infection. The presence of TLR3 did not seem to affect WNV load, infectivity or phosphorylation of IRF3. Analysis of experimentally validated NFκB-responsive genes revealed a WNV-induced signature largely independent of TLR3. Since miRNAs are involved in viral pathogenesis and the innate response to infection, we sought to identify changes in miRNA expression upon infection in the presence or absence of TLR3. MiRNA profiling revealed 70 miRNAs induced following WNV infection in a TLR3-independent manner. Further analysis of predicted gene targets of WNV signature miRNAs revealed genes highly associated with pathways regulating cell death, viral pathogenesis and immune cell trafficking.
Collapse
Affiliation(s)
- Pauline E. Chugh
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Blossom A. Damania
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
12
|
Viral neuropathogenesis. HANDBOOK OF CLINICAL NEUROLOGY 2014. [PMID: 25015485 DOI: 10.1016/b978-0-444-53488-0.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
|
13
|
Bingham J, Payne J, Harper J, Frazer L, Eastwood S, Wilson S, Lowther S, Lunt R, Warner S, Carr M, Hall RA, Durr PA. Evaluation of a mouse model for the West Nile virus group for the purpose of determining viral pathotypes. J Gen Virol 2014; 95:1221-1232. [PMID: 24694397 DOI: 10.1099/vir.0.063537-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV; family Flaviviridae; genus Flavivirus) group members are an important cause of viral meningoencephalitis in some areas of the world. They exhibit marked variation in pathogenicity, with some viral lineages (such as those from North America) causing high prevalence of severe neurological disease, whilst others (such as Australian Kunjin virus) rarely cause disease. The aim of this study was to characterize WNV disease in a mouse model and to elucidate the pathogenetic features that distinguish disease variation. Tenfold dilutions of five WNV strains (New York 1999, MRM16 and three horse isolates of WNV-Kunjin: Boort and two isolates from the 2011 Australian outbreak) were inoculated into mice by the intraperitoneal route. All isolates induced meningoencephalitis in different proportions of infected mice. WNVNY99 was the most pathogenic, the three horse isolates were of intermediate pathogenicity and WNVKUNV-MRM16 was the least, causing mostly asymptomatic disease with seroconversion. Infectivity, but not pathogenicity, was related to challenge dose. Using cluster analysis of the recorded clinical signs, histopathological lesions and antigen distribution scores, the cases could be classified into groups corresponding to disease severity. Metrics that were important in determining pathotype included neurological signs (paralysis and seizures), meningoencephalitis, brain antigen scores and replication in extra-neural tissues. Whereas all mice infected with WNVNY99 had extra-neural antigen, those infected with the WNV-Kunjin viruses only occasionally had antigen outside the nervous system. We conclude that the mouse model could be a useful tool for the assessment of pathotype for WNVs.
Collapse
Affiliation(s)
- John Bingham
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong, Victoria 3220, Australia
| | - Jean Payne
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong, Victoria 3220, Australia
| | - Jennifer Harper
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong, Victoria 3220, Australia
| | - Leah Frazer
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong, Victoria 3220, Australia
| | - Sarah Eastwood
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong, Victoria 3220, Australia
| | - Susanne Wilson
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong, Victoria 3220, Australia
| | - Sue Lowther
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong, Victoria 3220, Australia
| | - Ross Lunt
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong, Victoria 3220, Australia
| | - Simone Warner
- Biosciences Research Division, Department of Environment and Primary Industries Victoria, AgriBio Centre, 5 Ring Road, La Trobe University Campus, Bundoora, Victoria 3083, Australia
| | - Mary Carr
- Biosecurity SA, Primary Industries and Regions South Australia, GPO Box 1671, Adelaide, South Australia 5001, Australia
| | - Roy A Hall
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Peter A Durr
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong, Victoria 3220, Australia
| |
Collapse
|
14
|
Death receptor-mediated apoptotic signaling is activated in the brain following infection with West Nile virus in the absence of a peripheral immune response. J Virol 2013; 88:1080-9. [PMID: 24198425 DOI: 10.1128/jvi.02944-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Apoptosis is an important mechanism of West Nile virus (WNV) pathogenesis within the central nervous system (CNS). The signaling pathways that result in WNV-induced apoptotic neuronal death within the CNS have not been established. In this study, we identified death receptor (DR)-induced apoptosis as a pathway that may be important in WNV pathogenesis, based on the pattern of differential gene expression in WNV-infected, compared to uninfected, brains. Reverse transcription-PCR (RT-PCR) and Western blotting confirmed that genes involved in DR-induced apoptotic signaling are upregulated in the brain following WNV infection. Activity of the DR-associated initiator caspase, caspase 8, was also increased in the brains of WNV-infected mice and occurred in association with cleavage of Bid and activation of caspase 9. These results demonstrate that DR-induced apoptotic signaling is activated in the brain following WNV infection and suggest that the caspase 8-dependent cleavage of Bid promotes intrinsic apoptotic signaling within the brains of infected animals. Utilization of a novel ex vivo brain slice culture (BSC) model of WNV encephalitis revealed that inhibition of caspase 8 decreases virus-induced activation of caspase 3 and tissue injury. The BSC model allows us to examine WNV-induced pathogenesis in the absence of a peripheral immune response. Thus, our results indicate that WNV-induced neuronal injury in the brain is mediated by DR-induced apoptosis signaling and can occur in the absence of infiltrating immune cells. However, astrocytes and microglia were activated in WNV-infected BSC, suggesting that local immune responses influence WNV pathogenesis.
Collapse
|
15
|
Escribano-Romero E, Gamino V, Merino-Ramos T, Blázquez A, Martín-Acebes M, de Oya NJ, Gutiérrez-Guzmán A, Escribano JM, Höfle U, Saiz J. Protection of red-legged partridges (Alectoris rufa) against West Nile virus (WNV) infection after immunization with WNV recombinant envelope protein E (rE). Vaccine 2013; 31:4523-7. [DOI: 10.1016/j.vaccine.2013.07.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/15/2013] [Accepted: 07/25/2013] [Indexed: 01/15/2023]
|
16
|
Altered protein networks and cellular pathways in severe west nile disease in mice. PLoS One 2013; 8:e68318. [PMID: 23874584 PMCID: PMC3707916 DOI: 10.1371/journal.pone.0068318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/28/2013] [Indexed: 01/25/2023] Open
Abstract
Background The recent West Nile virus (WNV) outbreaks in developed countries, including Europe and the United States, have been associated with significantly higher neuropathology incidence and mortality rate than previously documented. The changing epidemiology, the constant risk of (re-)emergence of more virulent WNV strains, and the lack of effective human antiviral therapy or vaccines makes understanding the pathogenesis of severe disease a priority. Thus, to gain insight into the pathophysiological processes in severe WNV infection, a kinetic analysis of protein expression profiles in the brain of WNV-infected mice was conducted using samples prior to and after the onset of clinical symptoms. Methodology/Principal Findings To this end, 2D-DIGE and gel-free iTRAQ labeling approaches were combined, followed by protein identification by mass spectrometry. Using these quantitative proteomic approaches, a set of 148 proteins with modified abundance was identified. The bioinformatics analysis (Ingenuity Pathway Analysis) of each protein dataset originating from the different time-point comparisons revealed that four major functions were altered during the course of WNV-infection in mouse brain tissue: i) modification of cytoskeleton maintenance associated with virus circulation; ii) deregulation of the protein ubiquitination pathway; iii) modulation of the inflammatory response; and iv) alteration of neurological development and neuronal cell death. The differential regulation of selected host protein candidates as being representative of these biological processes were validated by western blotting using an original fluorescence-based method. Conclusion/Significance This study provides novel insights into the in vivo kinetic host reactions against WNV infection and the pathophysiologic processes involved, according to clinical symptoms. This work offers useful clues for anti-viral research and further evaluation of early biomarkers for the diagnosis and prevention of severe neurological disease caused by WNV.
Collapse
|
17
|
Hussmann KL, Samuel MA, Kim KS, Diamond MS, Fredericksen BL. Differential replication of pathogenic and nonpathogenic strains of West Nile virus within astrocytes. J Virol 2013; 87:2814-22. [PMID: 23269784 PMCID: PMC3571364 DOI: 10.1128/jvi.02577-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/15/2012] [Indexed: 12/13/2022] Open
Abstract
The severity of West Nile virus (WNV) infection in immunocompetent animals is highly strain dependent, ranging from avirulent to highly neuropathogenic. Here, we investigate the nature of this strain-specific restriction by analyzing the replication of avirulent (WNV-MAD78) and highly virulent (WNV-NY) strains in neurons, astrocytes, and microvascular endothelial cells, which comprise the neurovascular unit within the central nervous system (CNS). We demonstrate that WNV-MAD78 replicated in and traversed brain microvascular endothelial cells as efficiently as WNV-NY. Likewise, similar levels of replication were detected in neurons. Thus, WNV-MAD78's nonneuropathogenic phenotype is not due to an intrinsic inability to replicate in key target cells within the CNS. In contrast, replication of WNV-MAD78 was delayed and reduced compared to that of WNV-NY in astrocytes. The reduced susceptibility of astrocytes to WNV-MAD78 was due to a delay in viral genome replication and an interferon-independent reduction in cell-to-cell spread. Together, our data suggest that astrocytes regulate WNV spread within the CNS and therefore are an attractive target for ameliorating WNV-induced neuropathology.
Collapse
Affiliation(s)
- Katherine L. Hussmann
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Melanie A. Samuel
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University, St. Louis, Missouri, USA
| | - Kwang S. Kim
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University, St. Louis, Missouri, USA
| | - Brenda L. Fredericksen
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| |
Collapse
|
18
|
The polyfunctionality of human memory CD8+ T cells elicited by acute and chronic virus infections is not influenced by age. PLoS Pathog 2012; 8:e1003076. [PMID: 23271970 PMCID: PMC3521721 DOI: 10.1371/journal.ppat.1003076] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
As humans age, they experience a progressive loss of thymic function and a corresponding shift in the makeup of the circulating CD8+ T cell population from naïve to memory phenotype. These alterations are believed to result in impaired CD8+ T cell responses in older individuals; however, evidence that these global changes impact virus-specific CD8+ T cell immunity in the elderly is lacking. To gain further insight into the functionality of virus-specific CD8+ T cells in older individuals, we interrogated a cohort of individuals who were acutely infected with West Nile virus (WNV) and chronically infected with Epstein Barr virus (EBV) and Cytomegalovirus (CMV). The cohort was stratified into young (<40 yrs), middle-aged (41-59 yrs) and aged (>60 yrs) groups. In the aged cohort, the CD8+ T cell compartment displayed a marked reduction in the frequency of naïve CD8+ T cells and increased frequencies of CD8+ T cells that expressed CD57 and lacked CD28, as previously described. However, we did not observe an influence of age on either the frequency of virus-specific CD8+ T cells within the circulating pool nor their functionality (based on the production of IFNγ, TNFα, IL2, Granzyme B, Perforin and mobilization of CD107a). We did note that CD8+ T cells specific for WNV, CMV or EBV displayed distinct functional profiles, but these differences were unrelated to age. Collectively, these data fail to support the hypothesis that immunosenescence leads to defective CD8+ T cell immunity and suggest that it should be possible to develop CD8+ T cell vaccines to protect aged individuals from infections with novel emerging viruses.
Collapse
|
19
|
Rodríguez-Pulido M, Martín-Acebes MA, Escribano-Romero E, Blázquez AB, Sobrino F, Borrego B, Sáiz M, Saiz JC. Protection against West Nile virus infection in mice after inoculation with type I interferon-inducing RNA transcripts. PLoS One 2012; 7:e49494. [PMID: 23166685 PMCID: PMC3498145 DOI: 10.1371/journal.pone.0049494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/09/2012] [Indexed: 01/14/2023] Open
Abstract
West Nile virus (WNV) is a neurovirulent single stranded RNA mosquito-borne flavivirus, whose main natural hosts are birds, but it also infects humans and horses. Nowadays, no human vaccine is commercially available and clinical treatment is only supportive. Recently, it has been shown that RNA transcripts, mimicking structural domains in the non-coding regions (NCRs) of the foot-and mouth disease virus (FMDV) induce a potent IFN response and antiviral activity in transfected cultured cells, and also reduced mice susceptibility to FMDV. By using different transcripts combinations, administration schedules, and infecting routes and doses, we have demonstrated that these FMDV RNA transcripts protect suckling and adult mice against lethal challenge with WNV. The protective activity induced by the transcripts was systemic and dependent on the infection route and dose. These results confirm the antiviral potential of these synthetic RNAs for fighting viruses of different families relevant for human and animal health.
Collapse
Affiliation(s)
- Miguel Rodríguez-Pulido
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Miguel A. Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- * E-mail:
| |
Collapse
|
20
|
Martín-Acebes MA, Saiz JC. West Nile virus: A re-emerging pathogen revisited. World J Virol 2012; 1:51-70. [PMID: 24175211 PMCID: PMC3782267 DOI: 10.5501/wjv.v1.i2.51] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 02/05/2023] Open
Abstract
West Nile virus (WNV), a flavivirus of the Flaviviridae family, is maintained in nature in an enzootic transmission cycle between avian hosts and ornithophilic mosquito vectors, although the virus occasionally infects other vertebrates. WNV causes sporadic disease outbreaks in horses and humans, which may result in febrile illness, meningitis, encephalitis and flaccid paralysis. Until recently, its medical and veterinary health concern was relatively low; however, the number, frequency and severity of outbreaks with neurological consequences in humans and horses have lately increased in Europe and the Mediterranean basin. Since its introduction in the Americas, the virus spread across the continent with worrisome consequences in bird mortality and a considerable number of outbreaks among humans and horses, which have resulted in the largest epidemics of neuroinvasive WNV disease ever documented. Surprisingly, its incidence in human and animal health is very different in Central and South America, and the reasons for it are not yet understood. Even though great advances have been obtained lately regarding WNV infection, and although efficient equine vaccines are available, no specific treatments or vaccines for human use are on the market. This review updates the most recent investigations in different aspects of WNV life cycle: molecular virology, transmission dynamics, host range, clinical presentations, epidemiology, ecology, diagnosis, control, and prevention, and highlights some aspects that certainly require further research.
Collapse
Affiliation(s)
- Miguel A Martín-Acebes
- Miguel A Martín-Acebes, Juan-Carlos Saiz, Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain
| | | |
Collapse
|
21
|
Denizot M, Neal JW, Gasque P. Encephalitis due to emerging viruses: CNS innate immunity and potential therapeutic targets. J Infect 2012; 65:1-16. [PMID: 22484271 DOI: 10.1016/j.jinf.2012.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 02/27/2012] [Accepted: 03/08/2012] [Indexed: 12/21/2022]
Abstract
The emerging viruses represent a group of pathogens that are intimately connected to a diverse range of animal vectors. The recent escalation of air travel climate change and urbanization has meant humans will have increased risk of contacting these pathogens resulting in serious CNS infections. Many RNA viruses enter the CNS by evading the BBB due to axonal transport from the periphery. The systemic adaptive and CNS innate immune systems express pattern recognition receptors PRR (TLRs, RiG-1 and MDA-5) that detect viral nucleic acids and initiate host antiviral response. However, several emerging viruses (West Nile Fever, Influenza A, Enterovirus 71 Ebola) are recognized and internalized by host cell receptors (TLR, MMR, DC-SIGN, CD162 and Scavenger receptor B) and escape immuno surveillance by the host systemic and innate immune systems. Many RNA viruses express viral proteins WNF (E protein), Influenza A (NS1), EV71 (protein 3C), Rabies (Glycoprotein), Ebola proteins (VP24 and VP 35) that inhibit the host cell anti-virus Interferon type I response promoting virus replication and encephalitis. The therapeutic use of RNA interference methodologies to silence gene expression of viral peptides and treat emerging virus infection of the CNS is discussed.
Collapse
Affiliation(s)
- M Denizot
- GRI, Immunopathology and Infectious Disease Research Grouping (IRG, GRI), University of La Reunion, Reunion
| | | | | |
Collapse
|
22
|
Sotelo E, Fernández-Pinero J, Jiménez-Clavero MÁ. La fiebre/encefalitis por virus West Nile: reemergencia en Europa y situación en España. Enferm Infecc Microbiol Clin 2012; 30:75-83. [DOI: 10.1016/j.eimc.2011.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 12/29/2022]
|
23
|
Beasley DWC. Vaccines and immunotherapeutics for the prevention and treatment of infections with West Nile virus. Immunotherapy 2011; 3:269-85. [PMID: 21322763 DOI: 10.2217/imt.10.93] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The emergence of West Nile virus (WNV) in North America in 1999 as a cause of severe neurological disease in humans, horses and birds stimulated development of vaccines for human and veterinary use, as well as polyclonal/monoclonal antibodies and other immunomodulating compounds for use as therapeutics. Although disease incidence in North America has declined since the peak epidemics in 2002-2003, the virus has continued to be annually transmitted in the Americas and to cause periodic epidemics in Europe and the Middle East. Continued transmission of the virus with human and animal disease suggests that vaccines and therapeutics for the prevention and treatment of WNV disease could be of great benefit. This article focuses on progress in development and evaluation of vaccines and immunotherapeutics for the prevention and treatment of WNV disease in humans and animals.
Collapse
Affiliation(s)
- David W C Beasley
- Department of Microbiology & Immunology, Sealy Center for Vaccine Development, Center for Biodefense & Emerging Infectious Diseases, Institute for Human Infections & Immunity, & Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| |
Collapse
|
24
|
Abstract
West Nile virus (WNV) is a zoonotic virus that circulates in birds and is transmitted by mosquitoes. Incidentally, humans, horses and other mammals can also be infected. Disease symptoms caused by WNV range from fever to neurological complications, such as encephalitis or meningitis. Mortality is observed mostly in older and immunocompromised individuals. In recent years, epidemics caused by WNV in humans and horses have become more frequent in several Southern European countries, such as Italy and Greece. In 1999, WNV was introduced into the USA and spread over North America within a couple of years. The increasing number of WNV outbreaks is associated with the emergence of novel viral strains, which display higher virulence and greater epidemic potential for humans. Upon infection with WNV, the mammalian immune system counteracts the virus at several different levels. On the other side, WNV has developed elaborated escape mechanisms to avoid its elimination. This review summarizes recent findings in WNV research that help to understand the complex biology associated with this emerging pathogen.
Collapse
Affiliation(s)
- Sebastian Ulbert
- Vaccine Technologies Unit, Fraunhofer Institute of Cell Therapy and Immunology, Leipzig, Germany. Sebastian.ulbert @ izi.fraunhofer.de
| |
Collapse
|
25
|
|
26
|
The capsid-binding nucleolar helicase DDX56 is important for infectivity of West Nile virus. J Virol 2011; 85:5571-80. [PMID: 21411523 DOI: 10.1128/jvi.01933-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent findings suggest that in addition to its role in packaging genomic RNA, the West Nile virus (WNV) capsid protein is an important pathogenic determinant, a scenario that requires interaction of this viral protein with host cell proteins. We performed an extensive multitissue yeast two-hybrid screen to identify capsid-binding proteins in human cells. Here we describe the interaction between WNV capsid and the nucleolar RNA helicase DDX56/NOH61. Coimmunoprecipitation confirmed that capsid protein binds to DDX56 in infected cells and that this interaction is not dependent upon intact RNA. Interestingly, WNV infection induced the relocalization of DDX56 from the nucleolus to a compartment in the cytoplasm that also contained capsid protein. This phenomenon was apparently specific for WNV, as DDX56 remained in the nucleoli of cells infected with rubella and dengue 2 viruses. Further analyses showed that DDX56 is not required for replication of WNV; however, virions secreted from DDX56-depleted cells contained less viral RNA and were 100 times less infectious. Together, these data suggest that DDX56 is required for assembly of infectious WNV particles.
Collapse
|
27
|
Abstract
Zoonotic West Nile virus (WNV) circulates in natural transmission cycles involving certain mosquitoes and birds, horses, humans, and a range of other vertebrates are incidental hosts. Clinical infections in humans can range in severity from uncomplicated WNV fever to fatal meningoencephalitis. Since its introduction to the Western Hemisphere in 1999, WNV had spread across North America, Central and South America and the Caribbean, although the vast majority of severe human cases have occurred in the United States of America (USA) and Canada. By 2002-2003, the WNV outbreaks have involved thousands of patients causing severe neurologic disease (meningoencephalitis and poliomyelitis-like syndrome) and hundreds of associated fatalities in USA. The purpose of this review is to present recent information on the epidemiology and pathogenicity of WNV since its emergence in North America.
Collapse
|
28
|
Verma S, Hoffmann FW, Kumar M, Huang Z, Roe K, Nguyen-Wu E, Hashimoto AS, Hoffmann PR. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. THE JOURNAL OF IMMUNOLOGY 2011; 186:2127-37. [PMID: 21220695 DOI: 10.4049/jimmunol.1002878] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selenoprotein K (Sel K) is a selenium-containing protein for which no function has been identified. We found that Sel K is an endoplasmic reticulum transmembrane protein expressed at relatively high levels in immune cells and is regulated by dietary selenium. Sel K(-/-) mice were generated and found to be similar to wild-type controls regarding growth and fertility. Immune system development was not affected by Sel K deletion, but specific immune cell defects were found in Sel K(-/-) mice. Receptor-mediated Ca(2+) flux was decreased in T cells, neutrophils, and macrophages from Sel K(-/-) mice compared with controls. Ca(2+)-dependent functions including T cell proliferation, T cell and neutrophil migration, and Fcγ receptor-mediated oxidative burst in macrophages were decreased in cells from Sel K(-/-) mice compared with that in cells from controls. West Nile virus infections were performed, and Sel K(-/-) mice exhibited decreased viral clearance in the periphery and increased viral titers in brain. Furthermore, West Nile virus-infected Sel K(-/-) mice demonstrated significantly lower survival (2 of 23; 8.7%) compared with that of wild-type controls (10 of 26; 38.5%). These results establish Sel K as an endoplasmic reticulum-membrane protein important for promoting effective Ca(2+) flux during immune cell activation and provide insight into molecular mechanisms by which dietary selenium enhances immune responses.
Collapse
Affiliation(s)
- Saguna Verma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Alonso-Padilla J, de Oya NJ, Blázquez AB, Escribano-Romero E, Escribano JM, Saiz JC. Recombinant West Nile virus envelope protein E and domain III expressed in insect larvae protects mice against West Nile disease. Vaccine 2011; 29:1830-5. [PMID: 21211580 DOI: 10.1016/j.vaccine.2010.12.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/01/2010] [Accepted: 12/17/2010] [Indexed: 12/26/2022]
Abstract
In this study, West Nile virus (WNV) envelope (rE) protein and its domain III (rDIII) were efficiently expressed in a cost-effective system based on insect larvae as non-fermentative living biofactories. Mice immunized with the partially purified rE or rDIII elicited high antibodies titers that neutralized viral infectivity in cell culture and in suckling mice. All vaccinated animals were fully protected when challenged with neurovirulent WNV NY99. Passive transfer of protective antibodies from immunized mothers to their offspring occurred both by transplacental and lactation routes. These results indicate that the insect-derived antigens tested may constitute potential vaccine candidates to be further evaluated.
Collapse
Affiliation(s)
- Julio Alonso-Padilla
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. Coruña Km. 7.5, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Iwai A, Shiozaki T, Kawai T, Akira S, Kawaoka Y, Takada A, Kida H, Miyazaki T. Influenza A virus polymerase inhibits type I interferon induction by binding to interferon beta promoter stimulator 1. J Biol Chem 2010; 285:32064-74. [PMID: 20699220 PMCID: PMC2952208 DOI: 10.1074/jbc.m110.112458] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 08/08/2010] [Indexed: 01/11/2023] Open
Abstract
Type I interferons (IFNs) are known to be critical factors in the activation of host antiviral responses and are also important in protection from influenza A virus infection. Especially, the RIG-I- and IPS-1-mediated intracellular type I IFN-inducing pathway is essential in the activation of antiviral responses in cells infected by influenza A virus. Previously, it has been reported that influenza A virus NS1 is involved in the inhibition of this pathway. We show in this report that the influenza A virus utilizes another critical inhibitory mechanism in this pathway. In fact, the viral polymerase complex exhibited an inhibitory activity on IFNβ promoter activation mediated by RIG-I and IPS-1, and this activity was not competitive with the function of NS1. Co-immunoprecipitation analysis revealed that each polymerase subunit bound to IPS-1 in mammalian cells, and each subunit inhibited the activation of IFNβ promoter by IPS-1 independently. In addition, by a combinational expression of each polymerase subunit, IPS-1-induced activation of IFNβ promoter was more efficiently inhibited by the expression of PB2 or PB2-containing complex. Moreover, the expression of PB2 inhibited the transcription of the endogenous IFNβ gene induced after influenza A virus infection. These findings demonstrate that the viral polymerase plays an important role for regulating host anti-viral response through the binding to IPS-1 and inhibition of IFNβ production.
Collapse
Affiliation(s)
| | | | - Taro Kawai
- the Laboratory of Host Defense, World Premier International Research Center, Immunology Frontier Research Center, and
- the Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shizuo Akira
- the Laboratory of Host Defense, World Premier International Research Center, Immunology Frontier Research Center, and
- the Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Kawaoka
- the Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53706
- the International Research Center for Infectious Diseases and
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | - Hiroshi Kida
- Hokkaido University Research Center for Zoonosis Control, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- the Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan, and
- the Office International des Epizooties (OIE) Reference Laboratory for Highly Pathogenic Avian Influenza, Sapporo, Hokkaido, Japan
| | | |
Collapse
|
31
|
Hollidge BS, González-Scarano F, Soldan SS. Arboviral encephalitides: transmission, emergence, and pathogenesis. J Neuroimmune Pharmacol 2010; 5:428-42. [PMID: 20652430 PMCID: PMC3286874 DOI: 10.1007/s11481-010-9234-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 07/02/2010] [Indexed: 12/20/2022]
Abstract
Arthropod-borne viruses (arboviruses) are of paramount concern as a group of pathogens at the forefront of emerging and re-emerging diseases. Although some arboviral infections are asymptomatic or present with a mild influenza-like illness, many are important human and veterinary pathogens causing serious illness ranging from rash and arthritis to encephalitis and hemorrhagic fever. Here, we discuss arboviruses from diverse families (Flaviviruses, Alphaviruses, and the Bunyaviridae) that are causative agents of encephalitis in humans. An understanding of the natural history of these infections as well as shared mechanisms of neuroinvasion and neurovirulence is critical to control the spread of these viruses and for the development of effective vaccines and treatment modalities.
Collapse
Affiliation(s)
- Bradley S Hollidge
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | | | | |
Collapse
|
32
|
Kimura T, Sasaki M, Okumura M, Kim E, Sawa H. Flavivirus encephalitis: pathological aspects of mouse and other animal models. Vet Pathol 2010; 47:806-18. [PMID: 20551474 DOI: 10.1177/0300985810372507] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Encephalitic flaviviruses are important arthropod-borne pathogens of humans and other animals. In particular, the recent emergence of the West Nile virus (WNV) and Japanese encephalitis virus (JEV) in new geographic areas has caused a considerable public health alert and international concern. Among the experimental in vivo models of WNV and JEV infection, mice and other laboratory rodents are the most thoroughly studied and well-characterized systems, having provided data that are important for understanding the infectious process in humans. Macaca monkeys have also been used as a model for WNV and JEV infection, mainly for the evaluation of vaccine efficacy, although a limited number of published studies have addressed pathomorphology. These animal models demonstrate the development of encephalitis with many similarities to the human disease; however, the histological events that occur during infection, especially in peripheral tissues, have not been fully characterized.
Collapse
Affiliation(s)
- T Kimura
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, West 10 North 20, Kita-ku, Sapporo 001-0020 Japan.
| | | | | | | | | |
Collapse
|
33
|
Mertens E, Kajaste-Rudnitski A, Torres S, Funk A, Frenkiel MP, Iteman I, Khromykh AA, Desprès P. Viral determinants in the NS3 helicase and 2K peptide that promote West Nile virus resistance to antiviral action of 2',5'-oligoadenylate synthetase 1b. Virology 2010; 399:176-185. [PMID: 20100623 DOI: 10.1016/j.virol.2009.12.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/17/2009] [Accepted: 12/31/2009] [Indexed: 11/29/2022]
Abstract
The interferon-inducible 2',5'-oligoadenylate synthetase 1b (Oas1b) protein inhibits West Nile virus (WNV) infection by preventing viral RNA (vRNA) accumulation in infected cells. Serial passage of WNV in Oas1b-expressing mouse cells selected a virus variant with improved growth capacity. Two major amino acid substitutions were identified in this Oas1b-resistant WNV variant: NS3-S365G in the ATPase/helicase domain of NS3 and 2K-V9M in the C-terminal segment of NS4A. To assess their effect on antiviral activity of Oas1b, the NS3 and 2K mutations were engineered into an infectious WNV cDNA clone. The NS3 mutation alters requirement of ATP for ATPase activity and attenuates Oas1b-mediated suppression of vRNA accumulation. However, growth of NS3-mutant virus remains impaired in Oas1b-expressing cells. Only the 2K-V9M mutation efficiently rescued viral growth by promoting vRNA replication. Thus, WNV resistance to Oas1b antiviral action could be attributed to the 2K-V9M substitution with a potential role of NS3-S365G through rescue of vRNA accumulation.
Collapse
Affiliation(s)
- Eva Mertens
- Unité Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, 75724 Paris, France
| | | | - Shessy Torres
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Anneke Funk
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | | | - Isabelle Iteman
- Plate-Forme Génotypage des Pathogènes et Santé Publique (PF-8), Institut Pasteur, 75724 Paris, France
| | - Alexander A Khromykh
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Philippe Desprès
- Unité Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, 75724 Paris, France.
| |
Collapse
|
34
|
Abstract
BACKGROUND Chimpanzees have been widely used in hepatitis C virus (HCV) research, but their endangered status and high financial and ethical costs have prompted a closer review. METHODS One hundred and nine articles published in 1998-2007 were analyzed for the number of chimpanzees involved, experimental procedures, objectives and other relevant issues. RESULTS The articles described the use of 852 chimpanzees, but accounting for likely multiple uses, the number of individual chimpanzees involved here is estimated to be approximately 500. Most articles addressed immunology and inoculation studies. A significant portion of studies lasted for several months or years. Approximately one half of the individual chimpanzees were each used in 2-10 studies. CONCLUSIONS Significant financial and scientific resources have been expended in these chimpanzee HCV studies. Discussion addresses troublesome questions presented by some of the reviewed articles, including statistical validity, repeatability, and biological relevance of this model. These concerns merit attention as future approaches to HCV research and research priorities are considered.
Collapse
|