1
|
Webb NE, Sevareid CM, Sanchez C, Tobin NH, Aldrovandi GM. Natural Variation in HIV-1 Entry Kinetics Map to Specific Residues and Reveal an Interdependence Between Attachment and Fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600587. [PMID: 38979136 PMCID: PMC11230229 DOI: 10.1101/2024.06.25.600587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
HIV-1 entry kinetics reflect the fluid motion of the HIV envelope glycoprotein through at least three major structural configurations that drive virus-cell membrane fusion. The lifetime of each state is an important component of potency for inhibitors that target them. We used the time-of-addition inhibitor assay and a novel analytical strategy to define the kinetics of pre-hairpin exposure (using T20) and co-receptor engagement (via. maraviroc), through a characteristic delay metric, across a variety of naturally occurring HIV Env isolates. Among 257 distinct HIV-1 envelope isolates we found a remarkable breadth of T20 and maraviroc delays ranging from as early as 30 seconds to as late as 60 minutes. The most extreme delays were observed among transmission-linked clade C isolates. We identified four single-residue determinants of late T20 and maraviroc delays that are associated with either receptor engagement or gp41 function. Comparison of these delays with T20 sensitivity suggest co-receptor engagement and fusogenic activity in gp41 act cooperatively but sequentially to drive entry. Our findings support current models of entry where co-receptor engagement drives gp41 eclipse and have strong implications for the design of entry inhibitors and antibodies that target transient entry states. Author Summary The first step of HIV-1 infection is entry, where virus-cell membrane fusion is driven by the HIV-1 envelope glycoprotein through a series of conformational changes. Some of the most broadly active entry inhibitors work by binding conformations that exist only transiently during entry. The lifetimes of these states and the kinetics of entry are important elements of inhibitor activity for which little is known. We demonstrate a remarkable range of kinetics among 257 diverse HIV-1 isolates and find that this phenotype is highly flexible, with multiple single-residue determinants. Examination of the kinetics of two conformational landmarks shed light on novel kinetic features that offer new details about the role of co-receptor engagement and provide a framework to explain entry inhibitor synergy.
Collapse
|
2
|
He L, Zhou G, Sofiyev V, Garcia E, Nguyen N, Li KH, Gochin M. Targeting a Conserved Lysine in the Hydrophobic Pocket of HIV-1 gp41 Improves Small Molecule Antiviral Activity. Viruses 2022; 14:v14122703. [PMID: 36560708 PMCID: PMC9784957 DOI: 10.3390/v14122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Human Immunodeficiency virus (HIV-1) fusion is mediated by glycoprotein-41, a protein that has not been widely exploited as a drug target. Small molecules directed at the gp41 ectodomain have proved to be poorly drug-like, having moderate efficacy, high hydrophobicity and/or high molecular weight. We recently investigated conversion of a fairly potent hydrophobic inhibitor into a covalent binder, by modifying it to react with a lysine residue on the protein. We demonstrated a 10-fold improvement in antiviral efficacy. Here, we continue this study, utilizing instead molecules with better inherent drug-like properties. Molecules possessing low to no antiviral activity as equilibrium binders were converted into µM inhibitors upon addition of an electrophilic warhead in the form of a sulfotetrafluorophenyl (STP) activated ester. We confirmed specificity for gp41 and for entry. The small size of the inhibitors described here offers an opportunity to expand their reach into neighboring pockets while retaining drug-likeness. STP esterification of equilibrium binders is a promising avenue to explore for inhibiting HIV-1 entry. Many gp41 targeting molecules studied over the years possess carboxylic acid groups which can be easily converted into the corresponding STP ester. It may be worth the effort to evaluate a library of such inhibitors as a way forward to small molecule inhibition of fusion of HIV and possibly other enveloped viruses.
Collapse
Affiliation(s)
- Li He
- Department of Basic Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Guangyan Zhou
- Department of Basic Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Vladimir Sofiyev
- Department of Basic Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Eddie Garcia
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Newton Nguyen
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| | - Miriam Gochin
- Department of Basic Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
- Correspondence: ; Tel.: +1-707-638-5463
| |
Collapse
|
3
|
Chawuke P, van den Berg N, Fouche G, Maharaj V, Shoko T, Johan van der Westhuizen C, Invernizzi L, Alexandre KB. Lobostemon trigonus (Thunb.) H. Buek, a medicinal plant from South Africa as a potential natural microbicide against HIV-1. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114222. [PMID: 34033901 DOI: 10.1016/j.jep.2021.114222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There have been different methods proposed to prevent the sexual transmission of HIV-1 and many of them have centered on the use of anti-retrovirals as microbicides. Given that a large section of the African population still relies on herbal medicine, Lobostemon trigonus (L. trigonus), a traditionally used medicinal plant in South Africa to treat HIV-1 was further investigated for its potential as a natural microbicide to prevent the sexual transmission of HIV-1. METHODS The aerial parts of L. trigonus were oven-dried at 80 °C, ground, extracted with boiling water for 30 min and then filtered. The aqueous extract produced was then bioassayed using different HIV-1 inhibition assays. The active components were purified and chemically profiled using ultra-performance liquid chromatography/quadrupole time-of flight mass spectrometry (UPLC-qTOF-MS). The mechanism of HIV-1 inhibition was determined by fusion arrest assay and time of addition assay. Molecular modelling and molecular dynamic simulations, using Schrödinger, were used to better understand the molecule's mechanism of entry inhibition by evaluating their docking affinity and stability against the gp120 of HIV-1. RESULTS The aqueous extract of this plant had a broad spectrum of activity against different subtypes of the virus; neutralizing subtype A, B and C in the TZM-bl cells, with IC50 values ranging from 0.10 to 7.21 μg/mL. The extract was also inhibitory to the virus induced cytopathic effects in CEM-SS cells with an EC50 of 8.9 μg/mL. In addition, it inhibited infection in peripheral blood mononuclear cells (PBMC) and macrophages with IC50 values of 0.97 and 4.4 μg/mL, respectively. In the presence of vaginal and seminal simulants, and in human semen it retained its inhibitory activity albeit with a decrease in efficiency, by about 3-fold. Studies of the mode of action suggested that the extract blocked HIV-1 attachment to target cells. No toxicity was observed when the Lactobacilli strains, L. acidophilus, L. jensenii, and L. crispatus that populate the female genital tract were cultured in the presence of L. trigonus extract. UPLC-qTOF-MS analyses of the purified fraction of the extract, confirmed the presence of six compounds of which four were identified as rosmarinic acid, salvianolic acids B and C and lithospermic acid. The additional molecular dynamic simulations provided further insight into the entry inhibitory characteristics of salvianolic acid B against the HIV-1 gp120, with a stable pose being found within the CD4 binding site. CONCLUSION The data suggests that the inhibitory effect of L. trigonus may be due to the presence of organic acids which are known to possess anti-HIV-1 properties. The molecules salvianolic acids B and C have been identified for the first time in L. trigonus species. Our study also showed that the L. trigonus extract blocked HIV-1 attachment to target cells, and that it has a broad spectrum of activity against different subtypes of the virus; thus, justifying further investigation as a HIV-1 microbicide.
Collapse
Affiliation(s)
- Phindiwe Chawuke
- Council for Scientific and Industrial Research, Pretoria, South Africa; University of Pretoria, Department of Chemistry, Pretoria, South Africa.
| | | | - Gerda Fouche
- University of Pretoria, Department of Chemistry, Pretoria, South Africa.
| | - Vinesh Maharaj
- University of Pretoria, Department of Chemistry, Pretoria, South Africa.
| | - Tinotenda Shoko
- University of Pretoria, Department of Chemistry, Pretoria, South Africa.
| | | | - Luke Invernizzi
- University of Pretoria, Department of Chemistry, Pretoria, South Africa.
| | | |
Collapse
|
4
|
Zhou G, He L, Li KH, Pedroso CCS, Gochin M. A targeted covalent small molecule inhibitor of HIV-1 fusion. Chem Commun (Camb) 2021; 57:4528-4531. [PMID: 33956029 DOI: 10.1039/d1cc01013a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a low molecular weight covalent inhibitor targeting a conserved lysine residue within the hydrophobic pocket of HIV-1 glycoprotein-41. The inhibitor bound selectively to the hydrophobic pocket and exhibited an order of magnitude enhancement of anti-fusion activity against HIV-1 compared to its non-covalent counterpart. The findings represent a significant advance in the quest to obtain non-peptide fusion inhibitors.
Collapse
Affiliation(s)
- Guangyan Zhou
- Department of Basic Sciences, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA.
| | - Li He
- Department of Basic Sciences, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA.
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| | - Cássio C S Pedroso
- Lawrence Berkeley National Laboratory, The Molecular Foundry, 1 Cyclotron Road, 67R5114, Berkeley, CA 94720, USA
| | - Miriam Gochin
- Department of Basic Sciences, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA. and Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Differential utilization of CD4+ by transmitted/founder and chronic envelope glycoproteins in a MSM HIV-1 subtype B transmission cluster. AIDS 2020; 34:2187-2200. [PMID: 32932339 DOI: 10.1097/qad.0000000000002690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE HIV-1 transmission leads to a genetic bottleneck, with one or a few variants of the donor quasispecies establishing an infection in the new host. We aimed to characterize this bottleneck in more detail, by comparing the properties of HIV envelope glycoproteins from acute and chronic infections within the particular context of a male-to-male transmission cluster. DESIGN We compared the genotypic and phenotypic properties of envelope glycoproteins from viral variants derived from five study participants from the same transmission cluster. METHODS We used single-genome amplification to generate a collection of full-length env sequences. We then constructed pseudotyped viruses expressing selected Env variants from the quasispecies infecting each study participant and compared their infectivities and sensitivities to various entry inhibitors. RESULTS The genotypic analyses confirmed the genetic bottleneck expected after HIV transmission, with a limited number of variants identified in four study participants during acute infection. However, the transmitted sequences harbored no evident common signature and belonged to various genetic lineages. The phenotypic analyses revealed no difference in infectivity, susceptibility to the CCR5 antagonist maraviroc, the fusion inhibitor enfurvitide or type-I interferon between viruses from participants with acute and chronic infections. The key property distinguishing transmitted viruses was a higher resistance to soluble CD4, correlated with greater sensitivity to occupation of the CD4 receptor by the anti-CD4 antibodies LM52 and SK3. CONCLUSION These results suggest that envelope glycoproteins from transmitted/founder viruses bind CD4 less efficiently than those of viruses from chronic infections.
Collapse
|
6
|
Shao J, Zeng D, Tian S, Liu G, Fu J. Identification of the natural product berberine as an antiviral drug. AMB Express 2020; 10:164. [PMID: 32897426 PMCID: PMC7479080 DOI: 10.1186/s13568-020-01088-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Drugs targeting the fusion process of viral entry into host cells have been approved for clinical use in the treatment of AIDS. There remains a great need to improve the use of existing drugs for HIV therapy. Berberine is traditionally used to treat diarrhea, bacillary dysentery, and gastroenteritis in clinics, here our research shows that berberine is effective in inhibiting HIV-1 entry. Native polyacrylamide gel electrophoresis studies reveal that berberine can directly bind to both N36 and C34 to form a novel N36-berberine-C34 complex and effectively block the six-helix bundle formation between the N-terminal heptad repeat peptide N36 and the C-terminal heptad repeat peptide C34. Circular dichroism experiments show that binding of berberine produces conformational changes that damages the secondary structures of 6-HB. Computer-aided molecular docking studies suggest a hydrogen bond with T-639 and two polar bonds with Q-563 and T-639 are established, involving the oxygen atom and the C=O group of the indole ring. Berberine completely inhibits six HIV-1 clade B isolates and exhibits antiviral activities in a concentration-dependent manner with IC50 values varying from 5.5 to 10.25 µg/ml. This compound-peptide interaction may represent a mechanism of action of antiviral activities of berberine. As a summary, these studies successfully identify compound berberine as a potential candidate drug for HIV-1 treatment. As a summary, antiviral activity of berberine in combination with its use in clinical practice, this medicine can be used as a potential clinically anti-HIV drug.
Collapse
|
7
|
Carlon-Andres I, Padilla-Parra S. Quantitative FRET-FLIM-BlaM to Assess the Extent of HIV-1 Fusion in Live Cells. Viruses 2020; 12:E206. [PMID: 32059513 PMCID: PMC7077196 DOI: 10.3390/v12020206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
The first steps of human immunodeficiency virus (HIV) infection go through the engagement of HIV envelope (Env) with CD4 and coreceptors (CXCR4 or CCR5) to mediate viral membrane fusion between the virus and the host. New approaches are still needed to better define both the molecular mechanistic underpinnings of this process but also the point of fusion and its kinetics. Here, we have developed a new method able to detect and quantify HIV-1 fusion in single live cells. We present a new approach that employs fluorescence lifetime imaging microscopy (FLIM) to detect Förster resonance energy transfer (FRET) when using the β-lactamase (BlaM) assay. This novel approach allows comparing different populations of single cells regardless the concentration of CCF2-AM FRET reporter in each cell, and more importantly, is able to determine the relative amount of viruses internalized per cell. We have applied this approach in both reporter TZM-bl cells and primary T cell lymphocytes.
Collapse
Affiliation(s)
| | - Sergi Padilla-Parra
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK;
| |
Collapse
|
8
|
Zhao C, Princiotto AM, Nguyen HT, Zou S, Zhao ML, Zhang S, Herschhorn A, Farrell M, Pahil K, Melillo B, Sambasivarao SV, Abrams C, Smith AB, Madani N, Sodroski J. Strain-Dependent Activation and Inhibition of Human Immunodeficiency Virus Entry by a Specific PF-68742 Stereoisomer. J Virol 2019; 93:e01197-19. [PMID: 31391272 PMCID: PMC6803283 DOI: 10.1128/jvi.01197-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells is mediated by the viral envelope glycoprotein (Env) trimer, which consists of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. When gp120 binds sequentially to the receptors CD4 and CCR5 on the target cell, the metastable Env trimer is triggered to undergo entry-related conformational changes. PF-68742 is a small molecule that inhibits the infection of a subset of HIV-1 strains by interfering with an Env function other than receptor binding. Determinants of HIV-1 resistance to PF-68742 map to the disulfide loop and fusion peptide of gp41. Of the four possible PF-68742 stereoisomers, only one, MF275, inhibited the infection of CD4-positive CCR5-positive cells by some HIV-1 strains. MF275 inhibition of these HIV-1 strains occurred after CD4 binding but before the formation of the gp41 six-helix bundle. Unexpectedly, MF275 activated the infection of CD4-negative CCR5-positive cells by several HIV-1 strains resistant to the inhibitory effects of the compound in CD4-positive target cells. In contrast to CD4 complementation by CD4-mimetic compounds, activation of CD4-independent infection by MF275 did not depend upon the availability of the gp120 Phe 43 cavity. Sensitivity to inhibitors indicates that MF275-activated virus entry requires formation/exposure of the gp41 heptad repeat (HR1) as well as CCR5 binding. MF275 apparently activates a virus entry pathway parallel to that triggered by CD4 and CD4-mimetic compounds. Strain-dependent divergence in Env conformational transitions allows different outcomes, inhibition or activation, in response to MF275. Understanding the mechanisms of MF275 activity should assist efforts to optimize its utility.IMPORTANCE Envelope glycoprotein (Env) spikes on the surface of human immunodeficiency virus (HIV-1) bind target cell receptors, triggering changes in the shape of Env. We studied a small molecule, MF275, that also induced shape changes in Env. The consequences of MF275 interaction with Env depended on the HIV-1 strain, with infection by some viruses inhibited and infection by other viruses enhanced. These studies reveal the strain-dependent diversity of HIV-1 Envs as they undergo shape changes in proceeding down the entry pathway. Appreciation of this diversity will assist attempts to develop broadly active inhibitors of HIV-1 entry.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amy M Princiotto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shitao Zou
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Meiqing Lily Zhao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alon Herschhorn
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark Farrell
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karanbir Pahil
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bruno Melillo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Somisetti V Sambasivarao
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Evolution of the Envelope Glycoprotein of HIV-1 Clade B toward Higher Infectious Properties over the Course of the Epidemic. J Virol 2019; 93:JVI.01171-18. [PMID: 30567994 DOI: 10.1128/jvi.01171-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023] Open
Abstract
We showed previously that during the HIV/AIDS epidemic, the envelope glycoprotein (Env) of HIV-1, and in particular, the gp120 subunit, evolved toward an increased resistance to neutralizing antibodies at a population level. Here, we considered whether the antigenic evolution of the HIV-1 Env is associated with modifications of its functional properties, focusing on cell entry efficacy and interactions with the receptor and coreceptors. We tested the infectivity of a panel of Env-pseudotyped viruses derived from patients infected by subtype B viruses at three periods of the epidemic (1987 to 1991, 1996 to 2000, and 2006 to 2010). Pseudotyped viruses harboring Env from patients infected during the most recent period were approximately 10-fold more infectious in cell culture than those from patients infected at the beginning of the epidemic. This was associated with faster viral entry kinetics: contemporary viruses entered target cells approximately twice as fast as historical viruses. Contemporary viruses were also twice as resistant as historical viruses to the fusion inhibitor enfuvirtide. Resistance to enfuvirtide correlated with a resistance to CCR5 antagonists, suggesting that contemporary viruses expanded their CCR5 usage efficiency. Viruses were equally captured by DC-SIGN, but after binding to DC-SIGN, contemporary viruses infected target cells more efficiently than historical viruses. Thus, we report evidence that the infectious properties of the envelope glycoprotein of HIV-1 increased during the course of the epidemic. It is plausible that these changes affected viral fitness during the transmission process and might have contributed to an increasing virulence of HIV-1.IMPORTANCE Following primary infection by HIV-1, neutralizing antibodies (NAbs) exert selective pressure on the HIV-1 envelope glycoprotein (Env), driving the evolution of the viral population. Previous studies suggested that, as a consequence, Env has evolved at the HIV species level since the start of the epidemic so as to display greater resistance to NAbs. Here, we investigated whether the antigenic evolution of the HIV-1 Env is associated with modifications of its functional properties, focusing on cell entry efficacy and interactions with the receptor and coreceptors. Our data provide evidence that the infectious properties of the HIV-1 Env increased during the course of the epidemic. These changes may have contributed to increasing virulence of HIV-1 and an optimization of transmission between individuals.
Collapse
|
10
|
Marin M, Kushnareva Y, Mason CS, Chanda SK, Melikyan GB. HIV-1 Fusion with CD4+ T cells Is Promoted by Proteins Involved in Endocytosis and Intracellular Membrane Trafficking. Viruses 2019; 11:v11020100. [PMID: 30691001 PMCID: PMC6409670 DOI: 10.3390/v11020100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/23/2019] [Indexed: 01/23/2023] Open
Abstract
The HIV-1 entry pathway into permissive cells has been a subject of debate. Accumulating evidence, including our previous single virus tracking results, suggests that HIV-1 can enter different cell types via endocytosis and CD4/coreceptor-dependent fusion with endosomes. However, recent studies that employed indirect techniques to infer the sites of HIV-1 entry into CD4+ T cells have concluded that endocytosis does not contribute to infection. To assess whether HIV-1 enters these cells via endocytosis, we probed the role of intracellular trafficking in HIV-1 entry/fusion by a targeted shRNA screen in a CD4+ T cell line. We performed a screen utilizing a direct virus-cell fusion assay as readout and identified several host proteins involved in endosomal trafficking/maturation, including Rab5A and sorting nexins, as factors regulating HIV-1 fusion and infection. Knockdown of these proteins inhibited HIV-1 fusion irrespective of coreceptor tropism, without altering the CD4 or coreceptor expression, or compromising the virus’ ability to mediate fusion of two adjacent cells initiated by virus-plasma membrane fusion. Ectopic expression of Rab5A in non-permissive cells harboring Rab5A shRNAs partially restored the HIV-cell fusion. Together, these results implicate endocytic machinery in productive HIV-1 entry into CD4+ T cells.
Collapse
Affiliation(s)
- Mariana Marin
- Department of Pediatric, Division of Infectious Diseases, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, USA.
| | - Yulia Kushnareva
- Functional Genomics Center, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | - Caleb S Mason
- Department of Pediatric, Division of Infectious Diseases, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, USA.
| | - Sumit K Chanda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Gregory B Melikyan
- Department of Pediatric, Division of Infectious Diseases, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, USA.
- Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
A dynamic three-step mechanism drives the HIV-1 pre-fusion reaction. Nat Struct Mol Biol 2018; 25:814-822. [PMID: 30150645 DOI: 10.1038/s41594-018-0113-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
Little is known about the intermolecular dynamics and stoichiometry of the interactions of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) protein with its receptors and co-receptors on the host cell surface. Here we analyze time-resolved HIV-1 Env interactions with T-cell surface glycoprotein CD4 (CD4) and C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) on the surface of cells, by combining multicolor super-resolution localization microscopy (direct stochastic optical reconstruction microscopy) with fluorescence fluctuation spectroscopy imaging. Utilizing the primary isolate JR-FL and laboratory HXB2 strains, we reveal the time-resolved stoichiometry of CD4 and CCR5 or CXCR4 in the pre-fusion complex with HIV-1 Env. The HIV-1 Env pre-fusion dynamics for both R5- and X4-tropic strains consists of a three-step mechanism, which seems to differ in stoichiometry. Analyses with the monoclonal HIV-1-neutralizing antibody b12 indicate that the mechanism of inhibition differs between JR-FL and HXB2 Env. The molecular insights obtained here identify assemblies of HIV-1 Env with receptors and co-receptors as potential novel targets for inhibitor design.
Collapse
|
12
|
Dynamin-2 Stabilizes the HIV-1 Fusion Pore with a Low Oligomeric State. Cell Rep 2017; 18:443-453. [PMID: 28076788 PMCID: PMC5263234 DOI: 10.1016/j.celrep.2016.12.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/14/2016] [Accepted: 12/12/2016] [Indexed: 11/22/2022] Open
Abstract
One of the key research areas surrounding HIV-1 concerns the regulation of the fusion event that occurs between the virus particle and the host cell during entry. Even if it is universally accepted that the large GTPase dynamin-2 is important during HIV-1 entry, its exact role during the first steps of HIV-1 infection is not well characterized. Here, we have utilized a multidisciplinary approach to study the DNM2 role during fusion of HIV-1 in primary resting CD4 T and TZM-bl cells. We have combined advanced light microscopy and functional cell-based assays to experimentally assess the role of dynamin-2 during these processes. Overall, our data suggest that dynamin-2, as a tetramer, might help to establish hemi-fusion and stabilizes the pore during HIV-1 fusion. DNM2 is crucial for HIV-1 fusion in T Cells and reporter cells DNM2 is not necessarily linked with endocytosis DNM2 tetramer stabilizes the HIV-1 fusion pore
Collapse
|
13
|
Giroud C, Du Y, Marin M, Min Q, Jui NT, Fu H, Melikyan GB. Screening and Functional Profiling of Small-Molecule HIV-1 Entry and Fusion Inhibitors. Assay Drug Dev Technol 2017; 15:53-63. [PMID: 28322598 DOI: 10.1089/adt.2017.777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HIV-1 entry and fusion with target cells is an important target for antiviral therapy. However, a few currently approved treatments are not effective as monotherapy due to the emergence of drug resistance. This consideration has fueled efforts to develop new bioavailable inhibitors targeting different steps of the HIV-1 entry process. Here, a high-throughput screen was performed of a large library of 100,000 small molecules for HIV-1 entry/fusion inhibitors, using a direct virus-cell fusion assay in a 384 half-well format. Positive hits were validated using a panel of functional assays, including HIV-1 specificity, cytotoxicity, and single-cycle infectivity assays. One compound-4-(2,5-dimethyl-pyrrol-1-yl)-2-hydroxy-benzoic acid (DPHB)-that selectively inhibited HIV-1 fusion was further characterized. Functional experiments revealed that DPHB caused irreversible inactivation of HIV-1 Env on cell-free virions and that this effect was related to binding to the third variable loop (V3) of the gp120 subunit of HIV-1 Env. Moreover, DPHB selectively inhibited HIV-1 strains that use CXCR4 or both CXCR4 and CCR5 co-receptors for entry, but not strains exclusively using CCR5. This selectivity was mapped to the gp120 V3 loop using chimeric Env glycoproteins. However, it was found that pure DPHB was not active against HIV-1 and that its degradation products (most likely polyanions) were responsible for inhibition of viral fusion. These findings highlight the importance of post-screening validation of positive hits and are in line with previous reports of the broad antiviral activity of polyanions.
Collapse
Affiliation(s)
- Charline Giroud
- 1 Department of Pediatrics Infectious Diseases, Emory University School of Medicine , Atlanta, Georgia
| | - Yuhong Du
- 2 Department of Pharmacology, Emory University School of Medicine , Atlanta, Georgia .,3 Emory Chemical Biology Discovery Center, Emory University School of Medicine , Atlanta, Georgia
| | - Mariana Marin
- 1 Department of Pediatrics Infectious Diseases, Emory University School of Medicine , Atlanta, Georgia
| | - Qui Min
- 2 Department of Pharmacology, Emory University School of Medicine , Atlanta, Georgia .,3 Emory Chemical Biology Discovery Center, Emory University School of Medicine , Atlanta, Georgia
| | - Nathan T Jui
- 4 Department of Chemistry, Emory University , Atlanta, Georgia
| | - Haian Fu
- 2 Department of Pharmacology, Emory University School of Medicine , Atlanta, Georgia .,3 Emory Chemical Biology Discovery Center, Emory University School of Medicine , Atlanta, Georgia .,5 Department of Hematology and Medical Oncology, Winship Cancer Institute , Atlanta, Georgia
| | - Gregory B Melikyan
- 1 Department of Pediatrics Infectious Diseases, Emory University School of Medicine , Atlanta, Georgia .,6 Children's Healthcare of Atlanta , Atlanta, Georgia
| |
Collapse
|
14
|
Jakobsdottir GM, Iliopoulou M, Nolan R, Alvarez L, Compton AA, Padilla-Parra S. On the Whereabouts of HIV-1 Cellular Entry and Its Fusion Ports. Trends Mol Med 2017; 23:932-944. [PMID: 28899754 DOI: 10.1016/j.molmed.2017.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 01/06/2023]
Abstract
HIV-1 disseminates to diverse tissues through different cell types and establishes long-lived reservoirs. The exact cellular compartment where fusion occurs differs depending on the cell type and mode of viral transmission. This implies that HIV-1 may modulate a number of common host cell factors in different cell types. In this review, we evaluate recent advances on the host cell factors that play an important role in HIV-1 entry and fusion. New insights from restriction factors inhibiting virus-cell fusion in vitro may contribute to the development of future therapeutic interventions. Collectively, novel findings underline the need for potent, host-directed therapies that disrupt the earliest stages of the virus life cycle and preclude the emergence of resistant viral variants.
Collapse
Affiliation(s)
- G Maria Jakobsdottir
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Maro Iliopoulou
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Rory Nolan
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Luis Alvarez
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Alex A Compton
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Sergi Padilla-Parra
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK; Division of Structural Biology, University of Oxford,The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK.
| |
Collapse
|
15
|
Ahn KW, Root MJ. Complex interplay of kinetic factors governs the synergistic properties of HIV-1 entry inhibitors. J Biol Chem 2017; 292:16498-16510. [PMID: 28696261 DOI: 10.1074/jbc.m117.791731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/09/2017] [Indexed: 01/04/2023] Open
Abstract
The homotrimeric HIV-1 envelope glycoprotein (Env) undergoes receptor-triggered structural changes that mediate viral entry through membrane fusion. This process is inhibited by chemokine receptor antagonists (CoRAs) that block Env-receptor interactions and by fusion inhibitors (FIs) that disrupt Env conformational transitions. Synergy between CoRAs and FIs has been attributed to a CoRA-dependent decrease in the rate of viral membrane fusion that extends the lifetime of the intermediate state targeted by FIs. Here, we demonstrated that the magnitude of CoRA/FI synergy unexpectedly depends on FI-binding affinity and the stoichiometry of chemokine receptor binding to trimeric Env. For C-peptide FIs (clinically represented by enfuvirtide), synergy waned as binding strength decreased until inhibitor combinations behaved additively. Curiously, this affinity dependence on synergy was absent for 5-Helix-type FIs. We linked this complex behavior to the CoRA dependence of Env deactivation following FI binding. For both FI classes, reducing chemokine receptor levels on target cells or eliminating competent chemokine receptor-binding sites on Env trimers resulted in a loss of synergistic activity. These data imply that the stoichiometry required for CoRA/FI synergy exceeds that required for HIV-1 entry. Our analysis suggests two distinct roles for chemokine receptor binding, one to trigger formation of the FI-sensitive intermediate state and another to facilitate subsequent conformational transitions. Together, our results could explain the wide variety of previously reported activities for CoRA/FI combinations. These findings also have implications for the combined use of CoRAs and FIs in antiviral therapies and point to a multifaceted role for chemokine receptor binding in promoting HIV-1 entry.
Collapse
Affiliation(s)
- Koree W Ahn
- From the Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Michael J Root
- From the Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
16
|
Desai TM, Marin M, Mason C, Melikyan GB. pH regulation in early endosomes and interferon-inducible transmembrane proteins control avian retrovirus fusion. J Biol Chem 2017; 292:7817-7827. [PMID: 28341742 DOI: 10.1074/jbc.m117.783878] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
Enveloped viruses infect host cells by fusing their membranes with those of the host cell, a process mediated by viral glycoproteins upon binding to cognate host receptors or entering into acidic intracellular compartments. Whereas the effect of receptor density on viral infection has been well studied, the role of cell type-specific factors/processes, such as pH regulation, has not been characterized in sufficient detail. Here, we examined the effects of cell-extrinsic factors (buffer environment) and cell-intrinsic factors (interferon-inducible transmembrane proteins, IFITMs), on the pH regulation in early endosomes and on the efficiency of acid-dependent fusion of the avian sarcoma and leukosis virus (ASLV), with endosomes. First, we found that a modest elevation of external pH can raise the pH in early endosomes in a cell type-dependent manner and thereby delay the acid-induced fusion of endocytosed ASLV. Second, we observed a cell type-dependent delay between the low pH-dependent and temperature-dependent steps of viral fusion, consistent with the delayed enlargement of the fusion pore. Third, ectopic expression of IFITMs, known to potently block influenza virus fusion with late compartments, was found to only partially inhibit ASLV fusion with early endosomes. Interestingly, IFITM expression promoted virus uptake and the acidification of endosomal compartments, resulting in an accelerated fusion rate when driven by the glycosylphosphatidylinositol-anchored, but not by the transmembrane isoform of the ASLV receptor. Collectively, these results highlight the role of cell-extrinsic and cell-intrinsic factors in regulating the efficiency and kinetics of virus entry and fusion with target cells.
Collapse
Affiliation(s)
- Tanay M Desai
- From the Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Mariana Marin
- From the Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Caleb Mason
- From the Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Gregory B Melikyan
- From the Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322 and .,the Children's Healthcare of Atlanta, Atlanta, Georgia 300322
| |
Collapse
|
17
|
Beauparlant D, Rusert P, Magnus C, Kadelka C, Weber J, Uhr T, Zagordi O, Oberle C, Duenas-Decamp MJ, Clapham PR, Metzner KJ, Günthard HF, Trkola A. Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality. PLoS Pathog 2017; 13:e1006255. [PMID: 28264054 PMCID: PMC5354460 DOI: 10.1371/journal.ppat.1006255] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/16/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
A hallmark of HIV-1 infection is the continuously declining number of the virus' predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS) derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur.
Collapse
Affiliation(s)
- David Beauparlant
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Claus Kadelka
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Therese Uhr
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Osvaldo Zagordi
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Corinna Oberle
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Maria J. Duenas-Decamp
- Program in Molecular Medicine, Biotech II, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Paul R. Clapham
- Program in Molecular Medicine, Biotech II, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karin J. Metzner
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Sood C, Marin M, Chande A, Pizzato M, Melikyan GB. SERINC5 protein inhibits HIV-1 fusion pore formation by promoting functional inactivation of envelope glycoproteins. J Biol Chem 2017; 292:6014-6026. [PMID: 28179429 DOI: 10.1074/jbc.m117.777714] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/07/2017] [Indexed: 12/24/2022] Open
Abstract
The host proteins, SERINC3 and SERINC5, have been recently shown to incorporate into HIV-1 particles and compromise their ability to fuse with target cells, an effect that is antagonized by the viral Nef protein. Envelope (Env) glycoproteins from different HIV-1 isolates exhibit a broad range of sensitivity to SERINC-mediated restriction, and the mechanism by which SERINCs interfere with HIV-1 fusion remains unclear. Here, we show that incorporation of SERINC5 into virions in the absence of Nef inhibits the formation of small fusion pores between viruses and cells. Strikingly, we found that SERINC5 promotes spontaneous functional inactivation of sensitive but not resistant Env glycoproteins. Although SERINC5-Env interaction was not detected by co-immunoprecipitation, incorporation of this protein enhanced the exposure of the conserved gp41 domains and sensitized the virus to neutralizing antibodies and gp41-derived inhibitory peptides. These results imply that SERINC5 restricts HIV-1 fusion at a step prior to small pore formation by selectively inactivating sensitive Env glycoproteins, likely through altering their conformation. The increased HIV-1 sensitivity to anti-gp41 antibodies and peptides suggests that SER5 also delays refolding of the remaining fusion-competent Env trimers.
Collapse
Affiliation(s)
- Chetan Sood
- From the Department of Pediatrics, Emory University, Atlanta, Georgia 30322 and
| | - Mariana Marin
- From the Department of Pediatrics, Emory University, Atlanta, Georgia 30322 and
| | - Ajit Chande
- the Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Massimo Pizzato
- the Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Gregory B Melikyan
- From the Department of Pediatrics, Emory University, Atlanta, Georgia 30322 and
| |
Collapse
|
19
|
Khasnis MD, Halkidis K, Bhardwaj A, Root MJ. Receptor Activation of HIV-1 Env Leads to Asymmetric Exposure of the gp41 Trimer. PLoS Pathog 2016; 12:e1006098. [PMID: 27992602 PMCID: PMC5222517 DOI: 10.1371/journal.ppat.1006098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/09/2017] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
Structural rearrangements of HIV-1 glycoprotein Env promote viral entry through membrane fusion. Env is a symmetric homotrimer with each protomer composed of surface subunit gp120 and transmembrane subunit gp41. Cellular CD4- and chemokine receptor-binding to gp120 coordinate conformational changes in gp41, first to an extended prehairpin intermediate (PHI) and, ultimately, into a fusogenic trimer-of-hairpins (TOH). HIV-1 fusion inhibitors target gp41 in the PHI and block TOH formation. To characterize structural transformations into and through the PHI, we employed asymmetric Env trimers containing both high and low affinity binding sites for individual fusion inhibitors. Asymmetry was achieved using engineered Env heterotrimers composed of protomers deficient in either CD4- or chemokine receptor-binding. Linking receptor engagement to inhibitor affinity allowed us to assess conformational changes of individual Env protomers in the context of a functioning trimer. We found that the transition into the PHI could occur symmetrically or asymmetrically depending on the stoichiometry of CD4 binding. Sequential engagement of multiple CD4s promoted progressive exposure of individual fusion inhibitor binding sites in a CD4-dependent fashion. By contrast, engagement of only a single CD4 molecule led to a delayed, but symmetric, exposure of the gp41 trimer. This complex coupling between Env-CD4 interaction and gp41 exposure explained the multiphasic fusion-inhibitor titration observed for a mutant Env homotrimer with a naturally asymmetric gp41. Our results suggest that the spatial and temporal exposure of gp41 can proceed in a nonconcerted, asymmetric manner depending on the number of CD4s that engage the Env trimer. The findings have important implications for the mechanism of viral membrane fusion and the development of vaccine candidates designed to elicit neutralizing antibodies targeting gp41 in the PHI. For HIV, cellular invasion requires merging viral and cellular membranes, an event achieved through the activity of the viral fusion protein Env. Env consists of three gp120 and three gp41 subunits symmetrically arranged on the viral surface. The gp120 subunits bind cellular receptors, which, in turn, coordinate gp41 conformational changes that promote membrane fusion. Understanding these structural rearrangements illuminates the mechanism of viral membrane fusion, and also spurs development of targeted inhibitors of viral entry and vaccine candidates that elicit antiviral immune responses. In this study, we employed a novel strategy to investigate individual subunits in the context of functioning Env complexes. The strategy links distinct gp120-receptor interactions to conformational changes that expose specific gp41 subunits. We found that, despite the initial symmetric arrangement of its subunits, Env conformational changes most often proceed quite asymmetrically, leading to exposure of only one-third of the gp41 trimer for much of the fusion event. This finding might explain why attempts to elicit potent anti-HIV antibodies to a fully exposed gp41 trimer have been largely unsuccessful. The study gives us a glimpse of the early structural transitions leading to Env-mediated membrane fusion and provides a framework for interrogating the fusion proteins of other membrane-encapsulated viruses.
Collapse
Affiliation(s)
- Mukta D. Khasnis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Konstantine Halkidis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Michael J. Root
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Leslie GJ, Wang J, Richardson MW, Haggarty BS, Hua KL, Duong J, Secreto AJ, Jordon APO, Romano J, Kumar KE, DeClercq JJ, Gregory PD, June CH, Root MJ, Riley JL, Holmes MC, Hoxie JA. Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus. PLoS Pathog 2016; 12:e1005983. [PMID: 27855210 PMCID: PMC5113989 DOI: 10.1371/journal.ppat.1005983] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022] Open
Abstract
HIV-1 entry can be inhibited by soluble peptides from the gp41 heptad repeat-2 (HR2) domain that interfere with formation of the 6-helix bundle during fusion. Inhibition has also been seen when these peptides are conjugated to anchoring molecules and over-expressed on the cell surface. We hypothesized that potent anti-HIV activity could be achieved if a 34 amino acid peptide from HR2 (C34) were brought to the site of virus-cell interactions by conjugation to the amino termini of HIV-1 coreceptors CCR5 or CXCR4. C34-conjugated coreceptors were expressed on the surface of T cell lines and primary CD4 T cells, retained the ability to mediate chemotaxis in response to cognate chemokines, and were highly resistant to HIV-1 utilization for entry. Notably, C34-conjugated CCR5 and CXCR4 each exhibited potent and broad inhibition of HIV-1 isolates from diverse clades irrespective of tropism (i.e., each could inhibit R5, X4 and dual-tropic isolates). This inhibition was highly specific and dependent on positioning of the peptide, as HIV-1 infection was poorly inhibited when C34 was conjugated to the amino terminus of CD4. C34-conjugated coreceptors could also inhibit HIV-1 isolates that were resistant to the soluble HR2 peptide inhibitor, enfuvirtide. When introduced into primary cells, CD4 T cells expressing C34-conjugated coreceptors exhibited physiologic responses to T cell activation while inhibiting diverse HIV-1 isolates, and cells containing C34-conjugated CXCR4 expanded during HIV-1 infection in vitro and in a humanized mouse model. Notably, the C34-conjugated peptide exerted greater HIV-1 inhibition when conjugated to CXCR4 than to CCR5. Thus, antiviral effects of HR2 peptides can be specifically directed to the site of viral entry where they provide potent and broad inhibition of HIV-1. This approach to engineer HIV-1 resistance in functional CD4 T cells may provide a novel cell-based therapeutic for controlling HIV infection in humans.
Collapse
Affiliation(s)
- George J. Leslie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jianbin Wang
- Sangamo BioSciences Inc., Richmond, CA, United States of America
| | - Max W. Richardson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Beth S. Haggarty
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kevin L. Hua
- Sangamo BioSciences Inc., Richmond, CA, United States of America
| | - Jennifer Duong
- Sangamo BioSciences Inc., Richmond, CA, United States of America
| | - Anthony J. Secreto
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrea P. O. Jordon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Josephine Romano
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kritika E. Kumar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | | | - Carl H. June
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael J. Root
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - James L. Riley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
21
|
Mistry B, D'Orsogna MR, Webb NE, Lee B, Chou T. Quantifying the Sensitivity of HIV-1 Viral Entry to Receptor and Coreceptor Expression. J Phys Chem B 2016; 120:6189-99. [PMID: 27137677 DOI: 10.1021/acs.jpcb.6b02102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection by many viruses begins with fusion of viral and cellular lipid membranes, followed by entry of viral contents into the target cell and ultimately, after many biochemical steps, integration of viral DNA into that of the host cell. The early steps of membrane fusion and viral capsid entry are mediated by adsorption to the cell surface, and receptor and coreceptor binding. HIV-1 specifically targets CD4+ helper T-cells of the human immune system and binds to the receptor CD4 and coreceptor CCR5 before fusion is initiated. Previous experiments have been performed using a cell line (293-Affinofile) in which the expressions of CD4 and CCR5 concentration were independently controlled. After exposure to HIV-1 of various strains, the resulting infectivity was measured through the fraction of infected cells. To design and evaluate the effectiveness of drug therapies that target the inhibition of the entry processes, an accurate functional relationship between the CD4/CCR5 concentrations and infectivity is desired in order to more quantitatively analyze experimental data. We propose three kinetic models describing the possible mechanistic processes involved in HIV entry and fit their predictions to infectivity measurements, contrasting and comparing different outcomes. Our approach allows interpretation of the clustering of infectivity of different strains of HIV-1 in the space of mechanistic kinetic parameters. Our model fitting also allows inference of nontrivial stoichiometries of receptor and coreceptor binding and provides a framework through which to quantitatively investigate the effectiveness of fusion inhibitors and neutralizing antibodies.
Collapse
Affiliation(s)
- Bhaven Mistry
- Department of Biomathematics, University of California , Los Angeles, California 90095, United States
| | - Maria R D'Orsogna
- Department of Biomathematics, University of California , Los Angeles, California 90095, United States.,Department of Mathematics, California State University , Northridge, California 91330, United States
| | - Nicholas E Webb
- Department of Infectious Disease, Children's Hospital Los Angeles , Los Angeles, California 90027, United States
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Tom Chou
- Department of Biomathematics, University of California , Los Angeles, California 90095, United States.,Department of Mathematics, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Jones DM, Padilla-Parra S. The β-Lactamase Assay: Harnessing a FRET Biosensor to Analyse Viral Fusion Mechanisms. SENSORS 2016; 16:s16070950. [PMID: 27347948 PMCID: PMC4970004 DOI: 10.3390/s16070950] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The β-lactamase (BlaM) assay was first revealed in 1998 and was demonstrated to be a robust Förster resonance energy transfer (FRET)-based reporter system that was compatible with a range of commonly-used cell lines. Today, the BlaM assay is available commercially as a kit and can be utilised readily and inexpensively for an array of experimental procedures that require a fluorescence-based readout. One frequent application of the BlaM assay is the measurement of viral fusion—the moment at which the genetic material harboured within virus particles is released into the cytosol following successful entry. The flexibility of the system permits evaluation of not only total fusion levels, but also the kinetics of fusion. However, significant variation exists in the scientific literature regarding the methodology by which the assay is applied to viral fusion analysis, making comparison between results difficult. In this review we draw attention to the disparity of these methodologies and examine the advantages and disadvantages of each approach. Successful strategies shown to render viruses compatible with BlaM-based analyses are also discussed.
Collapse
Affiliation(s)
- Daniel M Jones
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK.
| | - Sergi Padilla-Parra
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK.
| |
Collapse
|
23
|
Hoang HN, Driver RW, Beyer RL, Hill TA, D. de Araujo A, Plisson F, Harrison RS, Goedecke L, Shepherd NE, Fairlie DP. Helix Nucleation by the Smallest Known α‐Helix in Water. Angew Chem Int Ed Engl 2016; 55:8275-9. [DOI: 10.1002/anie.201602079] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Huy N. Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Russell W. Driver
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Renée L. Beyer
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Aline D. de Araujo
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Fabien Plisson
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Rosemary S. Harrison
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Lena Goedecke
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Nicholas E. Shepherd
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
24
|
Hoang HN, Driver RW, Beyer RL, Hill TA, D. de Araujo A, Plisson F, Harrison RS, Goedecke L, Shepherd NE, Fairlie DP. Helix Nucleation by the Smallest Known α‐Helix in Water. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huy N. Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Russell W. Driver
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Renée L. Beyer
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Aline D. de Araujo
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Fabien Plisson
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Rosemary S. Harrison
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Lena Goedecke
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Nicholas E. Shepherd
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
25
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) gives rise to a chronic infection that progressively depletes CD4(+) T lymphocytes. CD4(+) T lymphocytes play a central coordinating role in adaptive cellular and humoral immune responses, and to do so they migrate and interact within lymphoid compartments and at effector sites to mount immune responses. While cell-free virus serves as an excellent prognostic indicator for patient survival, interactions of infected T cells or virus-scavenging immune cells with uninfected T cells can greatly enhance viral spread. HIV can induce interactions between infected and uninfected T cells that are triggered by cell surface expression of viral Env, which serves as a cell adhesion molecule that interacts with CD4 on the target cell, before it acts as the viral membrane fusion protein. These interactions are called virological synapses and promote replication in the face of selective pressure of humoral immune responses and antiretroviral therapy. Other infection-enhancing cell-cell interactions occur between virus-concentrating antigen-presenting cells and recipient T cells, called infectious synapses. The exact roles that these cell-cell interactions play in each stage of infection, from viral acquisition, systemic dissemination, to chronic persistence are still being determined. Infection-promoting immune cell interactions are likely to contribute to viral persistence and enhance the ability of HIV-1 to evade adaptive immune responses.
Collapse
Affiliation(s)
- K M Law
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - N Satija
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - A M Esposito
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - B K Chen
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
26
|
Sood C, Marin M, Mason CS, Melikyan GB. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor. PLoS One 2016; 11:e0148944. [PMID: 26863211 PMCID: PMC4749635 DOI: 10.1371/journal.pone.0148944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/23/2016] [Indexed: 11/18/2022] Open
Abstract
HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.
Collapse
Affiliation(s)
- Chetan Sood
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mariana Marin
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Caleb S. Mason
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gregory B. Melikyan
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| |
Collapse
|
27
|
De Feo CJ, Wang W, Hsieh ML, Zhuang M, Vassell R, Weiss CD. Resistance to N-peptide fusion inhibitors correlates with thermodynamic stability of the gp41 six-helix bundle but not HIV entry kinetics. Retrovirology 2014; 11:86. [PMID: 25274545 PMCID: PMC4190581 DOI: 10.1186/s12977-014-0086-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The HIV-1 envelope glycoprotein (Env) undergoes conformational changes that mediate fusion between virus and host cell membranes. These changes involve transient exposure of two heptad-repeat domains (HR1 and HR2) in the gp41 subunit and their subsequent self-assembly into a six-helix bundle (6HB) that drives fusion. Env residues and features that influence conformational changes and the rate of virus entry, however, are poorly understood. Peptides corresponding to HR1 and HR2 (N and C peptides, respectively) interrupt formation of the 6HB by binding to the heptad repeats of a fusion-intermediate conformation of Env, making the peptides valuable probes for studying Env conformational changes. RESULTS Using a panel of Envs that are resistant to N-peptide fusion inhibitors, we investigated relationships between virus entry kinetics, 6HB stability, and resistance to peptide fusion inhibitors to elucidate how HR1 and HR2 mutations affect Env conformational changes and virus entry. We found that gp41 resistance mutations increased 6HB stability without increasing entry kinetics. Similarly, we show that increased 6HB thermodynamic stability does not correlate with increased entry kinetics. Thus, N-peptide fusion inhibitors do not necessarily select for Envs with faster entry kinetics, nor does faster entry kinetics predict decreased potency of peptide fusion inhibitors. CONCLUSIONS These findings provide new insights into the relationship between 6HB stability and viral entry kinetics and mechanisms of resistance to inhibitors targeting fusion-intermediate conformations of Env. These studies further highlight how residues in HR1 and HR2 can influence virus entry by altering stability of the 6HB and possibly other conformations of Env that affect rate-limiting steps in HIV entry.
Collapse
Affiliation(s)
- Christopher J De Feo
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Wei Wang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Meng-Lun Hsieh
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA. .,Present address: Michigan State University, Department of Biochemistry and Molecular Biology, Lansing, MI, 48824, USA.
| | - Min Zhuang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA. .,Present address: Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Russell Vassell
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Carol D Weiss
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
28
|
Hu B, Liao HX, Alam SM, Goldstein B. Estimating the probability of polyreactive antibodies 4E10 and 2F5 disabling a gp41 trimer after T cell-HIV adhesion. PLoS Comput Biol 2014; 10:e1003431. [PMID: 24499928 PMCID: PMC3907291 DOI: 10.1371/journal.pcbi.1003431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/25/2013] [Indexed: 01/01/2023] Open
Abstract
A few broadly neutralizing antibodies, isolated from HIV-1 infected individuals, recognize epitopes in the membrane proximal external region (MPER) of gp41 that are transiently exposed during viral entry. The best characterized, 4E10 and 2F5, are polyreactive, binding to the viral membrane and their epitopes in the MPER. We present a model to calculate, for any antibody concentration, the probability that during the pre-hairpin intermediate, the transient period when the epitopes are first exposed, a bound antibody will disable a trivalent gp41 before fusion is complete. When 4E10 or 2F5 bind to the MPER, a conformational change is induced that results in a stably bound complex. The model predicts that for these antibodies to be effective at neutralization, the time to disable an epitope must be shorter than the time the antibody remains bound in this conformation, about five minutes or less for 4E10 and 2F5. We investigate the role of avidity in neutralization and show that 2F5 IgG, but not 4E10, is much more effective at neutralization than its Fab fragment. We attribute this to 2F5 interacting more stably than 4E10 with the viral membrane. We use the model to elucidate the parameters that determine the ability of these antibodies to disable epitopes and propose an extension of the model to analyze neutralization data. The extended model predicts the dependencies of for neutralization on the rate constants that characterize antibody binding, the rate of fusion of gp41, and the number of gp41 bridging the virus and target cell at the start of the pre-hairpin intermediate. Analysis of neutralization experiments indicate that only a small number of gp41 bridges must be disabled to prevent fusion. However, the model cannot determine the exact number from neutralization experiments alone. Most people who become infected with HIV generate a strong antibody response to the infecting virus population. Unfortunately, the protection offered by the antibody is short lived as the virus rapidly mutates and renders the antibodies impotent in preventing further infection. There are a few antibodies, however, that have been isolated from infected individuals that can block infection by many different viral strains. Among these are several that target sites on the HIV that are exposed only after the virus has attached to a cell. These antibodies have a brief window of time to prevent fusion of the virus and cell. They are special in that they bind both to the viral membrane and to sequences on the gp41 protein that lie along the viral surface. Here, we present a model that predicts the concentrations at which these antibodies effectively neutralize the virus. The model tells us what properties of antibody binding are key in determining efficient neutralization and what properties have little influence. A prediction of the model is that in a standard neutralization assay there are only a small number of attachments between virus and cell and disabling these is sufficient to prevent infection.
Collapse
Affiliation(s)
- Bin Hu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Hua-Xin Liao
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Byron Goldstein
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
29
|
Reversible and efficient activation of HIV-1 cell entry by a tyrosine-sulfated peptide dissects endocytic entry and inhibitor mechanisms. J Virol 2014; 88:4304-18. [PMID: 24478426 DOI: 10.1128/jvi.03447-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED HIV-1 membranes contain gp120-gp41 trimers. Binding of gp120 to CD4 and a coreceptor (CCR5 or CXCR4) reduces the constraint on metastable gp41, enabling a series of conformational changes that cause membrane fusion. An analytic difficulty occurs because these steps occur slowly and asynchronously within cohorts of adsorbed virions. We previously isolated HIV-1JRCSF variants that efficiently use CCR5 mutants severely damaged in the tyrosine-sulfated amino terminus or extracellular loop 2. Surprisingly, both independent adaptations included gp120 mutations S298N, F313L, and N403S, supporting other evidence that they function by weakening gp120's grip on gp41 rather than by altering gp120 binding to specific CCR5 sites. Although several natural HIV-1 isolates reportedly use CCR5(Δ18) (CCR5 with a deletion of 18 N-terminal amino acids, including the tyrosine-sulfated region) when the soluble tyrosine-sulfated peptide is present, we show that HIV-1JRCSF with the adaptive mutations [HIV-1JRCSF(Ad)] functions approximately 100 times more efficiently and that coreceptor activation is reversible, enabling synchronous efficient entry control under physiological conditions. This system revealed that three-stranded gp41 folding intermediates susceptible to the inhibitor enfuvirtide form slowly and asynchronously on cell surface virions but resolve rapidly, with virions generally forming only one target. Adsorbed virions asynchronously and transiently become competent for entry at 37°C but are inactivated if the CCR5 peptide is absent during their window of opportunity. This competency is conferred by endocytosis, which results in inactivation if the peptide is absent. For both wild-type and adapted HIV-1 isolates, early gp41 refolding steps obligatorily occur on cell surfaces, whereas the final step(s) is endosomal. This system powerfully dissects HIV-1 entry and inhibitor mechanisms. IMPORTANCE We present a powerful means to reversibly and efficiently activate or terminate HIV-1 entry by adding or removing a tyrosine-sulfated CCR5 peptide from the culture medium. This system uses stable cell clones and a variant of HIV-1JRCSF with three adaptive mutations. It enabled us to show that CCR5 coreceptor activation is rapidly reversible and to dissect aspects of entry that had previously been relatively intractable. Our analyses elucidate enfuvirtide (T-20) function and suggest that HIV-1 virions form only one nonredundant membrane fusion complex on cell surfaces. Additionally, we obtained novel and conclusive evidence that HIV-1 entry occurs in an assembly line manner, with some steps obligatorily occurring on cell surfaces and with final membrane fusion occurring in endosomes. Our results were confirmed for wild-type HIV-1. Thus, our paper provides major methodological and mechanistic insights about HIV-1 infection.
Collapse
|
30
|
Melikyan GB. HIV entry: a game of hide-and-fuse? Curr Opin Virol 2013; 4:1-7. [PMID: 24525288 DOI: 10.1016/j.coviro.2013.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 11/24/2022]
Abstract
Human Immunodeficiency Virus (HIV) initiates infection by fusing its envelope membrane with the cell membrane through a process which is triggered through interactions with the cellular receptor and coreceptor. Although the mechanism of HIV fusion has been extensively studied, the point of its entry into cells remains controversial. HIV has long been thought to fuse directly with the cell plasma membrane. However, several lines of evidence suggest that endocytic entry of HIV can lead to infection and, moreover, that endocytosis could be the predominant HIV entry pathway into different cell types. This review discusses recent findings pertinent to HIV entry routes and novel approaches to pinpoint the sites of virus entry.
Collapse
Affiliation(s)
- Gregory B Melikyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, 2015 Uppergate Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
31
|
Demirkhanyan L, Marin M, Lu W, Melikyan GB. Sub-inhibitory concentrations of human α-defensin potentiate neutralizing antibodies against HIV-1 gp41 pre-hairpin intermediates in the presence of serum. PLoS Pathog 2013; 9:e1003431. [PMID: 23785290 PMCID: PMC3681749 DOI: 10.1371/journal.ppat.1003431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022] Open
Abstract
Human defensins are at the forefront of the host responses to HIV and other pathogens in mucosal tissues. However, their ability to inactivate HIV in the bloodstream has been questioned due to the antagonistic effect of serum. In this study, we have examined the effect of sub-inhibitory concentrations of human α-defensin HNP-1 on the kinetics of early steps of fusion between HIV-1 and target cells in the presence of serum. Direct measurements of HIV-cell fusion using an enzymatic assay revealed that, in spite of the modest effect on the extent of fusion, HNP-1 prolonged the exposure of functionally important transitional epitopes of HIV-1 gp41 on the cell surface. The increased lifetime of gp41 intermediates in the presence of defensin was caused by a delay in the post-coreceptor binding steps of HIV-1 entry that correlated with the marked enhancement of the virus' sensitivity to neutralizing anti-gp41 antibodies. By contrast, the activity of antibodies to gp120 was not affected. HNP-1 appeared to specifically potentiate antibodies and peptides targeting the first heptad repeat domain of gp41, while its effect on inhibitors and antibodies to other gp41 domains was less prominent. Sub-inhibitory concentrations of HNP-1 also promoted inhibition of HIV-1 entry into peripheral blood mononuclear cells by antibodies and, more importantly, by HIV-1 immune serum. Our findings demonstrate that: (i) sub-inhibitory doses of HNP-1 potently enhance the activity of a number of anti-gp41 antibodies and peptide inhibitors, apparently by prolonging the lifetime of gp41 intermediates; and (ii) the efficiency of HIV-1 fusion inhibitors and neutralizing antibodies is kinetically restricted. This study thus reveals an important role of α-defensin in enhancing adaptive immune responses to HIV-1 infection and suggests future strategies to augment these responses. Human neutrophil peptide 1 (HNP-1) is a small cationic peptide that can directly block HIV-1 entry in the absence of serum. However, since serum attenuates the anti-HIV activity of this peptide, HNP-1 is unlikely to inhibit infection in the bloodstream. Here, we demonstrate that sub-inhibitory doses of HNP-1 in the presence of serum can strongly enhance the activity of neutralizing antibodies and inhibitors targeting transiently exposed intermediate conformations of HIV-1 gp41. HNP-1 appears to exert this effect by delaying post-coreceptor binding steps of fusion and thereby prolonging the exposure of gp41 intermediates. These results imply that the HIV-1 fusion kinetics is an important determinant of sensitivity to neutralizing antibodies and peptides against transiently exposed functional domains of gp41. The surprising synergy between sub-inhibitory concentrations of HNP-1 and anti-gp41 antibodies suggests new strategies to sensitize the virus to circulating antibodies by developing compounds that prolong the exposure of conserved gp41 epitopes on the cell surface.
Collapse
Affiliation(s)
- Lusine Demirkhanyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia, United States of America
| | - Mariana Marin
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia, United States of America
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gregory B. Melikyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia, United States of America
- Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Chao L, Lu L, Yang H, Zhu Y, Li Y, Wang Q, Yu X, Jiang S, Chen YH. Identification of a human protein-derived HIV-1 fusion inhibitor targeting the gp41 fusion core structure. PLoS One 2013; 8:e66156. [PMID: 23741527 PMCID: PMC3669275 DOI: 10.1371/journal.pone.0066156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 05/02/2013] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) gp41 plays a crucial role in the viral fusion process. The peptides derived from the C-terminal heptad repeat (CHR) of gp41 are potent HIV fusion inhibitors. However, the activity of these anti-HIV-1 peptides in vivo may be attenuated by their induction of anti-gp41 antibodies. Thus, it is essential to identify antiviral peptides or proteins with low, or no, immunogenicity to humans. Here, we found that the C-terminal fragment (aa 462–521) of the human POB1 (the partner of RalBP1), designated C60, is an HIV-1 fusion inhibitor. It bound to N36, the peptide derived from the N-terminal heptad repeat (NHR) of gp41, and to the six-helix bundle (6-HB) formed by N36 and C34, a CHR-peptide, but it did not bind to C34. Unlike the CHR-peptides, C60 did not block gp41 6-HB formation. Rather, results suggest that C60 inhibits HIV-1 fusion by binding to the 6-HB, in particular, the residues in the gp41 NHR domain that are exposed on the surface of 6-HB. Since 6-HB plays a crucial role in the late stage of fusion between the viral envelope and endosomal membrane during the endocytic process of HIV-1, C60 may serve as a host restriction factor to suppress HIV-1 entry into CD4+ T lymphocytes. Taken together, it can be concluded from these results that C60 can be used as a lead for the development of anti-HIV-1 therapeutics or microbicides for the treatment and prevention of HIV-1 infection, as well as a molecular probe to study the fusogenic mechanism of HIV-1.
Collapse
Affiliation(s)
- Lijun Chao
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
| | - Lu Lu
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, P. R. China
| | - Hengwen Yang
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
| | - Yun Zhu
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
| | - Yuan Li
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, P. R. China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, P. R. China
| | - Xiaowen Yu
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, P. R. China
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
- * E-mail: (SJ); (YC)
| | - Ying-Hua Chen
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
- * E-mail: (SJ); (YC)
| |
Collapse
|
33
|
Zhang J, Mulvenon A, Makarov E, Wagoner J, Knibbe J, Kim JO, Osna N, Bronich TK, Poluektova LY. Antiviral peptide nanocomplexes as a potential therapeutic modality for HIV/HCV co-infection. Biomaterials 2013; 34:3846-57. [PMID: 23403120 PMCID: PMC3602242 DOI: 10.1016/j.biomaterials.2013.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/04/2013] [Indexed: 02/05/2023]
Abstract
It is estimated that 4 to 5 million people are currently co-infected with Human Immunodeficiency Virus (HIV) and Hepatitis C Virus (HCV). HIV/HCV co-infection is associated with unique health risks including increased hepatotoxicity of antiretrovirals, accelerated progression of HCV and liver diseases. The standard interferon-based therapy is effective only in about 50% of patients and often is associated with autoimmune and neuro-psychiatric complications. The treatment of co-infection (HIV/HCV) requires new strategic approaches. To this end, the formulations of an amphiphatic α-helical peptide, a positively charged analog of C5A peptide derived from the HCV NS5A protein, with a reported virocidal activity were prepared by electrostatic coupling with anionic poly(amino acid)-based block copolymers. The self-assembled antiviral peptide nanocomplexes (APN) were ca. 35 nm in size, stable at physiological pH and ionic strength, and retained in vitro antiviral activity against HCV and HIV. Moreover, incorporation of the peptide into APN attenuated its cytotoxicity associated with the positive charge. In vivo APN were able to decrease the viral load in mice transplanted with human lymphocytes and HIV-1-infected. Overall, these findings indicate the potential of these formulations for stabilization and delivery of antiviral peptides while maintaining their functional activity.
Collapse
Affiliation(s)
- Jingjin Zhang
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198-5830
| | - Andrea Mulvenon
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198-5830
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jill Wagoner
- Department of Internal Medicine, Liver Study Unit, Research Service (151), VA Medical Center, 4101 Woolworth Avenue, Omaha, NE 68105, USA
| | - Jaclyn Knibbe
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jong Oh Kim
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198-5830
| | - Natalia Osna
- Department of Internal Medicine, Liver Study Unit, Research Service (151), VA Medical Center, 4101 Woolworth Avenue, Omaha, NE 68105, USA
| | - Tatiana K. Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198-5830
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
34
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
35
|
A compensatory mutation provides resistance to disparate HIV fusion inhibitor peptides and enhances membrane fusion. PLoS One 2013; 8:e55478. [PMID: 23393582 PMCID: PMC3564752 DOI: 10.1371/journal.pone.0055478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/23/2012] [Indexed: 11/19/2022] Open
Abstract
Fusion inhibitors are a class of antiretroviral drugs used to prevent entry of HIV into host cells. Many of the fusion inhibitors being developed, including the drug enfuvirtide, are peptides designed to competitively inhibit the viral fusion protein gp41. With the emergence of drug resistance, there is an increased need for effective and unique alternatives within this class of antivirals. One such alternative is a class of cyclic, cationic, antimicrobial peptides known as θ-defensins, which are produced by many non-human primates and exhibit broad-spectrum antiviral and antibacterial activity. Currently, the θ-defensin analog RC-101 is being developed as a microbicide due to its specific antiviral activity, lack of toxicity to cells and tissues, and safety in animals. Understanding potential RC-101 resistance, and how resistance to other fusion inhibitors affects RC-101 susceptibility, is critical for future development. In previous studies, we identified a mutant, R5-tropic virus that had evolved partial resistance to RC-101 during in vitro selection. Here, we report that a secondary mutation in gp41 was found to restore replicative fitness, membrane fusion, and the rate of viral entry, which were compromised by an initial mutation providing partial RC-101 resistance. Interestingly, we show that RC-101 is effective against two enfuvirtide-resistant mutants, demonstrating the clinical importance of RC-101 as a unique fusion inhibitor. These findings both expand our understanding of HIV drug-resistance to diverse peptide fusion inhibitors and emphasize the significance of compensatory gp41 mutations.
Collapse
|
36
|
Kondo N, Melikyan GB. Intercellular adhesion molecule 1 promotes HIV-1 attachment but not fusion to target cells. PLoS One 2012; 7:e44827. [PMID: 22970312 PMCID: PMC3435301 DOI: 10.1371/journal.pone.0044827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/07/2012] [Indexed: 12/24/2022] Open
Abstract
Incorporation of intercellular adhesion molecule 1 (ICAM-1) into HIV-1 particles is known to markedly enhance the virus binding and infection of cells expressing lymphocyte function-associated antigen-1 (LFA-1). At the same time, ICAM-1 has been reported to exert a less pronounced effect on HIV-1 fusion with lymphoid cells. Here we examined the role of ICAM-1/LFA-1 interactions in productive HIV-1 entry into lymphoid cells using a direct virus-cell fusion assay. ICAM-1 promoted HIV-1 attachment to cells in a temperature-dependent manner. It exerted a marginal effect on virus binding in the cold, but enhanced binding up to 4-fold at physiological temperature. ICAM-1-independent attachment in the cold was readily reversible upon subsequent incubation at elevated temperature, whereas ICAM-1-bearing particles were largely retained by cells. The better virus retention resulted in a proportional increase in HIV-1 internalization and fusion, suggesting that ICAM-1 did not specifically accelerate endocytosis or fusion steps. We also measured the rates of CD4 engagement, productive endocytosis and HIV-endosome fusion using specific fusion inhibitors. These rates were virtually independent of the presence of ICAM-1 in viral particles. Importantly, irrespective of the presence of ICAM-1, HIV-1 escaped from the low temperature block, which stopped virus endocytosis and fusion, much later than from a membrane-impermeant fusion inhibitor targeting surface-accessible particles. This result, along with the complete inhibition of HIV-1 fusion by a small molecule dynamin inhibitor, implies this virus enters lymphoid cells used in this study via endocytosis and that this pathway is not altered by the viral ICAM-1. Our data highlight the role of ICAM-1 in stabilizing the HIV-1 attachment to LFA-1 expressing cells, which leads to a proportional enhancement of the receptor-mediated uptake and fusion with endosomes.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Division of Pediatric Infectious Diseases, Emory Children's Center, Atlanta, Georgia, United States of America
| | - Gregory B. Melikyan
- Division of Pediatric Infectious Diseases, Emory Children's Center, Atlanta, Georgia, United States of America
- Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Demirkhanyan LH, Marin M, Padilla-Parra S, Zhan C, Miyauchi K, Jean-Baptiste M, Novitskiy G, Lu W, Melikyan GB. Multifaceted mechanisms of HIV-1 entry inhibition by human α-defensin. J Biol Chem 2012; 287:28821-38. [PMID: 22733823 DOI: 10.1074/jbc.m112.375949] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human neutrophil peptide 1 (HNP-1) is known to block the human immunodeficiency virus type 1 (HIV-1) infection, but the mechanism of inhibition is poorly understood. We examined the effect of HNP-1 on HIV-1 entry and fusion and found that, surprisingly, this α-defensin inhibited multiple steps of virus entry, including: (i) Env binding to CD4 and coreceptors; (ii) refolding of Env into the final 6-helix bundle structure; and (iii) productive HIV-1 uptake but not internalization of endocytic markers. Despite its lectin-like properties, HNP-1 could bind to Env, CD4, and other host proteins in a glycan- and serum-independent manner, whereas the fusion inhibitory activity was greatly attenuated in the presence of human or bovine serum. This demonstrates that binding of α-defensin to molecules involved in HIV-1 fusion is necessary but not sufficient for blocking the virus entry. We therefore propose that oligomeric forms of defensin, which may be disrupted by serum, contribute to the anti-HIV-1 activity perhaps through cross-linking virus and/or host glycoproteins. This notion is supported by the ability of HNP-1 to reduce the mobile fraction of CD4 and coreceptors in the plasma membrane and to precipitate a core subdomain of Env in solution. The ability of HNP-1 to block HIV-1 uptake without interfering with constitutive endocytosis suggests a novel mechanism for broad activity against this and other viruses that enter cells through endocytic pathways.
Collapse
Affiliation(s)
- Lusine H Demirkhanyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathog 2012; 8:e1002634. [PMID: 22496655 PMCID: PMC3320602 DOI: 10.1371/journal.ppat.1002634] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/23/2012] [Indexed: 11/19/2022] Open
Abstract
HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo. HIV is known to spread both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Design of vaccines attempt to inhibit HIV entry into target cells as do engineered entry inhibitors used as therapeutics. While these agents are known to block the entry of cell-free HIV particles into cells, to what extent cell-cell transmission is vulnerable to such inhibition is unclear. Here we report that the activity of neutralizing antibodies and inhibitors during cell-cell transmission varies depending on their mode of action. A prominent class of neutralizing antibodies directed to the CD4 binding site on the virus envelope very efficiently blocks binding of the virus to its primary receptor on target cells, the CD4 molecule. These types of antibodies are elicited in natural infection and once isolated from infected individuals have shown to be highly potent. Why HIV still replicates in the presence of such potent antibodies remains unclear. Here we show that these CD4 binding site antibodies are dramatically less potent inhibitors of cell-cell transmission, and therefore act preferentially by blocking free virus transmission while allowing HIV to spread through cell-cell contact.
Collapse
|
39
|
Preclinical evaluation of the HIV-1 fusion inhibitor L'644 as a potential candidate microbicide. Antimicrob Agents Chemother 2012; 56:2347-56. [PMID: 22330930 DOI: 10.1128/aac.06108-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Topical blockade of the gp41 fusogenic protein of HIV-1 is one possible strategy by which microbicides could prevent HIV transmission, working early against infection, by inhibiting viral entry into host cells. In this study, we examined the potential of gp41 fusion inhibitors (FIs) as candidate anti-HIV microbicides. Preclinical evaluation of four FIs, C34, T20, T1249, and L'644, was performed using cellular and ex vivo genital and colorectal tissue explant models. Increased and sustained activity was detected for L'644, a cholesterol-derivatized version of C34, relative to the other FIs. The higher potency of L'644 was further increased with sustained exposure of cells or tissue to the compound. The activity of L'644 was not affected by biological fluids, and the compound was still active when tissue explants were treated after viral exposure. L'644 was also more active than other FIs against a viral escape mutant resistant to reverse transcriptase inhibitors (RTIs), demonstrating the potential of L'644 to be included as part of a multiactive antiretroviral (ARV) combination-based microbicide. These data support the further development of L'644 for microbicide application.
Collapse
|
40
|
Zhao L, Tong P, Chen YX, Hu ZW, Wang K, Zhang YN, Zhao DS, Cai LF, Liu KL, Zhao YF, Li YM. A multi-functional peptide as an HIV-1 entry inhibitor based on self-concentration, recognition, and covalent attachment. Org Biomol Chem 2012; 10:6512-20. [DOI: 10.1039/c2ob25853f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Abstract
Nipah (NiV) and Hendra (HeV) viruses cause cell-cell fusion (syncytia) in brain, lung, heart, and kidney tissues, leading to encephalitis, pneumonia, and often death. Membrane fusion is essential to both viral entry and virus-induced cell-cell fusion, a hallmark of henipavirus infections. Elucidiation of the mechanism(s) of membrane fusion is critical to understanding henipavirus pathobiology and has the potential to identify novel strategies for the development of antiviral therapeutic agents. Henipavirus membrane fusion requires the coordinated actions of the viral attachment (G) and fusion (F) glycoproteins. Current henipavirus fusion models posit that attachment of NiV or HeV G to its cell surface receptors releases F from its metastable pre-fusion conformation to mediate membrane fusion. The identification of ephrinB2 and ephrinB3 as henipavirus receptors has paved the way for recent advances in our understanding of henipavirus membrane fusion. These advances highlight mechanistic similarities and differences between membrane fusion for the henipavirus and other genera within the Paramyxoviridae family. Here, we review these mechanisms and the current gaps in our knowledge in the field.
Collapse
Affiliation(s)
- Hector C Aguilar
- Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7010, USA.
| | | |
Collapse
|
42
|
HIV-1 clinical isolates resistant to CCR5 antagonists exhibit delayed entry kinetics that are corrected in the presence of drug. J Virol 2011; 86:1119-28. [PMID: 22090117 DOI: 10.1128/jvi.06421-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV CCR5 antagonists select for env gene mutations that enable virus entry via drug-bound coreceptor. To investigate the mechanisms responsible for viral adaptation to drug-bound coreceptor-mediated entry, we studied viral isolates from three participants who developed CCR5 antagonist resistance during treatment with vicriviroc (VCV), an investigational small-molecule CCR5 antagonist. VCV-sensitive and -resistant viruses were isolated from one HIV subtype C- and two subtype B-infected participants; VCV-resistant isolates had mutations in the V3 loop of gp120 and were cross-resistant to TAK-779, an investigational antagonist, and maraviroc (MVC). All three resistant isolates contained a 306P mutation but had variable mutations elsewhere in the V3 stem. We used a virus-cell β-lactamase (BlaM) fusion assay to determine the entry kinetics of recombinant viruses that incorporated full-length VCV-sensitive and -resistant envelopes. VCV-resistant isolates exhibited delayed entry rates in the absence of drug, relative to pretherapy VCV-sensitive isolates. The addition of drug corrected these delays. These findings were generalizable across target cell types with a range of CD4 and CCR5 surface densities and were observed when either population-derived or clonal envelopes were used to construct recombinant viruses. V3 loop mutations alone were sufficient to restore virus entry in the presence of drug, and the accumulation of V3 mutations during VCV therapy led to progressively higher rates of viral entry. We propose that the restoration of pre-CCR5 antagonist therapy HIV entry kinetics drives the selection of V3 loop mutations and may represent a common mechanism that underlies the emergence of CCR5 antagonist resistance.
Collapse
|
43
|
Selection with a peptide fusion inhibitor corresponding to the first heptad repeat of HIV-1 gp41 identifies two genetic pathways conferring cross-resistance to peptide fusion inhibitors corresponding to the first and second heptad repeats (HR1 and HR2) of gp41. J Virol 2011; 85:12929-38. [PMID: 21994458 DOI: 10.1128/jvi.05391-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We generated four HIV-1 cultures that are resistant to a peptide fusion inhibitor corresponding to the first heptad repeat of gp41 in order to study mechanisms of resistance and gain insights into envelope glycoprotein-mediated membrane fusion. Two genetic pathways emerged that were defined by acquisition of a specific mutation in either the first or second heptad repeat region of gp41 (HR1 or the HR2, respectively). Each pathway was enriched in mutations that clustered in either HR2 and V3 or in HR1 and residues in or near CD4 contact sites. The gp41 mutations in both pathways not only accounted for resistance to the selecting HR1 peptide but also conferred cross-resistance to HR2 peptide fusion inhibitors and enhanced the stability of the six-helix bundle formed by the self-assembly of HR1 and HR2. The gp120 mutations alone enhanced fusion but did not appear to directly contribute to resistance. The implications of these findings for resistance mechanisms and regulation of envelope-mediated fusion are discussed.
Collapse
|
44
|
Leung MYK, Cohen FS. Increasing hydrophobicity of residues in an anti-HIV-1 Env peptide synergistically improves potency. Biophys J 2011; 100:1960-8. [PMID: 21504732 DOI: 10.1016/j.bpj.2011.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 02/04/2023] Open
Abstract
T-20/Fuzeon/Enfuvirtide (ENF), a peptide inhibitor of HIV-1 infection, targets the grooves created by heptad repeat 2 (HR2) of Env's coiled-coil, but mutants resistant to ENF emerge. In this study, ENF-resistant mutants--V38A, N43D, N43D/S138A, Q40H/L45M--were combined with modified inhibitory peptides to identify what we believe to be novel ways to improve peptide efficacy. V38A did not substantially reduce infectivity, but was relatively resistant to inhibitory peptides. N43D was more resistant to inhibitory peptides than wild-type, but infectivity was reduced. The additional mutation S138A (N43D/S138A) increased infectivity and further reduced peptide inhibitory potency. It is concluded that S138A increased binding of HR2/ENF into grooves and that S138A compensated for electrostatic repulsion between N43D and HR2. The six-helix bundle structure indicated that E148A should increase hydrophobic interactions between the coiled-coil and peptide. Importantly, the modifications S138A and E148A in the same peptide retained potency against ENF-escape mutants. The double mutant's increase in potency was greater than the increases from the sum of S138A and E148A individually, showing that these two altered residues synergistically contributed to peptide binding. Isothermal titration calorimetry established that hydrophobic substitutions at positions S138 and E148 improved potency of inhibitory peptides against escape mutants by increasing enthalpic release of energy upon peptide binding.
Collapse
Affiliation(s)
- Michael Y K Leung
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA
| | | |
Collapse
|
45
|
Ashkenazi A, Viard M, Wexler-Cohen Y, Blumenthal R, Shai Y. Viral envelope protein folding and membrane hemifusion are enhanced by the conserved loop region of HIV-1 gp41. FASEB J 2011; 25:2156-66. [PMID: 21429941 PMCID: PMC3114521 DOI: 10.1096/fj.10-175752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/10/2011] [Indexed: 11/11/2022]
Abstract
Fusion of human immunodeficiency virus (HIV-1) with target cells is mediated by the gp41 transmembrane envelope protein. The loop region within gp41 contains 2 crucial cysteines that play an unknown role in HIV-cell fusion. On the basis of cell-cell fusion assay, using human T-cell lines [Jurkat E6-1 and Jurkat HXBc2(4)], and virus-cell fusion assay, using fully infectious HIV-1 HXBc2 virus and TZM-bl human cell line, we provide evidence that the oxidation state of the disulfide bond within a loop domain peptide determines its activity. The oxidized (closed) form inhibits fusion, while the reduced (opened) form enhances hemifusion. These opposite activities reach 60% difference in viral fusion. Both forms of the loop domain interact with gp41: the opened form enhances gp41 folding into a bundle, whereas the closed form inhibits this folding. Therefore, the transformation of the cysteines from a reduced to an oxidized state enables the loop to convert from opened to closed conformations, which assists gp41 to fold and induces hemifusion. The significant conservation of the loop region within many envelope proteins suggests a general mechanism, which is exploited by viruses to enhance entry into their host cells.
Collapse
Affiliation(s)
- Avraham Ashkenazi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mathias Viard
- Nanobiology Program, Center of Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute–Frederick, Frederick, Maryland, USA
| | - Yael Wexler-Cohen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Blumenthal
- Nanobiology Program, Center of Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Yechiel Shai
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
46
|
Phenotypic and immunologic comparison of clade B transmitted/founder and chronic HIV-1 envelope glycoproteins. J Virol 2011; 85:8514-27. [PMID: 21715507 DOI: 10.1128/jvi.00736-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sexual transmission of human immunodeficiency virus type 1 (HIV-1) across mucosal barriers is responsible for the vast majority of new infections. This relatively inefficient process results in the transmission of a single transmitted/founder (T/F) virus, from a diverse viral swarm in the donor, in approximately 80% of cases. Here we compared the biological activities of 24 clade B T/F envelopes (Envs) with those from 17 chronic controls to determine whether the genetic bottleneck that occurs during transmission is linked to a particular Env phenotype. To maximize the likelihood of an intact mucosal barrier in the recipients and to enhance the sensitivity of detecting phenotypic differences, only T/F Envs from individuals infected with a single T/F variant were selected. Using pseudotyping to assess Env function in single-round infectivity assays, we compared coreceptor tropism, CCR5 utilization efficiencies, primary CD4(+) T cell subset tropism, dendritic cell trans-infections, fusion kinetics, and neutralization sensitivities. T/F and chronic Envs were phenotypically equivalent in most assays; however, T/F Envs were modestly more sensitive to CD4 binding site antibodies b12 and VRC01, as well as pooled human HIV Ig. This finding was independently validated with a panel of 14 additional chronic HIV-1 Env controls. Moreover, the enhanced neutralization sensitivity was associated with more efficient binding of b12 and VRC01 to T/F Env trimers. These data suggest that there are subtle but significant structural differences between T/F and chronic clade B Envs that may have implications for HIV-1 transmission and the design of effective vaccines.
Collapse
|
47
|
Mulampaka SN, Dixit NM. Estimating the threshold surface density of Gp120-CCR5 complexes necessary for HIV-1 envelope-mediated cell-cell fusion. PLoS One 2011; 6:e19941. [PMID: 21647388 PMCID: PMC3103592 DOI: 10.1371/journal.pone.0019941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022] Open
Abstract
Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as ∼20 µm(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.
Collapse
Affiliation(s)
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian
Institute of Science, Bangalore, India
- Bioinformatics Centre, Indian Institute of
Science, Bangalore, India
| |
Collapse
|
48
|
Abstract
Diverse enveloped viruses enter cells by endocytosis and fusion with intracellular compartments. Recent evidence suggests that HIV also infects permissive cell lines by fusing with endosomes in a pH-independent manner. This finding highlights the importance of time-resolved monitoring of viral uptake. In the present study, we designed an imaging-based assay to measure endocytosis in real-time through probing the virus' accessibility to external solutions. Exposure of viruses bearing a pH-sensitive GFP (green fluorescent protein) variant on their surface to solutions of different acidity altered the fluorescence of surface-accessible particles, but not internalized viruses. By sequentially applying acidic and alkaline buffers with or without ammonium chloride, we were able to quantify the fractions of internalized and non-internalized virions, as well as the fraction of detached particles, over time. The exact time of single-virus internalization was assessed from the point when a particle ceased to respond to a perfusion with alternating acidic and alkaline buffers. We found that, surprisingly, HIV pseudoparticles entered acidic compartments shortly after internalization. These results suggest that the virus might be sorted to a quickly maturing pool of endocytic vesicles and thus be trafficked to fusion-permissive sites near the cell nucleus.
Collapse
|
49
|
Yoshii H, Kamiyama H, Goto K, Oishi K, Katunuma N, Tanaka Y, Hayashi H, Matsuyama T, Sato H, Yamamoto N, Kubo Y. CD4-independent human immunodeficiency virus infection involves participation of endocytosis and cathepsin B. PLoS One 2011; 6:e19352. [PMID: 21541353 PMCID: PMC3081840 DOI: 10.1371/journal.pone.0019352] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 04/04/2011] [Indexed: 01/03/2023] Open
Abstract
During a comparison of the infectivity of mNDK, a CD4-independent human immunodeficiency virus type 1 (HIV-1) strain, to various cell lines, we found that HeLa cells were much less susceptible than 293T and TE671 cells. Hybridoma cells between HeLa and 293T cells were as susceptible as 293T cells, suggesting that cellular factors enhance the mNDK infection in 293T cells. By screening a cDNA expression library in HeLa cells, cystatin C was isolated as an enhancer of the mNDK infection. Because cathepsin B protease, a natural ligand of cystatin C, was upregulated in HeLa cells, we speculated that the high levels of cathepsin B activities were inhibitory to the CD4-independent infection and that cystatin C enhanced the infection by impairing the excessive cathepsin B activity. Consistent with this idea, pretreatment of HeLa cells with 125 µM of CA-074Me, a cathepsin B inhibitor, resulted in an 8-fold enhancement of the mNDK infectivity. Because cathepsin B is activated by low pH in acidic endosomes, we further examined the potential roles of endosomes in the CD4-independent infection. Suppression of endosome acidification or endocytosis by inhibitors or by an Eps15 dominant negative mutant reduced the infectivity of mNDK in which CD4-dependent infections were not significantly impaired. Taken together, these results suggest that endocytosis, endosomal acidification, and cathepsin B activity are involved in the CD4-independent entry of HIV-1.
Collapse
Affiliation(s)
- Hiroaki Yoshii
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- Department of Preventive and Therapeutic Research for Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruka Kamiyama
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
| | - Kensuke Goto
- Department of Eco-epidemiology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kazunori Oishi
- Department of Preventive and Therapeutic Research for Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nobuhiko Katunuma
- Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hideki Hayashi
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hironori Sato
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Yamamoto
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
50
|
Ashkenazi A, Shai Y. Insights into the mechanism of HIV-1 envelope induced membrane fusion as revealed by its inhibitory peptides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:349-57. [PMID: 21258789 DOI: 10.1007/s00249-010-0666-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/14/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
HIV-1 fusion with its target cells is mediated by the glycoprotein 41 (gp41) transmembrane subunit of the viral envelope glycoprotein (ENV). The current models propose that gp41 undergoes several conformational changes between the apposing viral and cell membranes to facilitate fusion. In this review we focus on the progress that has been made in revealing the dynamic role of the N-terminal heptad repeat (NHR) and the C-terminal heptad repeat (CHR) regions within gp41 to the fusion process. The involvement of these regions in the formation of the gp41 pre-hairpin and hairpin conformations during an ongoing fusion event was mainly discovered by their derived inhibitory peptides. For example, the core structure within the hairpin conformation in a dynamic fusion event is suggested to be larger than its high resolution structure and its minimal boundaries were determined in situ. Also, inhibitory peptides helped reveal the dual contribution of the NHR to the fusion process. Finally, we will also discuss several developments in peptide design that has led to a deeper understanding of the mechanism of viral membrane fusion.
Collapse
Affiliation(s)
- Avraham Ashkenazi
- The Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|