1
|
Tam KP, Xie J, Au-Yeung RKH, Chiang AKS. Combination of bortezomib and venetoclax targets the pro-survival function of LMP-1 and EBNA-3C of Epstein-Barr virus in spontaneous lymphoblastoid cell lines. PLoS Pathog 2024; 20:e1012250. [PMID: 39325843 PMCID: PMC11481030 DOI: 10.1371/journal.ppat.1012250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/08/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Epstein-Barr virus (EBV) manipulates the ubiquitin-proteasome system and regulators of Bcl-2 family to enable the persistence of the virus and survival of the host cells through the expression of viral proteins in distinct latency patterns. We postulate that the combination of bortezomib (proteasome inhibitor) and venetoclax (Bcl-2 inhibitor) [bort/venetoclax] will cause synergistic killing of post-transplant lymphoproliferative disorder (PTLD) through targeting the pro-survival function of latent viral proteins such as latent membrane protein-1 (LMP-1) and EBV nuclear antigen-3C (EBNA-3C). Bort/venetoclax could synergistically kill spontaneous lymphoblastoid cell lines (sLCLs) derived from patients with PTLD and EBV-associated hemophagocytic lymphohistiocytosis by inducing DNA damage response, apoptosis and G1-S cell cycle arrest in a ROS-dependent manner. Bortezomib potently induced the expression of Noxa, a pro-apoptotic initiator and when combined with venetoclax, inhibited Mcl-1 and Bcl-2 simultaneously. Bortezomib prevented LMP-1 induced proteasomal degradation of IκBα leading to the suppression of the NF-κB signaling pathway. Bortezomib also rescued Bcl-6 from EBNA-3C mediated proteasomal degradation thus maintaining the repression of cyclin D1 and Bcl-2 causing G1-S arrest and apoptosis. Concurrently, venetoclax inhibited Bcl-2 upregulated by either LMP-1 or EBNA-3C. Bort/venetoclax decreased the expression of phosphorylated p65 and Bcl-2 at serine 70 thereby suppressing the NF-κB signaling pathway and promoting apoptosis, respectively. These data corroborated the marked suppression of the growth of xenograft of sLCL in SCID mice (p<0.001). Taken together, the combination of bortezomib and venetoclax targets the pro-survival function of LMP-1 and EBNA-3C of Epstein-Barr virus in spontaneous lymphoblastoid cell lines.
Collapse
Affiliation(s)
- Kam Pui Tam
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jia Xie
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rex Kwok Him Au-Yeung
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Alan K. S. Chiang
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Suraweera CD, Espinoza B, Hinds MG, Kvansakul M. Mastering Death: The Roles of Viral Bcl-2 in dsDNA Viruses. Viruses 2024; 16:879. [PMID: 38932171 PMCID: PMC11209288 DOI: 10.3390/v16060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Proteins of the Bcl-2 family regulate cellular fate via multiple mechanisms including apoptosis, autophagy, senescence, metabolism, inflammation, redox homeostasis, and calcium flux. There are several regulated cell death (RCD) pathways, including apoptosis and autophagy, that use distinct molecular mechanisms to elicit the death response. However, the same proteins/genes may be deployed in multiple biochemical pathways. In apoptosis, Bcl-2 proteins control the integrity of the mitochondrial outer membrane (MOM) by regulating the formation of pores in the MOM and apoptotic cell death. A number of prosurvival genes populate the genomes of viruses including those of the pro-survival Bcl-2 family. Viral Bcl-2 proteins are sequence and structural homologs of their cellular counterparts and interact with cellular proteins in apoptotic and autophagic pathways, potentially allowing them to modulate these pathways and determine cellular fate.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Genome Sciences and Cancer Division, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| | - Benjamin Espinoza
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Marc Kvansakul
- Genome Sciences and Cancer Division, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
3
|
Silva JDM, Alves CEDC, Pontes GS. Epstein-Barr virus: the mastermind of immune chaos. Front Immunol 2024; 15:1297994. [PMID: 38384471 PMCID: PMC10879370 DOI: 10.3389/fimmu.2024.1297994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous human pathogen linked to various diseases, including infectious mononucleosis and multiple types of cancer. To control and eliminate EBV, the host's immune system deploys its most potent defenses, including pattern recognition receptors, Natural Killer cells, CD8+ and CD4+ T cells, among others. The interaction between EBV and the human immune system is complex and multifaceted. EBV employs a variety of strategies to evade detection and elimination by both the innate and adaptive immune systems. This demonstrates EBV's mastery of navigating the complexities of the immunological landscape. Further investigation into these complex mechanisms is imperative to advance the development of enhanced therapeutic approaches with heightened efficacy. This review provides a comprehensive overview of various mechanisms known to date, employed by the EBV to elude the immune response, while establishing enduring latent infections or instigate its lytic replication.
Collapse
Affiliation(s)
- Jean de Melo Silva
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Gemilson Soares Pontes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
4
|
Sagou K, Sato Y, Okuno Y, Watanabe T, Inagaki T, Motooka Y, Toyokuni S, Murata T, Kiyoi H, Kimura H. Epstein-Barr virus lytic gene BNRF1 promotes B-cell lymphomagenesis via IFI27 upregulation. PLoS Pathog 2024; 20:e1011954. [PMID: 38300891 PMCID: PMC10833513 DOI: 10.1371/journal.ppat.1011954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus that is causally associated with several malignancies. In addition to latent factors, lytic replication contributes to cancer development. In this study, we examined whether the lytic gene BNRF1, which is conserved among gamma-herpesviruses, has an important role in lymphomagenesis. We found that lymphoblastoid cell lines (LCLs) established by BNRF1-knockout EBV exhibited remarkably lower pathogenicity in a mice xenograft model than LCLs produced by wild-type EBV (LCLs-WT). RNA-seq analyses revealed that BNRF1 elicited the expression of interferon-inducible protein 27 (IFI27), which promotes cell proliferation. IFI27 knockdown in LCLs-WT resulted in excessive production of reactive oxygen species, leading to cell death and significantly decreased their pathogenicity in vivo. We also confirmed that IFI27 was upregulated during primary infection in B-cells. Our findings revealed that BNRF1 promoted robust proliferation of the B-cells that were transformed by EBV latent infection via IFI27 upregulation both in vitro and in vivo.
Collapse
Affiliation(s)
- Ken Sagou
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Inagaki
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Reis AL, Rathakrishnan A, Goulding LV, Barber C, Goatley LC, Dixon LK. Deletion of the gene for the African swine fever virus BCL-2 family member A179L increases virus uptake and apoptosis but decreases virus spread in macrophages and reduces virulence in pigs. J Virol 2023; 97:e0110623. [PMID: 37796125 PMCID: PMC10617521 DOI: 10.1128/jvi.01106-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE African swine fever virus (ASFV) causes a lethal disease of pigs with high economic impact in affected countries in Africa, Europe, and Asia. The virus encodes proteins that inhibit host antiviral defenses, including the type I interferon response. Host cells also activate cell death through a process called apoptosis to limit virus replication. We showed that the ASFV A179L protein, a BCL-2 family apoptosis inhibitor, is important in reducing apoptosis in infected cells since deletion of this gene increased cell death and reduced virus replication in cells infected with the A179L gene-deleted virus. Pigs immunized with the BeninΔA179L virus showed no clinical signs and a weak immune response but were not protected from infection with the deadly parental virus. The results show an important role for the A179L protein in virus replication in macrophages and virulence in pigs and suggest manipulation of apoptosis as a possible route to control infection.
Collapse
Affiliation(s)
| | | | | | - Claire Barber
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | | |
Collapse
|
6
|
Wyatt S, Glover K, Dasanna S, Lewison M, González-García M, Colbert CL, Sinha SC. Epstein-Barr Virus Encoded BCL2, BHRF1, Downregulates Autophagy by Noncanonical Binding of BECN1. Biochemistry 2023; 62:2934-2951. [PMID: 37776275 PMCID: PMC11166532 DOI: 10.1021/acs.biochem.3c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
γ-herpesviruses (γHVs) encode BCL2 homologues (vBCL2) that bind the Bcl-2 homology 3 domains (BH3Ds) of diverse proteins, inhibiting apoptosis and promoting host cell and virus survival. vBCLs encoded by Kaposi sarcoma-associated HV (KSHV) and γHV68 downregulate autophagy, a degradative cellular process crucial for homeostasis and innate immune responses to pathogens, by binding to a BH3D in BECN1, a key autophagy protein. Epstein-Barr virus (EBV) encodes a vBCL2 called BHRF1. Here we show that unlike the KSHV and γHV68 vBCL2s, BHRF1 does not bind the isolated BECN1 BH3D. We use yeast two-hybrid assays to identify the minimal region of BECN1 required and sufficient for binding BHRF1. We confirm that this is a direct, albeit weak, interaction via affinity pull-down assays and isothermal titration calorimetry. To understand the structural bases of BHRF1 specificity, we determined the 2.6 Å crystal structure of BHRF1 bound to the BID BH3D, which binds ∼400-times tighter to BHRF1 than does BECN1, and performed a detailed structural comparison with complexes of diverse BH3Ds bound to BHRF1 and to other antiapoptotic BCL2s. Lastly, we used mammalian cell autophagy assays to demonstrate that BHRF1 downregulates autophagy and that a cell-permeable peptide derived from the BID BH3D inhibits BHRF1-mediated downregulation of autophagy. In summary, our results suggest that BHRF1 downregulates autophagy by noncanonical binding of a flexible region of BECN1 that includes but is not limited to the BH3D and that BH3D-derived peptides that bind better to BHRF1 can block downregulation of autophagy by BHRF1.
Collapse
Affiliation(s)
- Samuel Wyatt
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Karen Glover
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Srinivasulu Dasanna
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Monica Lewison
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | | | - Christopher L. Colbert
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Sangita C. Sinha
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
7
|
Guarra F, Colombo G. Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens. J Chem Theory Comput 2023; 19:5315-5333. [PMID: 37527403 PMCID: PMC10448727 DOI: 10.1021/acs.jctc.3c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/03/2023]
Abstract
The design of new biomolecules able to harness immune mechanisms for the treatment of diseases is a prime challenge for computational and simulative approaches. For instance, in recent years, antibodies have emerged as an important class of therapeutics against a spectrum of pathologies. In cancer, immune-inspired approaches are witnessing a surge thanks to a better understanding of tumor-associated antigens and the mechanisms of their engagement or evasion from the human immune system. Here, we provide a summary of the main state-of-the-art computational approaches that are used to design antibodies and antigens, and in parallel, we review key methodologies for epitope identification for both B- and T-cell mediated responses. A special focus is devoted to the description of structure- and physics-based models, privileged over purely sequence-based approaches. We discuss the implications of novel methods in engineering biomolecules with tailored immunological properties for possible therapeutic uses. Finally, we highlight the extraordinary challenges and opportunities presented by the possible integration of structure- and physics-based methods with emerging Artificial Intelligence technologies for the prediction and design of novel antigens, epitopes, and antibodies.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry, University
of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University
of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
8
|
Wang Y, Rong Y, Yang L, Lu Z. Genetic variability and mutation of Epstein‒Barr virus (EBV)-encoded LMP-1 and BHRF-1 genes in EBV-infected patients: identification of precise targets for development of personalized EBV vaccines. Virus Genes 2023; 59:541-553. [PMID: 37243920 PMCID: PMC10220333 DOI: 10.1007/s11262-023-02006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
The critical Epstein‒Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) and BamHI fragment H rightward open reading frame 1 (BHRF-1) genes affect EBV-mediated malignant transformation and virus replication during EBV infection. Therefore, these two genes are considered ideal targets for EBV vaccine development. However, gene mutations in LMP-1 and BHRF-1 in different cohorts may affect the biological functions of EBV, which would seriously hinder development of personalized vaccines for EBV. In the present study, by performing nested polymerase chain reaction (nested PCR) and DNA sequence techniques, we analyzed the nucleotide variability and phylogeny of LMP-1 containing a 30 bp deletion region (del-LMP-1) and BHRF-1 in EBV-infected patients (N = 382) and healthy persons receiving physical examination (N = 98; defined as the control group) in Yunnan Province, China. Three BHRF-1 subtypes were identified in this study: 79V88V, 79L88L, and 79V88L, with mutation frequencies of 58.59%, 24.24%, and 17.17%, respectively. Compared with the control group, the distribution of BHRF-1 subtypes of the three groups showed no significant difference, suggesting that BHRF-1 is highly conserved in EBV-related samples. In addition, a short fragment of del-LMP-1 was found in 133 cases, and the nucleotide variation rate was 87.50% (133/152). For del-LMP-1, a significant distribution in three groups was detected, as characterized by a high mutation rate. In conclusion, our study illustrates gene variability and mutations of EBV-encoded del-LMP-1 and BHRF-1 in clinical samples. Highly mutated LMP-1 might be associated with various types of EBV-related diseases, indicating that BHRF-1 combined with LMP-1 may be used as an ideal target for development of EBV personalized vaccines.
Collapse
Affiliation(s)
- Yue Wang
- Forensic Center of Justice, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Rong
- Forensic Center of Justice, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lijuan Yang
- Central Lab of the 2Nd, Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| | - Zhiyan Lu
- Forensic Center of Justice, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Muhammad US, Erkan S, Kaya S. Analysis of Boronic Acids Containing Amino Ferrocene by DFT Approach and In Silico Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
10
|
Gong M, Myster F, van Campe W, Roels S, Mostin L, van den Berg T, Vanderplasschen A, Dewals BG. Wildebeest-Derived Malignant Catarrhal Fever: A Bovine Peripheral T Cell Lymphoma Caused by Cross-Species Transmission of Alcelaphine Gammaherpesvirus 1. Viruses 2023; 15:v15020526. [PMID: 36851740 PMCID: PMC9968110 DOI: 10.3390/v15020526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Gammaherpesviruses (γHVs) include viruses that can induce lymphoproliferative diseases and tumors. These viruses can persist in the long term in the absence of any pathological manifestation in their natural host. Alcelaphine gammaherpesvirus 1 (AlHV-1) belongs to the genus Macavirus and asymptomatically infects its natural host, the wildebeest (Connochaetes spp.). However, when transmitted to several susceptible species belonging to the order Artiodactyla, AlHV-1 is responsible for the induction of a lethal lymphoproliferative disease, named wildebeest-derived malignant catarrhal fever (WD-MCF). Understanding the pathogenic mechanisms responsible for the induction of WD-MCF is important to better control the risks of transmission and disease development in susceptible species. The aim of this review is to synthesize the current knowledge on WD-MCF with a particular focus on the mechanisms by which AlHV-1 induces the disease. We discuss the potential mechanisms of pathogenesis from viral entry into the host to the maintenance of viral genomes in infected CD8+ T lymphocytes, and we present current hypotheses to explain how AlHV-1 infection induces a peripheral T cell lymphoma-like disease.
Collapse
Affiliation(s)
- Meijiao Gong
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Françoise Myster
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Willem van Campe
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Stefan Roels
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Laurent Mostin
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Thierry van den Berg
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Alain Vanderplasschen
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Benjamin G. Dewals
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
11
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
12
|
Functional Implications of Epstein-Barr Virus Lytic Genes in Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235780. [PMID: 36497262 PMCID: PMC9740547 DOI: 10.3390/cancers14235780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with a diverse range of tumors of both lymphoid and epithelial origin. Similar to other herpesviruses, EBV displays a bipartite life cycle consisting of latent and lytic phases. Current dogma indicates that the latent genes are key drivers in the pathogenesis of EBV-associated cancers, while the lytic genes are primarily responsible for viral transmission. In recent years, evidence has emerged to show that the EBV lytic phase also plays an important role in EBV tumorigenesis, and the expression of EBV lytic genes is frequently detected in tumor tissues and cell lines. The advent of next generation sequencing has allowed the comprehensive profiling of EBV gene expression, and this has revealed the consistent expression of several lytic genes across various types of EBV-associated cancers. In this review, we provide an overview of the functional implications of EBV lytic gene expression to the oncogenic process and discuss possible avenues for future investigations.
Collapse
|
13
|
Suraweera CD, Hinds MG, Kvansakul M. Crystal Structures of Epstein-Barr Virus Bcl-2 Homolog BHRF1 Bound to Bid and Puma BH3 Motif Peptides. Viruses 2022; 14:v14102222. [PMID: 36298777 PMCID: PMC9609553 DOI: 10.3390/v14102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Apoptosis is a powerful defense mechanism used by multicellular organisms to counteract viral infection. In response to premature host cell suicide, viruses have evolved numerous countermeasures to ensure cell viability to optimize their replication by encoding proteins homologous in structure and function to cellular pro-survival Bcl-2 proteins. Epstein-Barr virus (EBV), a member of the Gammaherpesviridae, encodes the Bcl-2 homolog BHRF1, a potent inhibitor of Bcl-2-mediated apoptosis. BHRF1 acts by directly targeting Bid and Puma, two proapoptotic proteins of the Bcl-2 family. Here, we determined the crystal structures of BHRF1 bound to peptides spanning the Bcl-2 binding motifs (Bcl-2 homology 3 motif, BH3) of Bid and Puma. BHRF1 engages BH3 peptides using the canonical ligand-binding groove of its Bcl-2 fold and maintains a salt bridge between an Arg residue with a conserved Asp residue in the BH3 motif mimicking the canonical ionic interaction seen in host Bcl-2:BH3 motif complexes. Furthermore, both Bid and Puma utilize a fifth binding pocket in the canonical ligand binding groove of BHRF1 to provide an additional hydrophobic interaction distinct from the interactions previously seen with Bak and Bim. These findings provide a structural basis for EBV-mediated suppression of host cell apoptosis and reveal the flexibility of virus encoded Bcl-2 proteins in mimicking key interactions from the endogenous host signaling pathways.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
14
|
Wyżewski Z, Mielcarska MB, Gregorczyk-Zboroch KP, Myszka A. Virus-Mediated Inhibition of Apoptosis in the Context of EBV-Associated Diseases: Molecular Mechanisms and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137265. [PMID: 35806271 PMCID: PMC9266970 DOI: 10.3390/ijms23137265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Epstein-Barr virus (EBV), the representative of the Herpesviridae family, is a pathogen extensively distributed in the human population. One of its most characteristic features is the capability to establish latent infection in the host. The infected cells serve as a sanctuary for the dormant virus, and therefore their desensitization to apoptotic stimuli is part of the viral strategy for long-term survival. For this reason, EBV encodes a set of anti-apoptotic products. They may increase the viability of infected cells and enhance their resistance to chemotherapy, thereby contributing to the development of EBV-associated diseases, including Burkitt’s lymphoma (BL), Hodgkin’s lymphoma (HL), gastric cancer (GC), nasopharyngeal carcinoma (NPC) and several other malignancies. In this paper, we have described the molecular mechanism of anti-apoptotic actions of a set of EBV proteins. Moreover, we have reviewed the pro-survival role of non-coding viral transcripts: EBV-encoded small RNAs (EBERs) and microRNAs (miRNAs), in EBV-carrying malignant cells. The influence of EBV on the expression, activity and/or intracellular distribution of B-cell lymphoma 2 (Bcl-2) protein family members, has been presented. Finally, we have also discussed therapeutic perspectives of targeting viral anti-apoptotic products or their molecular partners.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
- Correspondence: ; Tel.: +48-728-208-338
| | - Matylda Barbara Mielcarska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (M.B.M.); (K.P.G.-Z.)
| | | | - Anna Myszka
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
| |
Collapse
|
15
|
Chen X, Zhang W, Yi W, Yang L, Bi X, Lin Y, Deng W, Dong J, Li M, Xie Y. Pathway of Cell Death and Its Role in Virus Infection. Viral Immunol 2022; 35:444-456. [PMID: 35758840 DOI: 10.1089/vim.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The global pandemic of SARS-CoV-2 in the past 2 years has aroused great attention to infectious diseases, and emerging virus outbreaks have brought huge challenges to the global health system. Viruses are specific pathogens that completely rely on host cells for their own survival and disease transmission. At present, a growing number of studies have proved that inducing the death of virus-infected cells can prevent the spread of virus and promote disease recovery. Therefore, many ways to induce the death of infected cells are considered to be beneficial to host immunity. Cell death is a basic biological phenomenon. Programmed cell death (PCD), as an important part of the host's innate immune response, provides effective protection against virus transmission. Pyroptosis, apoptosis, and necroptosis are the most commonly studied pathways of PCD. Recent studies have found that three pathways of cell death can be activated during virus infection. More and more studies have shown the existence of extensive connections between PCDs, and this complex relationship is defined as PANoptosis, an inflammatory PCD pathway regulated by the PANoptosome complex, whose characteristics cannot be explained by any of the three PCD pathways. During viral infection, PANoptosis can promote inflammatory response by inducing the production of inflammatory cytokines and cell death to exert an antiviral mechanism. This article reviews the various effects of cell death pathways during viral infection and provides new ideas for clinical antiviral therapy and related immunotherapy.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Weiyan Zhang
- Department of Infectious Disease, Huaxin Hospital, The First Hospital of Tsinghua University, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jianping Dong
- Department of Infectious Diseases, Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
16
|
Sora V, Papaleo E. Structural Details of BH3 Motifs and BH3-Mediated Interactions: an Updated Perspective. Front Mol Biosci 2022; 9:864874. [PMID: 35685242 PMCID: PMC9171138 DOI: 10.3389/fmolb.2022.864874] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Apoptosis is a mechanism of programmed cell death crucial in organism development, maintenance of tissue homeostasis, and several pathogenic processes. The B cell lymphoma 2 (BCL2) protein family lies at the core of the apoptotic process, and the delicate balance between its pro- and anti-apoptotic members ultimately decides the cell fate. BCL2 proteins can bind with each other and several other biological partners through the BCL2 homology domain 3 (BH3), which has been also classified as a possible Short Linear Motif and whose distinctive features remain elusive even after decades of studies. Here, we aim to provide an updated overview of the structural features characterizing BH3s and BH3-mediated interactions (with a focus on human proteins), elaborating on the plasticity of BCL2 proteins and the motif properties. We also discussed the implication of these findings for the discovery of interactors of the BH3-binding groove of BCL2 proteins and the design of mimetics for therapeutic purposes.
Collapse
Affiliation(s)
- Valentina Sora
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Elena Papaleo, ,
| |
Collapse
|
17
|
Suraweera CD, Hinds MG, Kvansakul M. Structural Insight into KsBcl-2 Mediated Apoptosis Inhibition by Kaposi Sarcoma Associated Herpes Virus. Viruses 2022; 14:v14040738. [PMID: 35458468 PMCID: PMC9027176 DOI: 10.3390/v14040738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Numerous large DNA viruses have evolved sophisticated countermeasures to hijack the premature programmed cell death of host cells post-infection, including the expression of proteins homologous in sequence, structure, or function to cellular Bcl-2 proteins. Kaposi sarcoma herpes virus (KSHV), a member of the gammaherpesvirinae, has been shown to encode for KsBcl-2, a potent inhibitor of Bcl-2 mediated apoptosis. KsBcl-2 acts by directly engaging host pro-apoptotic Bcl-2 proteins including Bak, Bax and Bok, the BH3-only proteins; Bim, Bid, Bik, Hrk, Noxa and Puma. Here we determined the crystal structures of KsBcl-2 bound to the BH3 motif of pro-apoptotic proteins Bid and Puma. The structures reveal that KsBcl-2 engages pro-apoptotic BH3 motif peptides using the canonical ligand binding groove. Thus, the presence of the readily identifiable conserved BH1 motif sequence “NWGR” of KsBcl-2, as well as highly conserved Arg residue (R86) forms an ionic interaction with the conserved Asp in the BH3 motif in a manner that mimics the canonical ionic interaction seen in host Bcl-2:BH3 motif complexes. These findings provide a structural basis for KSHV mediated inhibition of host cell apoptosis and reveal the flexibility of virus encoded Bcl-2 proteins to mimic key interactions from endogenous host signalling pathways.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
18
|
Glon D, Vilmen G, Perdiz D, Hernandez E, Beauclair G, Quignon F, Berlioz-Torrent C, Maréchal V, Poüs C, Lussignol M, Esclatine A. Essential role of hyperacetylated microtubules in innate immunity escape orchestrated by the EBV-encoded BHRF1 protein. PLoS Pathog 2022; 18:e1010371. [PMID: 35275978 PMCID: PMC8942261 DOI: 10.1371/journal.ppat.1010371] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Innate immunity constitutes the first line of defense against viruses, in which mitochondria play an important role in the induction of the interferon (IFN) response. BHRF1, a multifunctional viral protein expressed during Epstein-Barr virus reactivation, modulates mitochondrial dynamics and disrupts the IFN signaling pathway. Mitochondria are mobile organelles that move through the cytoplasm thanks to the cytoskeleton and in particular the microtubule (MT) network. MTs undergo various post-translational modifications, among them tubulin acetylation. In this study, we demonstrated that BHRF1 induces MT hyperacetylation to escape innate immunity. Indeed, the expression of BHRF1 induces the clustering of shortened mitochondria next to the nucleus. This "mito-aggresome" is organized around the centrosome and its formation is MT-dependent. We also observed that the α-tubulin acetyltransferase ATAT1 interacts with BHRF1. Using ATAT1 knockdown or a non-acetylatable α-tubulin mutant, we demonstrated that this hyperacetylation is necessary for the mito-aggresome formation. Similar results were observed during EBV reactivation. We investigated the mechanism leading to the clustering of mitochondria, and we identified dyneins as motors that are required for mitochondrial clustering. Finally, we demonstrated that BHRF1 needs MT hyperacetylation to block the induction of the IFN response. Moreover, the loss of MT hyperacetylation blocks the localization of autophagosomes close to the mito-aggresome, impeding BHRF1 to initiate mitophagy, which is essential to inhibiting the signaling pathway. Therefore, our results reveal the role of the MT network, and its acetylation level, in the induction of a pro-viral mitophagy.
Collapse
Affiliation(s)
- Damien Glon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Géraldine Vilmen
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- CRSA, Centre de Recherche Saint-Antoine, UMR-S 938, INSERM, Sorbonne Université, Paris, France
| | - Daniel Perdiz
- INSERM UMR-S 1193, Université Paris-Saclay, Châtenay-Malabry, France
| | - Eva Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Guillaume Beauclair
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Frédérique Quignon
- Sorbonne Université, CNRS UMR 144, Institut Curie Centre de Recherche, Paris, France
| | | | - Vincent Maréchal
- CRSA, Centre de Recherche Saint-Antoine, UMR-S 938, INSERM, Sorbonne Université, Paris, France
| | - Christian Poüs
- INSERM UMR-S 1193, Université Paris-Saclay, Châtenay-Malabry, France
- Biochimie-Hormonologie, APHP, Hôpitaux Universitaires Paris-Saclay, Site Antoine Béclère, Clamart, France
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
19
|
Nguyen LN, Kanneganti TD. PANoptosis in Viral Infection: The Missing Puzzle Piece in the Cell Death Field. J Mol Biol 2022; 434:167249. [PMID: 34537233 PMCID: PMC8444475 DOI: 10.1016/j.jmb.2021.167249] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
In the past decade, emerging viral outbreaks like SARS-CoV-2, Zika and Ebola have presented major challenges to the global health system. Viruses are unique pathogens in that they fully rely on the host cell to complete their lifecycle and potentiate disease. Therefore, programmed cell death (PCD), a key component of the host innate immune response, is an effective strategy for the host cell to curb viral spread. The most well-established PCD pathways, pyroptosis, apoptosis and necroptosis, can be activated in response to viruses. Recently, extensive crosstalk between PCD pathways has been identified, and there is evidence that molecules from all three PCD pathways can be activated during virus infection. These findings have led to the emergence of the concept of PANoptosis, defined as an inflammatory PCD pathway regulated by the PANoptosome complex with key features of pyroptosis, apoptosis, and/or necroptosis that cannot be accounted for by any of these three PCD pathways alone. While PCD is important to eliminate infected cells, many viruses are equipped to hijack host PCD pathways to benefit their own propagation and subvert host defense, and PCD can also lead to the production of inflammatory cytokines and inflammation. Therefore, PANoptosis induced by viral infection contributes to either host defense or viral pathogenesis in context-specific ways. In this review, we will discuss the multi-faceted roles of PCD pathways in controlling viral infections.
Collapse
Affiliation(s)
- Lam Nhat Nguyen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. https://twitter.com/LamNguy81889610
| | | |
Collapse
|
20
|
Tummers B, Green DR. The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol Rev 2022; 102:411-454. [PMID: 34898294 PMCID: PMC8676434 DOI: 10.1152/physrev.00002.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/01/2021] [Accepted: 09/01/2022] [Indexed: 12/21/2022] Open
Abstract
The coevolution of host-pathogen interactions underlies many human physiological traits associated with protection from or susceptibility to infections. Among the mechanisms that animals utilize to control infections are the regulated cell death pathways of pyroptosis, apoptosis, and necroptosis. Over the course of evolution these pathways have become intricate and complex, coevolving with microbes that infect animal hosts. Microbes, in turn, have evolved strategies to interfere with the pathways of regulated cell death to avoid eradication by the host. Here, we present an overview of the mechanisms of regulated cell death in Animalia and the strategies devised by pathogens to interfere with these processes. We review the molecular pathways of regulated cell death, their roles in infection, and how they are perturbed by viruses and bacteria, providing insights into the coevolution of host-pathogen interactions and cell death pathways.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
21
|
Reddy C, Sankararamakrishnan R. Designing BH3-Mimetic Peptide Inhibitors for the Viral Bcl-2 Homologues A179L and BHRF1: Importance of Long-Range Electrostatic Interactions. ACS OMEGA 2021; 6:26976-26989. [PMID: 34693118 PMCID: PMC8529603 DOI: 10.1021/acsomega.1c03385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Viruses have evolved strategies to prevent apoptosis of infected cells at early stages of infection. The viral proteins (vBcl-2s) from specific viral genes adopt a helical fold that is structurally similar to that of mammalian antiapoptotic Bcl-2 proteins and exhibit little sequence similarity. Hence, vBcl-2 homologues are attractive targets to prevent viral infection. However, very few studies have focused on developing inhibitors for vBcl-2 homologues. In this study, we have considered two vBcl-2 homologues, A179L from African swine fever virus and BHRF1 from Epstein-Barr virus. We generated two sets of 8000 randomized BH3-like sequences from eight wild-type proapoptotic BH3 peptides. During this process, the four conserved hydrophobic residues and an Asp residue were retained at their respective positions, and all other positions were substituted randomly without any bias. We constructed 8000 structures each for A179L and BHRF1 in complex with BH3-like sequences. Histograms of interaction energies calculated between the peptide and the protein resulted in negatively skewed distributions. The BH3-like peptides with high helical propensities selected from the negative tail of the respective interaction energy distributions exhibited more favorable interactions with A179L and BHRF1, and they are rich in basic residues. Molecular dynamics studies and electrostatic potential maps further revealed that both acidic and basic residues favorably interact with A179L, while only basic residues have the most favorable interactions with BHRF1. As in mammalian homologues, the role of long-range interactions and nonhotspot residues has to be taken into account while designing specific BH3-mimetic inhibitors for vBcl-2 homologues.
Collapse
Affiliation(s)
- Chinthakunta
Narendra Reddy
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ramasubbu Sankararamakrishnan
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Mehta
Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
22
|
Structural Investigation of Orf Virus Bcl-2 Homolog ORFV125 Interactions with BH3-Motifs from BH3-Only Proteins Puma and Hrk. Viruses 2021; 13:v13071374. [PMID: 34372579 PMCID: PMC8310162 DOI: 10.3390/v13071374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Numerous viruses have evolved sophisticated countermeasures to hijack the early programmed cell death of host cells in response to infection, including the use of proteins homologous in sequence or structure to Bcl-2. Orf virus, a member of the parapoxviridae, encodes for the Bcl-2 homolog ORFV125, a potent inhibitor of Bcl-2-mediated apoptosis in the host. ORFV125 acts by directly engaging host proapoptotic Bcl-2 proteins including Bak and Bax as well as the BH3-only proteins Hrk and Puma. Here, we determined the crystal structures of ORFV125 bound to the BH3 motif of proapoptotic proteins Puma and Hrk. The structures reveal that ORFV125 engages proapoptotic BH3 motif peptides using the canonical ligand binding groove. An Arg located in the structurally equivalent BH1 region of ORFV125 forms an ionic interaction with the conserved Asp in the BH3 motif in a manner that mimics the canonical ionic interaction seen in host Bcl-2:BH3 motif complexes. These findings provide a structural basis for Orf virus-mediated inhibition of host cell apoptosis and reveal the flexibility of virus encoded Bcl-2 proteins to mimic key interactions from endogenous host signalling pathways.
Collapse
|
23
|
Sadri Nahand J, Rabiei N, Fathazam R, Taghizadieh M, Ebrahimi MS, Mahjoubin-Tehran M, Bannazadeh Baghi H, Khatami A, Abbasi-Kolli M, Mirzaei HR, Rahimian N, Darvish M, Mirzaei H. Oncogenic viruses and chemoresistance: What do we know? Pharmacol Res 2021; 170:105730. [PMID: 34119621 DOI: 10.1016/j.phrs.2021.105730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Chemoresistance is often referred to as a major leading reason for cancer therapy failure, causing cancer relapse and further metastasis. As a result, an urgent need has been raised to reach a full comprehension of chemoresistance-associated molecular pathways, thereby designing new therapy methods. Many of metastatic tumor masses are found to be related with a viral cause. Although combined therapy is perceived as the model role therapy in such cases, chemoresistant features, which is more common in viral carcinogenesis, often get into way of this kind of therapy, minimizing the chance of survival. Some investigations indicate that the infecting virus dominates other leading factors, i.e., genetic alternations and tumor microenvironment, in development of cancer cell chemoresistance. Herein, we have gathered the available evidence on the mechanisms under which oncogenic viruses cause drug-resistance in chemotherapy.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Ebrahimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
24
|
Fang Y, Peng K. Regulation of innate immune responses by cell death-associated caspases during virus infection. FEBS J 2021; 289:4098-4111. [PMID: 34089572 DOI: 10.1111/febs.16051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023]
Abstract
Viruses are obligate intracellular pathogens that rely on cellular machinery for successful replication and dissemination. The host cells encode a number of different strategies to sense and restrict the invading viral pathogens. Caspase-mediated programmed cell death pathways that are triggered by virus infection, such as apoptosis and pyroptosis, provide a means for the infected cells to limit viral proliferation, leading to suicidal cell death (apoptosis) or lytic cell death and alerting uninfected cells to mount anti-viral responses (pyroptosis). However, some viruses can employ activated caspases to dampen the anti-viral responses and facilitate viral replication through cleavage of critical molecules of the innate immune pathways. The regulation of innate immune responses by caspase activation during virus infection has recently become an important topic. In this review, we briefly introduce the characteristics of different classes of caspases and the cell death pathways regulated by these caspases. We then describe how viruses trigger or dampen caspase activation during infection and how these activated caspases regulate three major innate immune response pathways of viral infections: the retinoic acid-inducible gene I-like receptor, toll-like receptor and cyclic GMP-AMP synthase-stimulator of interferon genes pathways.
Collapse
Affiliation(s)
- Yujie Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Yu F, Syn NL, Lu Y, Chong QY, Lai J, Tan WJ, Goh BC, MacAry PA, Wang L, Loh KS. Characterization and Establishment of a Novel EBV Strain Simultaneously Associated With Nasopharyngeal Carcinoma and B-Cell Lymphoma. Front Oncol 2021; 11:626659. [PMID: 33898307 PMCID: PMC8059411 DOI: 10.3389/fonc.2021.626659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Epstein-Barr virus (EBV)—the prototypical human tumor virus—is responsible for 1–2% of the global cancer burden, but divergent strains seem to exist in different geographical regions with distinct predilections for causing lymphoid or epithelial malignancies. Here we report the establishment and characterization of Yu103, an Asia Pacific EBV strain with a highly remarkable provenance of being derived from nasopharyngeal carcinoma biopsy but subsequently propagated in human B-lymphoma cells and xenograft models. Unlike previously characterized EBV strains which are either predominantly B-lymphotropic or epitheliotropic, Yu103 evinces an uncanny capacity to infect and transform both B-lymphocytes and nasopharyngeal epithelial cells. Genomic and phylogenetic analyses indicated that Yu103 EBV lies midway along the spectrum of EBV strains known to drive lymphomagenesis or carcinogenesis, and harbors molecular features which likely account for its unusual properties. To our knowledge, Yu103 EBV is currently the only EBV isolate shown to drive human nasopharyngeal carcinoma and B-lymphoma, and should therefore provide a powerful novel platform for research on EBV-driven hematological and epithelial malignancies.
Collapse
Affiliation(s)
- Fenggang Yu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas L Syn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yanan Lu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qing Yun Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Junyun Lai
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Jian Tan
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Head & Neck Tumor Group, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Paul A MacAry
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwok Seng Loh
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Head & Neck Tumor Group, National University Cancer Institute, National University Health System, Singapore, Singapore
| |
Collapse
|
26
|
Schoeder C, Schmitz S, Adolf-Bryfogle J, Sevy AM, Finn JA, Sauer MF, Bozhanova NG, Mueller BK, Sangha AK, Bonet J, Sheehan JH, Kuenze G, Marlow B, Smith ST, Woods H, Bender BJ, Martina CE, del Alamo D, Kodali P, Gulsevin A, Schief WR, Correia BE, Crowe JE, Meiler J, Moretti R. Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design. Biochemistry 2021; 60:825-846. [PMID: 33705117 PMCID: PMC7992133 DOI: 10.1021/acs.biochem.0c00912] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Indexed: 01/16/2023]
Abstract
Structure-based antibody and antigen design has advanced greatly in recent years, due not only to the increasing availability of experimentally determined structures but also to improved computational methods for both prediction and design. Constant improvements in performance within the Rosetta software suite for biomolecular modeling have given rise to a greater breadth of structure prediction, including docking and design application cases for antibody and antigen modeling. Here, we present an overview of current protocols for antibody and antigen modeling using Rosetta and exemplify those by detailed tutorials originally developed for a Rosetta workshop at Vanderbilt University. These tutorials cover antibody structure prediction, docking, and design and antigen design strategies, including the addition of glycans in Rosetta. We expect that these materials will allow novice users to apply Rosetta in their own projects for modeling antibodies and antigens.
Collapse
Affiliation(s)
- Clara
T. Schoeder
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Samuel Schmitz
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Jared Adolf-Bryfogle
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Alexander M. Sevy
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
| | - Jessica A. Finn
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Marion F. Sauer
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
| | - Nina G. Bozhanova
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Benjamin K. Mueller
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Amandeep K. Sangha
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Jaume Bonet
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jonathan H. Sheehan
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Georg Kuenze
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Institute
for Drug Discovery, University Leipzig Medical
School, 04103 Leipzig, Germany
| | - Brennica Marlow
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Shannon T. Smith
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Hope Woods
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Brian J. Bender
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Cristina E. Martina
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Diego del Alamo
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Pranav Kodali
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Alican Gulsevin
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - William R. Schief
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Bruno E. Correia
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - James E. Crowe
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Pediatrics, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Institute
for Drug Discovery, University Leipzig Medical
School, 04103 Leipzig, Germany
| | - Rocco Moretti
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| |
Collapse
|
27
|
Crystal structures of ORFV125 provide insight into orf virus-mediated inhibition of apoptosis. Biochem J 2021; 477:4527-4541. [PMID: 33175095 PMCID: PMC7719400 DOI: 10.1042/bcj20200776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Premature apoptosis of cells is a strategy utilized by multicellular organisms to counter microbial threats. Orf virus (ORFV) is a large double-stranded DNA virus belonging to the poxviridae. ORFV encodes for an apoptosis inhibitory protein ORFV125 homologous to B-cell lymphoma 2 or Bcl-2 family proteins, which has been shown to inhibit host cell encoded pro-apoptotic Bcl-2 proteins. However, the structural basis of apoptosis inhibition by ORFV125 remains to be clarified. We show that ORFV125 is able to bind to a range of peptides spanning the BH3 motif of human pro-apoptotic Bcl-2 proteins including Bax, Bak, Puma and Hrk with modest to weak affinity. We then determined the crystal structures of ORFV125 alone as well as bound to the highest affinity ligand Bax BH3 motif. ORFV125 adopts a globular Bcl-2 fold comprising 7 α-helices, and utilizes the canonical Bcl-2 binding groove to engage pro-apoptotic host cell Bcl-2 proteins. In contrast with a previously predicted structure, ORFV125 adopts a domain-swapped dimeric topology, where the α1 helix from one protomer is swapped into a neighbouring unit. Furthermore, ORFV125 differs from the conserved architecture of the Bcl-2 binding groove and instead of α3 helix forming one of the binding groove walls, ORFV125 utilizes an extended α2 helix that comprises the equivalent region of helix α3. This results in a subtle variation of previously observed dimeric Bcl-2 architectures in other poxvirus and human encoded Bcl-2 proteins. Overall, our results provide a structural and mechanistic basis for orf virus-mediated inhibition of host cell apoptosis.
Collapse
|
28
|
Role of Epstein-Barr Virus C Promoter Deletion in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13030561. [PMID: 33535665 PMCID: PMC7867172 DOI: 10.3390/cancers13030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The C promoter of Epstein–Barr virus is assumed to be important for B cell growth and transformation. However, we present evidence that promoter activity is not only unneeded for transformation but also that absence of the promoter increased the transformation activity of the virus. We found that the C promoter was lost in some Epstein–Barr virus-associated lymphoma specimens. Therefore, deletion of the promoter could partially account for the tumorigenesis of Epstein–Barr virus-associated lymphomas. Abstract The Epstein–Barr virus (EBV) is the cause of several malignancies, including diffuse large B cell lymphoma (DLBCL). We recently found that EBV genomes in EBV-positive cancer specimens have various deletions (Okuno et al. Nat Microbiol. 2019). Here, we focus on the deletion of C promoter (Cp), which transcribes EBV nuclear antigen (EBNA) genes in type III latency. The Cp deletion found in a DLBCL patient (332 bp) was introduced into EBV-BAC of the B95-8 strain. Interestingly, the dCp virus transformed B cells more efficiently than WT and revertant strains. Deletion of Cp also promoted tumor formation and severe pathogenicity in a mouse xenograft model. RNA sequencing and qRT–PCR analyses revealed that Cp transcription was undetectable in the dCp cells. Instead, transcription from the W promoter (Wp), an alternative promoter for EBNA, was activated in the dCp mutant. We also found that the expression of latent membrane protein 2A (LMP2A) was somehow induced in the dCp mutant. Double knockout of Cp and LMP2A indicated that LMP2A is crucial for B cell transformation, but the increased transformation induced by Cp deletion cannot be explained by LMP2A alone. We also tested the effect of an anti-apoptotic viral BCL2 homolog, BHRF1, because its expression was reportedly induced more efficiently by that of Wp. However, increased growth transformation via Cp deletion was not due to the BHRF1 gene. Taken together, the results indicated that deletion of a specific region in Cp increased in vitro transformation and the rate of progression of EBV-positive lymphoproliferative disorders in vivo. Our data suggest that genomic alteration not only of the host but also the virus promotes EBV-positive tumor generation and expansion, although the molecular mechanism underlying this phenomenon is still unclear. However, LMP2A and BHRF1 are not involved.
Collapse
|
29
|
Suraweera CD, Hinds MG, Kvansakul M. Poxviral Strategies to Overcome Host Cell Apoptosis. Pathogens 2020; 10:pathogens10010006. [PMID: 33374867 PMCID: PMC7823800 DOI: 10.3390/pathogens10010006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a form of cellular suicide initiated either via extracellular (extrinsic apoptosis) or intracellular (intrinsic apoptosis) cues. This form of programmed cell death plays a crucial role in development and tissue homeostasis in multicellular organisms and its dysregulation is an underlying cause for many diseases. Intrinsic apoptosis is regulated by members of the evolutionarily conserved B-cell lymphoma-2 (Bcl-2) family, a family that consists of pro- and anti-apoptotic members. Bcl-2 genes have also been assimilated by numerous viruses including pox viruses, in particular the sub-family of chordopoxviridae, a group of viruses known to infect almost all vertebrates. The viral Bcl-2 proteins are virulence factors and aid the evasion of host immune defenses by mimicking the activity of their cellular counterparts. Viral Bcl-2 genes have proved essential for the survival of virus infected cells and structural studies have shown that though they often share very little sequence identity with their cellular counterparts, they have near-identical 3D structures. However, their mechanisms of action are varied. In this review, we examine the structural biology, molecular interactions, and detailed mechanism of action of poxvirus encoded apoptosis inhibitors and how they impact on host–virus interactions to ultimately enable successful infection and propagation of viral infections.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
30
|
Epstein-Barr Virus: How Its Lytic Phase Contributes to Oncogenesis. Microorganisms 2020; 8:microorganisms8111824. [PMID: 33228078 PMCID: PMC7699388 DOI: 10.3390/microorganisms8111824] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr Virus (EBV) contributes to the development of lymphoid and epithelial malignancies. While EBV’s latent phase is more commonly associated with EBV-associated malignancies, there is increasing evidence that EBV’s lytic phase plays a role in EBV-mediated oncogenesis. The lytic phase contributes to oncogenesis primarily in two ways: (1) the production of infectious particles to infect more cells, and (2) the regulation of cellular oncogenic pathways, both cell autonomously and non-cell autonomously. The production of infectious particles requires the completion of the lytic phase. However, the regulation of cellular oncogenic pathways can be mediated by an incomplete (abortive) lytic phase, in which early lytic gene products contribute substantially, whereas late lytic products are largely dispensable. In this review, we discuss the evidence of EBV’s lytic phase contributing to oncogenesis and the role it plays in tumor formation and progression, as well as summarize known mechanisms by which EBV lytic products regulate oncogenic pathways. Understanding the contribution of EBV’s lytic phase to oncogenesis will help design ways to target it to treat EBV-associated malignancies.
Collapse
|
31
|
Telford M, Hughes DA, Juan D, Stoneking M, Navarro A, Santpere G. Expanding the Geographic Characterisation of Epstein-Barr Virus Variation through Gene-Based Approaches. Microorganisms 2020; 8:E1686. [PMID: 33138327 PMCID: PMC7692309 DOI: 10.3390/microorganisms8111686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
The Epstein-Barr Virus (EBV) infects the vast majority of human individuals worldwide (~90%) and is associated with several diseases, including different types of cancer and multiple sclerosis, which show wide variation in incidence among global geographical regions. Genetic variants in EBV genomic sequences have been used to determine the geographical structure of EBV isolates, but our understanding of EBV diversity remains highly incomplete. We generated sequences for 13 pivotal EBV genes derived from 103 healthy individuals, expanding current EBV diversity datasets with respect to both geographic coverage and number of isolates per region. These newly generated sequences were integrated with the more than 250 published EBV genomes, generating the most geographically comprehensive data set of EBV strains to date. We report remarkable variation in single-gene phylogenies that, when analysed together, show robust signals of population structure. Our results not only confirm known major global patterns of geographic variation, such as the clear separation of Asian isolates from the rest, and the intermixed relationships among African, European and Australian isolates, but yield novel phylogenetic relationships with previously unreported populations. We provide a better understanding of EBV's population structure in South America, Africa and, by the inclusion of Turkey and Georgia, we also gain insight into EBV diversity in Western Asia, a crossroads connecting Europe, Africa and Asia. In summary, our results provide a detailed world-wide characterisation of EBV genetic clusters, their enrichment in specific geographic regions, novel inter-population relationships, and a catalogue of geographically informative EBV genetic variants.
Collapse
Affiliation(s)
- Marco Telford
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Department of Experimental and Health Sciences (DCEXS), Barcelona Biomedical Research Park, 08003 Barcelona, Spain; (M.T.); (D.J.)
| | - David A. Hughes
- Bristol Population Health Science Institute, University of Bristol, Bristol BS8 2BN, UK;
| | - David Juan
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Department of Experimental and Health Sciences (DCEXS), Barcelona Biomedical Research Park, 08003 Barcelona, Spain; (M.T.); (D.J.)
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany;
| | - Arcadi Navarro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Department of Experimental and Health Sciences (DCEXS), Barcelona Biomedical Research Park, 08003 Barcelona, Spain; (M.T.); (D.J.)
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Sciences (ICREA), 08010 Barcelona, Spain
- Barcelonaβeta Brain Research Center and Pasqual Maragall Foundation, Carrer Wellington 30, 08005 Barcelona, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
32
|
Shindiapina P, Ahmed EH, Mozhenkova A, Abebe T, Baiocchi RA. Immunology of EBV-Related Lymphoproliferative Disease in HIV-Positive Individuals. Front Oncol 2020; 10:1723. [PMID: 33102204 PMCID: PMC7556212 DOI: 10.3389/fonc.2020.01723] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein-Bar virus (EBV) can directly cause lymphoproliferative disease (LPD), including AIDS-defining lymphomas such as Burkitt’s lymphoma and other non-Hodgkin lymphomas (NHL), as well as human immunodeficiency virus (HIV)-related Hodgkin lymphoma (HL). The prevalence of EBV in HL and NHL is elevated in HIV-positive individuals compared with the general population. Rates of incidence of AIDS-defining cancers have been declining in HIV-infected individuals since initiation of combination anti-retroviral therapy (cART) use in 1996. However, HIV-infected persons remain at an increased risk of cancers related to infections with oncogenic viruses. Proposed pathogenic mechanisms of HIV-related cancers include decreased immune surveillance, decreased ability to suppress infection-related oncogenic processes and a state of chronic inflammation marked by alteration of the cytokine profile and expanded numbers of cytotoxic T lymphocytes with down-regulated co-stimulatory molecules and increased expression of markers of senescence in the setting of treated HIV infection. Here we discuss the cooperation of EBV-infected B cell- and environment-associated factors that may contribute to EBV-related lymphomagenesis in HIV-infected individuals. Environment-derived lymphomagenic factors include impaired host adaptive and innate immune surveillance, cytokine dysregulation and a pro-inflammatory state observed in the setting of chronic, cART-treated HIV infection. B cell factors include distinctive EBV latency patterns and host protein expression in HIV-associated LPD, as well as B cell-stimulating factors derived from HIV infection. We review the future directions for expanding therapeutic approaches in targeting the viral and immune components of EBV LPD pathogenesis.
Collapse
Affiliation(s)
- Polina Shindiapina
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Elshafa H Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Anna Mozhenkova
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
33
|
Transient Unfolding and Long-Range Interactions in Viral BCL2 M11 Enable Binding to the BECN1 BH3 Domain. Biomolecules 2020; 10:biom10091308. [PMID: 32932757 PMCID: PMC7564285 DOI: 10.3390/biom10091308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/07/2023] Open
Abstract
Viral BCL2 proteins (vBCL2s) help to sustain chronic infection of host proteins to inhibit apoptosis and autophagy. However, details of conformational changes in vBCL2s that enable binding to BH3Ds remain unknown. Using all-atom, multiple microsecond-long molecular dynamic simulations (totaling 17 μs) of the murine γ-herpesvirus 68 vBCL2 (M11), and statistical inference techniques, we show that regions of M11 transiently unfold and refold upon binding of the BH3D. Further, we show that this partial unfolding/refolding within M11 is mediated by a network of hydrophobic interactions, which includes residues that are 10 Å away from the BH3D binding cleft. We experimentally validate the role of these hydrophobic interactions by quantifying the impact of mutating these residues on binding to the Beclin1/BECN1 BH3D, demonstrating that these mutations adversely affect both protein stability and binding. To our knowledge, this is the first study detailing the binding-associated conformational changes and presence of long-range interactions within vBCL2s.
Collapse
|
34
|
Suraweera CD, Anasir MI, Chugh S, Javorsky A, Impey RE, Hasan Zadeh M, Soares da Costa TP, Hinds MG, Kvansakul M. Structural insight into tanapoxvirus-mediated inhibition of apoptosis. FEBS J 2020; 287:3733-3750. [PMID: 32412687 DOI: 10.1111/febs.15365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 01/07/2023]
Abstract
Premature programmed cell death or apoptosis of cells is a strategy utilized by multicellular organisms to counter microbial threats. Tanapoxvirus (TANV) is a large double-stranded DNA virus belonging to the poxviridae that causes mild monkeypox-like infections in humans and primates. TANV encodes for a putative apoptosis inhibitory protein 16L. We show that TANV16L is able to bind to a range of peptides spanning the BH3 motif of human proapoptotic Bcl-2 proteins and is able to counter growth arrest of yeast induced by human Bak and Bax. We then determined the crystal structures of TANV16L bound to three identified interactors, Bax, Bim and Puma BH3. TANV16L adopts a globular Bcl-2 fold comprising 7 α-helices and utilizes the canonical Bcl-2 binding groove to engage proapoptotic host cell Bcl-2 proteins. Unexpectedly, TANV16L is able to adopt both a monomeric and a domain-swapped dimeric topology where the α1 helix from one protomer is swapped into a neighbouring unit. Despite adopting two different oligomeric forms, the canonical ligand binding groove in TANV16L remains unchanged from monomer to domain-swapped dimer. Our results provide a structural and mechanistic basis for tanapoxvirus-mediated inhibition of host cell apoptosis and reveal the capacity of Bcl-2 proteins to adopt differential oligomeric states whilst maintaining the canonical ligand binding groove in an unchanged state. DATABASE: Structural data are available in the Protein Data Bank (PDB) under the accession numbers 6TPQ, 6TQQ and 6TRR.
Collapse
Affiliation(s)
- Chathura D Suraweera
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Mohd Ishtiaq Anasir
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Srishti Chugh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Airah Javorsky
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Rachael E Impey
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Mohammad Hasan Zadeh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Mark G Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
35
|
Suraweera CD, Burton DR, Hinds MG, Kvansakul M. Crystal structures of the sheeppox virus encoded inhibitor of apoptosis SPPV14 bound to the proapoptotic BH3 peptides Hrk and Bax. FEBS Lett 2020; 594:2016-2026. [PMID: 32390192 DOI: 10.1002/1873-3468.13807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Programmed death of infected cells is used by multicellular organisms to counter viral infections. Sheeppox virus encodes for SPPV14, a potent inhibitor of Bcl-2-mediated apoptosis. We reveal the structural basis of apoptosis inhibition by determining crystal structures of SPPV14 bound to BH3 motifs of proapoptotic Bax and Hrk. The structures show that SPPV14 engages BH3 peptides using the canonical ligand-binding groove. Unexpectedly, Arg84 from SPPV14 forms an ionic interaction with the conserved Asp in the BH3 motif in a manner that replaces the canonical ionic interaction seen in almost all host Bcl-2:BH3 motif complexes. These results reveal the flexibility of virus-encoded Bcl-2 proteins to mimic key interactions from endogenous host signalling pathways to retain BH3 binding and prosurvival functionality.
Collapse
Affiliation(s)
- Chathura D Suraweera
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic., Australia
| | - Denis R Burton
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic., Australia
| | - Mark G Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Vic., Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic., Australia
| |
Collapse
|
36
|
Vilmen G, Glon D, Siracusano G, Lussignol M, Shao Z, Hernandez E, Perdiz D, Quignon F, Mouna L, Poüs C, Gruffat H, Maréchal V, Esclatine A. BHRF1, a BCL2 viral homolog, disturbs mitochondrial dynamics and stimulates mitophagy to dampen type I IFN induction. Autophagy 2020; 17:1296-1315. [PMID: 32401605 DOI: 10.1080/15548627.2020.1758416] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondria respond to many cellular functions and act as central hubs in innate immunity against viruses. This response is notably due to their role in the activation of interferon (IFN) signaling pathways through the activity of MAVS (mitochondrial antiviral signaling protein) present at the mitochondrial surface. Here, we report that the BHRF1 protein, a BCL2 homolog encoded by Epstein-Barr virus (EBV), inhibits IFNB/IFN-β induction by targeting the mitochondria. Indeed, we have demonstrated that BHRF1 expression modifies mitochondrial dynamics and stimulates DNM1L/Drp1-mediated mitochondrial fission. Concomitantly, we have shown that BHRF1 is pro-autophagic because it stimulates the autophagic flux by interacting with BECN1/Beclin 1. In response to the BHRF1-induced mitochondrial fission and macroautophagy/autophagy stimulation, BHRF1 drives mitochondrial network reorganization to form juxtanuclear mitochondrial aggregates known as mito-aggresomes. Mitophagy is a cellular process, which can specifically sequester and degrade mitochondria. Our confocal studies uncovered that numerous mitochondria are present in autophagosomes and acidic compartments using BHRF1-expressing cells. Moreover, mito-aggresome formation allows the induction of mitophagy and the accumulation of PINK1 at the mitochondria. As BHRF1 modulates the mitochondrial fate, we explored the effect of BHRF1 on innate immunity and showed that BHRF1 expression could prevent IFNB induction. Indeed, BHRF1 inhibits the IFNB promoter activation and blocks the nuclear translocation of IRF3 (interferon regulatory factor 3). Thus, we concluded that BHRF1 can counteract innate immunity activation by inducing fission of the mitochondria to facilitate their sequestration in mitophagosomes for degradation.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; BCL2: BCL2 apoptosis regulator; CARD: caspase recruitment domain; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CI: compaction index; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; DDX58/RIG-I: DExD/H-box helicase 58; DNM1L/Drp1: dynamin 1 like; EBSS: Earle's balanced salt solution; EBV: Epstein-Barr virus; ER: endoplasmic reticulum; EV: empty vector; GFP: green fluorescent protein; HEK: human embryonic kidney; IFN: interferon; IgG: immunoglobulin G; IRF3: interferon regulatory factor 3; LDHA: lactate dehydrogenase A; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MMP: mitochondrial membrane potential; MOM: mitochondrial outer membrane; PINK1: PTEN induced kinase 1; RFP: red fluorescent protein; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TOMM20: translocase of outer mitochondrial membrane 20; VDAC: voltage dependent anion channel.
Collapse
Affiliation(s)
- Géraldine Vilmen
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.,CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Damien Glon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Gabriel Siracusano
- CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Zhouwulin Shao
- CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Eva Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Daniel Perdiz
- INSERM UMR-S 1193, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Frédérique Quignon
- CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Lina Mouna
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Christian Poüs
- INSERM UMR-S 1193, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Biochimie-Hormonologie, APHP, Hôpitaux Universitaires Paris-Sud, Site Antoine Béclère, Clamart, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Vincent Maréchal
- CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
37
|
Song S, Jiang Z, Spezia-Lindner DE, Liang T, Xu C, Wang H, Tian Y, Bai Y. BHRF1 Enhances EBV Mediated Nasopharyngeal Carcinoma Tumorigenesis through Modulating Mitophagy Associated with Mitochondrial Membrane Permeabilization Transition. Cells 2020; 9:cells9051158. [PMID: 32392902 PMCID: PMC7290790 DOI: 10.3390/cells9051158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is a major contributor to nasopharyngeal carcinoma (NPC) tumorigenesis. Mitochondria have been shown to be a target for tumor viral invasion, and to mediate viral tumorigenesis. In this study, we detected that mitochondrial morphological changes in tumor tissues of NPC patients infected with EBV were accompanied by an elevated expression of BHRF1, an EBV encoded protein homologue to Bcl-2. High expression of BHRF1 in human NPC cell lines enhanced tumorigenesis and metastasis features. With BHRF1 localized to mitochondria, its expression induced cyclophlin D dependent mitochondrial membrane permeabilization transition (MMPT). The MMPT further modulated mitochondrial function, increased ROS production and activated mitophagy, leading to enhanced tumorigenesis. Altogether, our results indicated that EBV-encoded BHRF1 plays an important role in NPC tumorigenesis through regulating cyclophlin D dependent MMPT.
Collapse
Affiliation(s)
- Shujie Song
- School of Public Health, Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China;
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; (Z.J.); (T.L.)
- No. 3 Hospital, the Affiliated Hospital of Northwest University School of Medicine, Xi’an 710018, Shaanxi, China;
| | - Zhiying Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; (Z.J.); (T.L.)
| | - David Ethan Spezia-Lindner
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78258, USA;
| | - Ting Liang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; (Z.J.); (T.L.)
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78258, USA;
| | - Chang Xu
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China;
| | - Haifeng Wang
- No. 3 Hospital, the Affiliated Hospital of Northwest University School of Medicine, Xi’an 710018, Shaanxi, China;
| | - Ye Tian
- No. 3 Hospital, the Affiliated Hospital of Northwest University School of Medicine, Xi’an 710018, Shaanxi, China;
- Correspondence: (Y.T.); (Y.B.)
| | - Yidong Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; (Z.J.); (T.L.)
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78258, USA;
- Correspondence: (Y.T.); (Y.B.)
| |
Collapse
|
38
|
Fitzsimmons L, Cartlidge R, Chang C, Sejic N, Galbraith LCA, Suraweera CD, Croom-Carter D, Dewson G, Tierney RJ, Bell AI, Shannon-Lowe C, Herold MJ, Rickinson AB, Colman PM, Huang DCS, Strasser A, Kvansakul M, Rowe M, Kelly GL. EBV BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death Differ 2020; 27:1554-1568. [PMID: 31645677 PMCID: PMC7206097 DOI: 10.1038/s41418-019-0435-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV), which is ubiquitous in the adult population, is causally associated with human malignancies. Like many infectious agents, EBV has evolved strategies to block host cell death, including through expression of viral homologues of cellular BCL-2 pro-survival proteins (vBCL-2s), such as BHRF1. Small molecule inhibitors of the cellular pro-survival BCL-2 family proteins, termed 'BH3-mimetics', have entered clinical trials for blood cancers with the BCL-2 inhibitor venetoclax already approved for treatment of therapy refractory chronic lymphocytic leukaemia and acute myeloid leukaemia in the elderly. The generation of BH3-mimetics that could specifically target vBCL-2 proteins may be an attractive therapeutic option for virus-associated cancers, since these drugs would be expected to only kill virally infected cells with only minimal side effects on normal healthy tissues. To achieve this, a better understanding of the contribution of vBCL-2 proteins to tumorigenesis and insights into their biochemical functions is needed. In the context of Burkitt lymphoma (BL), BHRF1 expression conferred strong resistance to diverse apoptotic stimuli. Furthermore, BHRF1 expression in mouse haematopoietic stem and progenitor cells accelerated MYC-induced lymphoma development in a model of BL. BHRF1 interacts with the cellular pro-apoptotic BCL-2 proteins, BIM, BID, PUMA and BAK, but its capability to inhibit apoptosis could not be mapped solely to one of these interactions, suggesting plasticity is a key feature of BHRF1. Site-directed mutagenesis revealed a site in BHRF1 that was critical for its interaction with PUMA and blocking DNA-damage-induced apoptosis, identifying a potentially therapeutically targetable vulnerability in BHRF1.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Rachel Cartlidge
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Catherine Chang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
| | - Nenad Sejic
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura C A Galbraith
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Chathura D Suraweera
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Grant Dewson
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Rosemary J Tierney
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew I Bell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Clare Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marco J Herold
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Alan B Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peter M Colman
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Martin Rowe
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
39
|
The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Biomolecules 2020; 10:biom10010128. [PMID: 31940915 PMCID: PMC7022251 DOI: 10.3390/biom10010128] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsic apoptosis, the response to intracellular cell death stimuli, is regulated by the interplay of the B-cell lymphoma 2 (Bcl-2) family and their membrane interactions. Bcl-2 proteins mediate a number of processes including development, homeostasis, autophagy, and innate and adaptive immune responses and their dysregulation underpins a host of diseases including cancer. The Bcl-2 family is characterized by the presence of conserved sequence motifs called Bcl-2 homology motifs, as well as a transmembrane region, which form the interaction sites and intracellular location mechanism, respectively. Bcl-2 proteins have been recognized in the earliest metazoans including Porifera (sponges), Placozoans, and Cnidarians (e.g., Hydra). A number of viruses have gained Bcl-2 homologs and subvert innate immunity and cellular apoptosis for their replication, but they frequently have very different sequences to their host Bcl-2 analogs. Though most mechanisms of apoptosis initiation converge on activation of caspases that destroy the cell from within, the numerous gene insertions, deletions, and duplications during evolution have led to a divergence in mechanisms of intrinsic apoptosis. Currently, the action of the Bcl-2 family is best understood in vertebrates and nematodes but new insights are emerging from evolutionarily earlier organisms. This review focuses on the mechanisms underpinning the activity of Bcl-2 proteins including their structures and interactions, and how they have changed over the course of evolution.
Collapse
|
40
|
Gallo A, Miele M, Badami E, Conaldi PG. Molecular and cellular interplay in virus-induced tumors in solid organ recipients. Cell Immunol 2019. [DOI: 10.1016/j.cellimm.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Epstein-Barr Virus and Innate Immunity: Friends or Foes? Microorganisms 2019; 7:microorganisms7060183. [PMID: 31238570 PMCID: PMC6617214 DOI: 10.3390/microorganisms7060183] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus (EBV) successfully persists in the vast majority of adults but causes lymphoid and epithelial malignancies in a small fraction of latently infected individuals. Innate immunity is the first-line antiviral defense, which EBV has to evade in favor of its own replication and infection. EBV uses multiple strategies to perturb innate immune signaling pathways activated by Toll-like, RIG-I-like, NOD-like, and AIM2-like receptors as well as cyclic GMP-AMP synthase. EBV also counteracts interferon production and signaling, including TBK1-IRF3 and JAK-STAT pathways. However, activation of innate immunity also triggers pro-inflammatory response and proteolytic cleavage of caspases, both of which exhibit proviral activity under some circumstances. Pathogenic inflammation also contributes to EBV oncogenesis. EBV activates NFκB signaling and induces pro-inflammatory cytokines. Through differential modulation of the proviral and antiviral roles of caspases and other host factors at different stages of infection, EBV usurps cellular programs for death and inflammation to its own benefits. The outcome of EBV infection is governed by a delicate interplay between innate immunity and EBV. A better understanding of this interplay will instruct prevention and intervention of EBV-associated cancers.
Collapse
|
42
|
Tatfi M, Hermine O, Suarez F. Epstein-Barr Virus (EBV)-Related Lymphoproliferative Disorders in Ataxia Telangiectasia: Does ATM Regulate EBV Life Cycle? Front Immunol 2019; 9:3060. [PMID: 30662441 PMCID: PMC6329310 DOI: 10.3389/fimmu.2018.03060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is an ubiquitous herpesvirus with a tropism for epithelial cells (where lytic replication occurs) and B-cells (where latency is maintained). EBV persists throughout life and chronic infection is asymptomatic in most individuals. However, immunocompromised patients may be unable to control EBV infection and are at increased risk of EBV-related malignancies, such as diffuse large B-cell lymphomas or Hodgkin's lymphomas. Ataxia telangiectasia (AT) is a primary immunodeficiency caused by mutations in the ATM gene and associated with an increased incidence of cancers, particularly EBV-associated lymphomas. However, the immune deficiency present in AT patients is often too modest to explain the increased incidence of EBV-related malignancies. The ATM defect in these patients could therefore impair the normal regulation of EBV latency in B-cells, thus promoting lymphomagenesis. This suggests that ATM plays a role in the normal regulation of EBV latency. ATM is a serine/threonine kinase involved in multiple cell functions such as DNA damage repair, cell cycle regulation, oxidative stress, and gene expression. ATM is implicated in the lytic cycle of EBV, where EBV uses the activation of DNA damage repair pathway to promote its own replication. ATM regulates the latent cycle of the EBV-related herpesvirus KSHV and MHV68. However, the contribution of ATM in the control of the latent cycle of EBV is not yet known. A better understanding of the regulation of EBV latency could be harnessed in the conception of novel therapeutic strategies in AT and more generally in all ATM deficient EBV-related malignancies.
Collapse
Affiliation(s)
| | | | - Felipe Suarez
- INSERM U1163/CNRS ERL8254 - Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, IMAGINE Institute, Paris, France
| |
Collapse
|
43
|
Rosetta FunFolDes - A general framework for the computational design of functional proteins. PLoS Comput Biol 2018; 14:e1006623. [PMID: 30452434 PMCID: PMC6277116 DOI: 10.1371/journal.pcbi.1006623] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/03/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023] Open
Abstract
The robust computational design of functional proteins has the potential to deeply impact translational research and broaden our understanding of the determinants of protein function and stability. The low success rates of computational design protocols and the extensive in vitro optimization often required, highlight the challenge of designing proteins that perform essential biochemical functions, such as binding or catalysis. One of the most simplistic approaches for the design of function is to adopt functional motifs in naturally occurring proteins and transplant them to computationally designed proteins. The structural complexity of the functional motif largely determines how readily one can find host protein structures that are "designable", meaning that are likely to present the functional motif in the desired conformation. One promising route to enhance the "designability" of protein structures is to allow backbone flexibility. Here, we present a computational approach that couples conformational folding with sequence design to embed functional motifs into heterologous proteins-Rosetta Functional Folding and Design (FunFolDes). We performed extensive computational benchmarks, where we observed that the enforcement of functional requirements resulted in designs distant from the global energetic minimum of the protein. An observation consistent with several experimental studies that have revealed function-stability tradeoffs. To test the design capabilities of FunFolDes we transplanted two viral epitopes into distant structural templates including one de novo "functionless" fold, which represent two typical challenges where the designability problem arises. The designed proteins were experimentally characterized showing high binding affinities to monoclonal antibodies, making them valuable candidates for vaccine design endeavors. Overall, we present an accessible strategy to repurpose old protein folds for new functions. This may lead to important improvements on the computational design of proteins, with structurally complex functional sites, that can perform elaborate biochemical functions related to binding and catalysis.
Collapse
|
44
|
Tornesello ML, Annunziata C, Tornesello AL, Buonaguro L, Buonaguro FM. Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers. Cancers (Basel) 2018; 10:cancers10070213. [PMID: 29932446 PMCID: PMC6071257 DOI: 10.3390/cancers10070213] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
Viral oncogenesis is a multistep process largely depending on the complex interplay between viruses and host factors. The oncoviruses are capable of subverting the cell signaling machinery and metabolic pathways and exploit them for infection, replication, and persistence. Several viral oncoproteins are able to functionally inactivate the tumor suppressor p53, causing deregulated expression of many genes orchestrated by p53, such as those involved in apoptosis, DNA stability, and cell proliferation. The Epstein–Barr virus (EBV) BZLF1, the high-risk human papillomavirus (HPV) E6, and the hepatitis C virus (HCV) NS5 proteins have shown to directly bind to and degrade p53. The hepatitis B virus (HBV) HBx and the human T cell lymphotropic virus-1 (HTLV-1) Tax proteins inhibit p53 activity through the modulation of p300/CBP nuclear factors, while the Kaposi’s sarcoma herpesvirus (HHV8) LANA, vIRF-1 and vIRF-3 proteins have been shown to destabilize the oncosuppressor, causing a decrease in its levels in the infected cells. The large T antigen of the Merkel cell polyomavirus (MCPyV) does not bind to p53 but significantly reduces p53-dependent transcription. This review describes the main molecular mechanisms involved in the interaction between viral oncoproteins and p53-related pathways as well as in the development of therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| | - Clorinda Annunziata
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| | - Luigi Buonaguro
- Cancer Immunomodulation Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| |
Collapse
|
45
|
The Immunomodulatory Capacity of an Epstein-Barr Virus Abortive Lytic Cycle: Potential Contribution to Viral Tumorigenesis. Cancers (Basel) 2018; 10:cancers10040098. [PMID: 29601503 PMCID: PMC5923353 DOI: 10.3390/cancers10040098] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr virus (EBV) is characterized by a bipartite life cycle in which latent and lytic stages are alternated. Latency is compatible with long-lasting persistency within the infected host, while lytic expression, preferentially found in oropharyngeal epithelial tissue, is thought to favor host-to-host viral dissemination. The clinical importance of EBV relates to its association with cancer, which we think is mainly a consequence of the latency/persistency mechanisms. However, studies in murine models of tumorigenesis/lymphomagenesis indicate that the lytic cycle also contributes to cancer formation. Indeed, EBV lytic expression is often observed in established cell lines and tumor biopsies. Within the lytic cycle EBV expresses a handful of immunomodulatory (BCRF1, BARF1, BNLF2A, BGLF5 & BILF1) and anti-apoptotic (BHRF1 & BALF1) proteins. In this review, we discuss the evidence supporting an abortive lytic cycle in which these lytic genes are expressed, and how the immunomodulatory mechanisms of EBV and related herpesviruses Kaposi Sarcoma herpesvirus (KSHV) and human cytomegalovirus (HCMV) result in paracrine signals that feed tumor cells. An abortive lytic cycle would reconcile the need of lytic expression for viral tumorigenesis without relaying in a complete cycle that would induce cell lysis to release the newly formed infective viral particles.
Collapse
|
46
|
The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It. Cancers (Basel) 2018; 10:cancers10030083. [PMID: 29558443 PMCID: PMC5876658 DOI: 10.3390/cancers10030083] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted condition, in which a senescent cell begins dividing in an irregular manner due to various factors such as DNA damage, growth factors and inflammation. Inflammation is not typically discussed as carcinogenic; however, a significant percentage of cancers arise from chronic microbial infections and damage brought on by chronic inflammation. A hallmark cancer-inducing microbe is Helicobacter pylori and its causation of peptic ulcers and potentially gastric cancer. This review discusses the recent developments in understanding microbes in health and disease and their potential role in the progression of cancer. To date, microbes can be linked to almost every cancer, including colon, pancreatic, gastric, and even prostate. We discuss the known mechanisms by which these microbes can induce cancer growth and development and how inflammatory cells may contribute to cancer progression. We also discuss new treatments that target the chronic inflammatory conditions and their associated cancers, and the impact microbes have on treatment success. Finally, we examine common dietary misconceptions in relation to microbes and cancer and how to avoid getting caught up in the misinterpretation and over inflation of the results.
Collapse
|
47
|
Banjara S, Mao J, Ryan TM, Caria S, Kvansakul M. Grouper iridovirus GIV66 is a Bcl-2 protein that inhibits apoptosis by exclusively sequestering Bim. J Biol Chem 2018; 293:5464-5477. [PMID: 29483196 DOI: 10.1074/jbc.ra117.000591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/21/2018] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death or apoptosis is a critical mechanism for the controlled removal of damaged or infected cells, and proteins of the Bcl-2 family are important arbiters of this process. Viruses have been shown to encode functional and structural homologs of Bcl-2 to counter premature host-cell apoptosis and ensure viral proliferation or survival. Grouper iridovirus (GIV) is a large DNA virus belonging to the Iridoviridae family and harbors GIV66, a putative Bcl-2-like protein and mitochondrially localized apoptosis inhibitor. However, the molecular and structural basis of GIV66-mediated apoptosis inhibition is currently not understood. To gain insight into GIV66's mechanism of action, we systematically evaluated its ability to bind peptides spanning the BH3 domain of pro-apoptotic Bcl-2 family members. Our results revealed that GIV66 harbors an unusually high level of specificity for pro-apoptotic Bcl-2 and displays affinity only for Bcl-2-like 11 (Bcl2L11 or Bim). Using crystal structures of both apo-GIV66 and GIV66 bound to the BH3 domain from Bim, we unexpectedly found that GIV66 forms dimers via an interface that results in occluded access to the canonical Bcl-2 ligand-binding groove, which breaks apart upon Bim binding. This observation suggests that GIV66 dimerization may affect GIV66's ability to bind host pro-death Bcl-2 proteins and enables highly targeted virus-directed suppression of host apoptosis signaling. Our findings provide a mechanistic understanding for the potent anti-apoptotic activity of GIV66 by identifying it as the first single-specificity, pro-survival Bcl-2 protein and identifying a pivotal role of Bim in GIV-mediated inhibition of apoptosis.
Collapse
Affiliation(s)
- Suresh Banjara
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Jiahao Mao
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Timothy M Ryan
- SAXS/WAXS, Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Sofia Caria
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Marc Kvansakul
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| |
Collapse
|
48
|
Cavallari I, Scattolin G, Silic-Benussi M, Raimondi V, D'Agostino DM, Ciminale V. Mitochondrial Proteins Coded by Human Tumor Viruses. Front Microbiol 2018; 9:81. [PMID: 29467726 PMCID: PMC5808139 DOI: 10.3389/fmicb.2018.00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
Viruses must exploit the cellular biosynthetic machinery and evade cellular defense systems to complete their life cycles. Due to their crucial roles in cellular bioenergetics, apoptosis, innate immunity and redox balance, mitochondria are important functional targets of many viruses, including tumor viruses. The present review describes the interactions between mitochondria and proteins coded by the human tumor viruses human T-cell leukemia virus type 1, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, human hepatitis viruses B and C, and human papillomavirus, and highlights how these interactions contribute to viral replication, persistence and transformation.
Collapse
Affiliation(s)
| | - Gloria Scattolin
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | | | | | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV-IRRCS, Padova, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
49
|
Fitzsimmons L, Boyce AJ, Wei W, Chang C, Croom-Carter D, Tierney RJ, Herold MJ, Bell AI, Strasser A, Kelly GL, Rowe M. Coordinated repression of BIM and PUMA by Epstein-Barr virus latent genes maintains the survival of Burkitt lymphoma cells. Cell Death Differ 2018; 25:241-254. [PMID: 28960205 PMCID: PMC5762840 DOI: 10.1038/cdd.2017.150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 12/26/2022] Open
Abstract
While the association of Epstein-Barr virus (EBV) with Burkitt lymphoma (BL) has long been recognised, the precise role of the virus in BL pathogenesis is not fully resolved. EBV can be lost spontaneously from some BL cell lines, and these EBV-loss lymphoma cells reportedly have a survival disadvantage. Here we have generated an extensive panel of EBV-loss clones from multiple BL backgrounds and examined their phenotype comparing them to their isogenic EBV-positive counterparts. We report that, while loss of EBV from BL cells is rare, it is consistently associated with an enhanced predisposition to undergo apoptosis and reduced tumorigenicity in vivo. Importantly, reinfection of EBV-loss clones with EBV, but surprisingly not transduction with individual BL-associated latent viral genes, restored protection from apoptosis. Expression profiling and functional analysis of apoptosis-related proteins and transcripts in BL cells revealed that EBV inhibits the upregulation of the proapoptotic BH3-only proteins, BIM and PUMA. We conclude that latent EBV genes cooperatively enhance the survival of BL cells by suppression of the intrinsic apoptosis pathway signalling via inhibition of the potent apoptosis initiators, BIM and PUMA.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Andrew J Boyce
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Wenbin Wei
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Catherine Chang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Rosemary J Tierney
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Marco J Herold
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew I Bell
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Andreas Strasser
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Martin Rowe
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| |
Collapse
|
50
|
Lapelosa M. Conformational dynamics and free energy of BHRF1 binding to Bim BH3. Biophys Chem 2018; 232:22-28. [DOI: 10.1016/j.bpc.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/10/2023]
|