1
|
Wang Y, Zhang C, Zhao X, Qiu Y, Wang X, Zhao C, Qi Y, Wan Q, Chen L. The nuclear pore protein Nup2 is essential for growth and development, stress response, pathogenicity and deoxynivalenol biosynthesis in Fusarium graminearum. PEST MANAGEMENT SCIENCE 2025; 81:44-54. [PMID: 39253892 DOI: 10.1002/ps.8404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/16/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Wheat is an important grain crop that has been under serious threat from Fusarium graminearum. Nup2, a member of the nuclear pore complex, plays an important role in regulating eukaryotic nuclear protein transport and participates in gene regulation. Dissecting the function of nuclear pore proteins in pathogenic fungi may provide effective targets for novel fungicides. RESULTS Mutants exhibited nutritional growth defects, asexual/sexual developmental abnormalities. Deficiency of FgNup2 resulted in increased resistance of Fusarium graminearum to cell wall disruptors and increased sensitivity to metal ions. Pathogenicity analyses showed that the mutant was significantly less virulent on flowering wheat ears, consistent with the observed decrease in deoxynivalenol (DON) production. Furthermore, we showed that FgNup2 interacts synergistically with FgTri6, a transcription factor of the TRI family, to regulate the expression of toxin-producing genes, which, in turn, affects the biosynthesis of DON and related toxins. CONCLUSION This study revealed that FgNup2 plays important roles in the growth and development, cell wall integrity, stress response, pathogenicity, and DON synthesis of F. graminearum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaxuan Wang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chengqi Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiaozhen Zhao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuxin Qiu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiaoyan Wang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chenzhong Zhao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yongxia Qi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qiong Wan
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Li Chen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Sun S, Yu D, Guo M, Tang M, Yan Z, Sun W, Wu A. The transcription factor FgSfp1 orchestrates mycotoxin deoxynivalenol biosynthesis in Fusarium graminearum. Commun Biol 2024; 7:1584. [PMID: 39604708 PMCID: PMC11603076 DOI: 10.1038/s42003-024-07265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Fusarium graminearum (F. graminearum) and its derivative mycotoxin deoxynivalenol (DON) are highly concerned with food safety and sustainability worldwide. Although several transcription factors (TFs) had been elucidated, molecular mechanism participates in DON biosynthesis regulation remains largely unrevealed. Here, we first characterized a zinc finger-contained TF in F. graminearum, FgSfp1, which is indispensable for DON production since its depletion resulting in a 95.4% DON yielding reduction. Interestingly, contrast to previous knowledge, all TRI-cluster genes were abnormally upregulated in ΔFgSfp1 while Tri proteins abundance rationally decreased simultaneously. Further evidence show FgSfp1 could coordinate genetic translation pace by manipulating ribosomal biogenesis process. Specifically, FgSfp1-depletion leads to ribosome biogenesis assembly factor (RiBi) expression attenuation along with DON precursor acetyl-CoA synthase reduction since FgSfp1 actively interacts with RNA 2'-O-methylation enzyme FgNop1 revealed by Bi-FC. It subsequently influences mRNA translation pace. In conclusion, we elucidated that the FgSfp1 orchestrates DON biosynthesis via participating RNA posttranscriptional modification for ribosomal RNA maturation, offering insights into the DON biosynthesis regulation. Ultimately, this TF might be a key regulator for DON contamination control in the whole food chain.
Collapse
Affiliation(s)
- Shuting Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dianzhen Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingzhu Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Muhai Tang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Yan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aibo Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Kato-Noguchi H, Kato M. Defense Molecules of the Invasive Plant Species Ageratum conyzoides. Molecules 2024; 29:4673. [PMID: 39407602 PMCID: PMC11478290 DOI: 10.3390/molecules29194673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Ageratum conyzoides L. is native to Tropical America, and it has naturalized in many other tropical, subtropical, and temperate countries in South America, Central and Southern Africa, South and East Asia, Eastern Austria, and Europe. The population of the species has increased dramatically as an invasive alien species, and it causes significant problems in agriculture and natural ecosystems. The life history traits of Ageratum conyzoides, such as its short life cycle, early reproductive maturity, prolific seed production, and high adaptive ability to various environmental conditions, may contribute to its naturalization and increasing population. Possible evidence of the molecules involved in the defense of Ageratum conyzoides against its natural enemies, such as herbivore insects and fungal pathogens, and the allelochemicals involved in its competitive ability against neighboring plant species has been accumulated in the literature. The volatiles, essential oils, extracts, residues, and/or rhizosphere soil of Ageratum conyzoides show insecticidal, fungicidal, nematocidal, and allelopathic activity. The pyrrolizidine alkaloids lycopsamine and echinatine, found in the species, are highly toxic and show insecticidal activity. Benzopyran derivatives precocenes I and II show inhibitory activity against insect juvenile hormone biosynthesis and trichothecene mycotoxin biosynthesis. A mixture of volatiles emitted from Ageratum conyzoides, such as β-caryophyllene, β-bisabolene, and β-farnesene, may work as herbivore-induced plant volatiles, which are involved in the indirect defense function against herbivore insects. Flavonoids, such as nobiletin, eupalestin, 5'-methoxynobiletin, 5,6,7,3',4',5'-hexamethoxyflavone, and 5,6,8,3,4',5'-hexamethoxyflavone, show inhibitory activity against the spore germination of pathogenic fungi. The benzoic acid and cinnamic acid derivatives found in the species, such as protocatechuic acid, gallic acid, p-coumaric acid, p-hydroxybenzoic acid, and ferulic acid, may act as allelopathic agents, causing the germination and growth inhibition of competitive plant species. These molecules produced by Ageratum conyzoides may act as defense molecules against its natural enemies and as allelochemicals against neighboring plant species, and they may contribute to the naturalization of the increasing population of Ageratum conyzoides in new habitats as an invasive plant species. This article presents the first review focusing on the defense function and allelopathy of Ageratum conyzoides.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | | |
Collapse
|
4
|
Chen W, Li X, Wei L, Chen B, Han C, Duan Y, Chen C. Functional Differentiation of the Succinate Dehydrogenase Subunit SdhC Governs the Sensitivity to SDHI Fungicides, ROS Homeostasis, and Pathogenicity in Fusarium asiaticum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10314-10327. [PMID: 38661317 DOI: 10.1021/acs.jafc.4c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Succinate dehydrogenase (SDH) is an integral component of the tricarboxylic acid cycle (TCA) and respiratory electron transport chain (ETC), targeted by succinate dehydrogenase inhibitors (SDHIs). Fusarium asiaticum is a prominent phytopathogen causing Fusarium head blight (FHB) on wheat. Here, we characterized the functions of the FaSdhA, FaSdhB, FaSdhC1, FaSdhC2, and FaSdhD subunits. Deletion of FaSdhA, FaSdhB, or FaSdhD resulted in significant growth defects in F. asiaticum. The FaSdhC1 or FaSdhC2 deletion mutants exhibited substantial reductions in fungal growth, conidiation, virulence, and reactive oxygen species (ROS). The FaSdhC1 expression was significantly induced by pydiflumetofen (PYD). The ΔFaSdhC1 mutant displayed hypersensitivity to SDHIs, whereas the ΔFaSdhC2 mutant exhibited resistance against most SDHIs. The transmembrane domains of FaSdhC1 are essential for regulating mycelial growth, virulence, and sensitivity to SDHIs. These findings provided valuable insights into how the two SdhC paralogues regulated the functional integrity of SDH, ROS homeostasis, and the sensitivity to SDHIs in phytopathogenic fungi.
Collapse
Affiliation(s)
- Wenchan Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Xiujuan Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Lingling Wei
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Bin Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Chenyang Han
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
5
|
Huang P, Yu X, Liu H, Ding M, Wang Z, Xu JR, Jiang C. Regulation of TRI5 expression and deoxynivalenol biosynthesis by a long non-coding RNA in Fusarium graminearum. Nat Commun 2024; 15:1216. [PMID: 38332031 PMCID: PMC10853542 DOI: 10.1038/s41467-024-45502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Deoxynivalenol (DON) is the most frequently detected mycotoxin in cereal grains and processed food or feed. Two transcription factors, Tri6 and Tri10, are essential for DON biosynthesis in Fusarium graminearum. In this study we conduct stranded RNA-seq analysis with tri6 and tri10 mutants and show that Tri10 acts as a master regulator controlling the expression of sense and antisense transcripts of TRI6 and over 450 genes with diverse functions. TRI6 is more specific for regulating TRI genes although it negatively regulates TRI10. Two other TRI genes, including TRI5 that encodes a key enzyme for DON biosynthesis, also have antisense transcripts. Both Tri6 and Tri10 are essential for TRI5 expression and for suppression of antisense-TRI5. Furthermore, we identify a long non-coding RNA (named RNA5P) that is transcribed from the TRI5 promoter region and is also regulated by Tri6 and Tri10. Deletion of RNA5P by replacing the promoter region of TRI5 with that of TRI12 increases TRI5 expression and DON biosynthesis, indicating that RNA5P suppresses TRI5 expression. However, ectopic constitutive overexpression of RNA5P has no effect on DON biosynthesis and TRI5 expression. Nevertheless, elevated expression of RNA5P in situ reduces TRI5 expression and DON production. Our results indicate that TRI10 and TRI6 regulate each other's expression, and both are important for suppressing the expression of RNA5P, a long non-coding RNA with cis-acting inhibitory effects on TRI5 expression and DON biosynthesis in F. graminearum.
Collapse
Affiliation(s)
- Panpan Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiao Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingyu Ding
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Cong Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Gao D, Abdullah S, Baldwin T, Caspersen A, Williams E, Carlson A, Petersen M, Hu G, Klos KE, Bregitzer P. Agrobacterium-mediated transfer of the Fusarium graminearum Tri6 gene into barley using mature seed-derived shoot tips as explants. PLANT CELL REPORTS 2024; 43:40. [PMID: 38244048 PMCID: PMC10799836 DOI: 10.1007/s00299-023-03129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024]
Abstract
KEY MESSAGE We transferred the Tri6 gene into the elite barley GemCraft via new transformation method through shoot organogenesis and identified the rearrangements of transgenes and phenotypic variations in the transgenic plants. Despite its agronomic and economic importance, barley transformation is still very challenging for many elite varieties. In this study, we used direct shoot organogenesis to transform the elite barley cultivar GemCraft with the RNAi constructs containing Tri6 gene of Fusarium graminearum, which causes fusarium head blight (FHB). We isolated 4432 shoot tips and co-cultured these explants with Agrobacterium tumefaciens. A total of 25 independent T0 transgenic plants were generated including 15 events for which transgene-specific PCR amplicons were observed. To further determine the presence of transgenes, the T1 progenies of all 15 T0 plants were analyzed, and the expected PCR products were obtained in 10 T1 lines. Droplet digital (dd) PCR analysis revealed various copy numbers of transgenes in the transgenic plants. We determined the insertion site of transgenes using long-read sequencing data and observed the rearrangements of transgenes. We found phenotypic variations in both T1 and T2 generation plants. FHB disease was evaluated under growth chamber conditions, but no significant differences in disease severity or deoxynivalenol accumulation were observed between two Tri6 transgenic lines and the wildtype. Our results demonstrate the feasibility of the shoot tip transformation and may open the door for applying this system for genetic improvement and gene function research in other barley genotypes.
Collapse
Affiliation(s)
- Dongying Gao
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA.
| | - Sidrat Abdullah
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Ann Caspersen
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| | - Edward Williams
- Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Middleton, WI, 53562, USA
| | - Alvar Carlson
- Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Middleton, WI, 53562, USA
| | - Mike Petersen
- Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Middleton, WI, 53562, USA
| | - Gongshe Hu
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| | - Kathy Esvelt Klos
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| | - Phil Bregitzer
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| |
Collapse
|
7
|
Wang M, Wu N, Wang H, Liu C, Chen Q, Xu T, Chen Y, Zhao Y, Ma Z. Overproduction of mycotoxin biosynthetic enzymes triggers Fusarium toxisome-shaped structure formation via endoplasmic reticulum remodeling. PLoS Pathog 2024; 20:e1011913. [PMID: 38166144 PMCID: PMC10786393 DOI: 10.1371/journal.ppat.1011913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
Mycotoxin deoxynivalenol (DON) produced by the Fusarium graminearum complex is highly toxic to animal and human health. During DON synthesis, the endoplasmic reticulum (ER) of F. graminearum is intensively reorganized, from thin reticular structure to thickened spherical and crescent structure, which was referred to as "DON toxisome". However, the underlying mechanism of how the ER is reorganized into toxisome remains unknown. In this study, we discovered that overproduction of ER-localized DON biosynthetic enzyme Tri4 or Tri1, or intrinsic ER-resident membrane proteins FgHmr1 and FgCnx was sufficient to induce toxisome-shaped structure (TSS) formation under non-toxin-inducing conditions. Moreover, heterologous overexpression of Tri1 and Tri4 proteins in non-DON-producing fungi F. oxysporum f. sp. lycopersici and F. fujikuroi also led to TSS formation. In addition, we found that the high osmolarity glycerol (HOG), but not the unfolded protein response (UPR) signaling pathway was involved in the assembly of ER into TSS. By using toxisome as a biomarker, we screened and identified a novel chemical which exhibited high inhibitory activity against toxisome formation and DON biosynthesis, and inhibited Fusarium growth species-specifically. Taken together, this study demonstrated that the essence of ER remodeling into toxisome structure is a response to the overproduction of ER-localized DON biosynthetic enzymes, providing a novel pathway for management of mycotoxin contamination.
Collapse
Affiliation(s)
- Minhui Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ningjie Wu
- Zhejiang Research Institute of Chemical Industry, Hangzhou, People’s Republic of China
| | - Huiyuan Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chang Liu
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qiaowan Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Tianming Xu
- Zhejiang Research Institute of Chemical Industry, Hangzhou, People’s Republic of China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Youfu Zhao
- Irrigated Agriculture Research and Extension Center, Department of Plant Pathology, Washington State University, Prosser, Washington, United States of America
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
Xu C, Wang J, Zhang Y, Luo Y, Zhao Y, Chen Y, Ma Z. The transcription factor FgStuA regulates virulence and mycotoxin biosynthesis via recruiting the SAGA complex in Fusarium graminearum. THE NEW PHYTOLOGIST 2023; 240:2455-2467. [PMID: 37799006 DOI: 10.1111/nph.19297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023]
Abstract
The conserved Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex controls eukaryotic transcription by modifying acetylation of histones. However, the mechanisms for this complex in regulating the transcription of target-specific genes remain largely unknown in phytopathogenic fungi. A filamentous fungal-specific transcription factor FgStuA was identified to interact with the SAGA complex physically. The coordinative mechanisms of FgStuA with the SAGA complex in regulating secondary metabolism and virulence were investigated in Fusarium graminearum with genetic, biochemical and molecular techniques. The transcription factor FgStuA binds to a 7-bp cis-element (BVTGCAK) of its target gene promoter. Under mycotoxin deoxynivalenol (DON) induction conditions, FgStuA recruits the SAGA complex into the promoter of TRI6, a core regulator of the DON biosynthesis gene cluster, leading to enhanced transcription of TRI6. During this process, we found that FgStuA is subject to acetylation by the SAGA complex, and acetylation of FgStuA plays a critical role for its enrichment in the TRI6 promoter. In addition, FgStuA together with the SAGA complex modulates fungal virulence. This study uncovers a novel regulatory mechanism of a transcription factor, which recruits and interacts with the SAGA complex to activate specific gene expression in pathogenic fungi.
Collapse
Affiliation(s)
- Chaoyun Xu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jing Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Yueqi Zhang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Youfu Zhao
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, 99350, USA
| | - Yun Chen
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
9
|
Shostak K, González-Peña Fundora D, Blackman C, Witte T, Sproule A, Overy D, Eranthodi A, Thakor N, Foroud NA, Subramaniam R. Epistatic Relationship between MGV1 and TRI6 in the Regulation of Biosynthetic Gene Clusters in Fusarium graminearum. J Fungi (Basel) 2023; 9:816. [PMID: 37623587 PMCID: PMC10455978 DOI: 10.3390/jof9080816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Genetic studies have shown that the MAP kinase MGV1 and the transcriptional regulator TRI6 regulate many of the same biosynthetic gene clusters (BGCs) in Fusarium graminearum. This study sought to investigate the relationship between MGV1 and TRI6 in the regulatory hierarchy. Transgenic F. graminearum strains constitutively expressing MGV1 and TRI6 were generated to address both independent and epistatic regulation of BGCs by MGV1 and TRI6. We performed a comparative transcriptome analysis between axenic cultures grown in nutrient-rich and secondary metabolite-inducing conditions. The results indicated that BGCs regulated independently by Mgv1 included genes of BGC52, whereas genes uniquely regulated by TRI6 included the gene cluster (BGC49) that produces gramillin. To understand the epistatic relationship between MGV1 and TRI6, CRISPR/Cas9 was used to insert a constitutive promoter to drive TRI6 expression in the Δmgv1 strain. The results indicate that BGCs that produce deoxynivalenol and fusaoctaxin are co-regulated, with TRI6 being partially regulated by MGV1. Overall, the findings from this study indicate that MGV1 provides an articulation point to differentially regulate various BGCs. Moreover, TRI6, embedded in one of the BGCs provides specificity to regulate the expression of the genes in the BGC.
Collapse
Affiliation(s)
- Kristina Shostak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
| | - Dianevys González-Peña Fundora
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (D.G.-P.F.); (A.E.)
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 4M4, Canada;
| | - Christopher Blackman
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
- Department of Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Tom Witte
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
| | - David Overy
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
| | - Anas Eranthodi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (D.G.-P.F.); (A.E.)
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 4M4, Canada;
| | - Nora A. Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (D.G.-P.F.); (A.E.)
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (K.S.); (C.B.); (T.W.); (A.S.); (D.O.)
- Department of Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
10
|
Wachowska U, Pluskota W, Jastrzębski JP, Głowacka K, Szablewska-Stuper K, Balcerzak M. A method for reducing the concentrations of Fusarium graminearum trichothecenes in durum wheat grain with the use of Debaryomyces hansenii. Int J Food Microbiol 2023; 397:110211. [PMID: 37105049 DOI: 10.1016/j.ijfoodmicro.2023.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/31/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Fusarium head blight (FHB), caused mainly by Fusarium graminearum, is one of the most dangerous diseases of durum wheat. This hemibiotrophic pathogen transitions from the biotrophic phase, during which it penetrates host tissues and secretes trichothecenes, to the necrotrophic phase which leads to the destruction of host tissues. Yeasts applied to spikes often reduce mycotoxin concentrations, but the underlying mechanisms have not been fully elucidated. Therefore, the aim of this study was to analyze the concentrations trichothecenes in durum wheat grain and changes in the F. graminearum transcriptome under the influence the Debaryomyces hansenii antagonistic yeast strain. Debaryomyces hansenii cells adhered to and formed cell aggregates/biofilm on the surface of spikes and pathogenic hyphae. Biological control suppressed the spread of F. graminearum by 90 % and decreased the content of deoxynivalenol (DON) in spikes by 31.2 %. Yeasts significantly reduced the expression of pathogen's genes encoding the rpaI subunit of RNA polymerase I and the activator of Hsp90 ATPase, but they had no effect on mRNA transcript levels of genes encoding the enzymes involved in the biosynthesis of trichothecenes. The yeast treatment reduced the number of F. graminearum operational taxonomic units (OTUs) nearly five-fold and increased the number of D. hansenii OTUs more than six-fold in the spike mycobiome. The mechanisms that suppress infections should be explored to develop effective biological methods for reducing the concentrations mycotoxins in wheat grain.
Collapse
Affiliation(s)
- Urszula Wachowska
- University of Warmia and Mazury, Department of Entomology, Phytopathology and Molecular Diagnostics, Poland.
| | - Wioletta Pluskota
- University of Warmia and Mazury, Department of Plant Physiology, Genetics and Biotechnology, Poland
| | - Jan Paweł Jastrzębski
- University of Warmia and Mazury, Department of Plant Physiology, Genetics and Biotechnology, Poland
| | - Katarzyna Głowacka
- University of Warmia and Mazury, Department of Plant Physiology, Genetics and Biotechnology, Poland
| | | | - Margaret Balcerzak
- Ottawa Research and Development Centre, Agriculture and Agri-Food, Canada
| |
Collapse
|
11
|
Liew MXX, Nakajima Y, Maeda K, Kitamura N, Kimura M. Regulatory mechanism of trichothecene biosynthesis in Fusarium graminearum. Front Microbiol 2023; 14:1148771. [PMID: 37138602 PMCID: PMC10149712 DOI: 10.3389/fmicb.2023.1148771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Among the genes involved in the biosynthesis of trichothecene (Tri genes), Tri6 and Tri10 encode a transcription factor with unique Cys2His2 zinc finger domains and a regulatory protein with no consensus DNA-binding sequences, respectively. Although various chemical factors, such as nitrogen nutrients, medium pH, and certain oligosaccharides, are known to influence trichothecene biosynthesis in Fusarium graminearum, the transcriptional regulatory mechanism of Tri6 and Tri10 genes is poorly understood. Particularly, culture medium pH is a major regulator in trichothecene biosynthesis in F. graminearum, but it is susceptible to metabolic changes posed by nutritional and genetic factors. Hence, appropriate precautions should be considered to minimize the indirect influence of pH on the secondary metabolism while studying the roles of nutritional and genetic factors on trichothecene biosynthesis regulation. Additionally, it is noteworthy that the structural changes of the trichothecene gene cluster core region exert considerable influence over the normal regulation of Tri gene expression. In this perspective paper, we consider a revision of our current understanding of the regulatory mechanism of trichothecene biosynthesis in F. graminearum and share our idea toward establishing a regulatory model of Tri6 and Tri10 transcription.
Collapse
|
12
|
FaSmi1 Is Essential for the Vegetative Development, Asexual Reproduction, DON Production and Virulence of Fusarium asiaticum. J Fungi (Basel) 2022; 8:jof8111189. [DOI: 10.3390/jof8111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Smi1 is a protein required for cell cycle progression, morphogenesis, stress response and life span of Saccharomyces cerevisiae. FaSmi1 was identified as a Smi1 homolog in a wheat scab pathogenic fungus Fusarium asiaticum strain 2021. The deletion of FaSmi1 leads to defects in mycelial growth, asexual reproduction, and virulence. The FaSmi1 deletion mutant also exhibited increased sensitivity to osmotic stresses generated by NaCl and KCl, but increased tolerance to oxidative stresses and cell wall integrity inhibitors. All of these defects were restored by genetic complementation of the mutant with the whole parental FaSmi1 gene. Interestingly, the antioxidant system-associated genes exhibit a lower expression level and the mycotoxins’ DON content was decreased in the FaSmi1 deletion mutant compared with the parental strain 2021. These results indicate that FaSmi1 plays a critical role in the vegetative development, asexual reproduction, DON production and virulence of F. asiaticum.
Collapse
|
13
|
Liang X, Li B, Zhao X, Yao L, Kong Y, Liu W, Zhang R, Sun G. 1,8-Dihydroxynaphthalene Melanin Biosynthesis in Colletotrichum fructicola Is Developmentally Regulated and Requires the Cooperative Function of Two Putative Zinc Finger Transcription Factors. PHYTOPATHOLOGY 2022; 112:2174-2186. [PMID: 36154270 DOI: 10.1094/phyto-01-22-0037-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In ascomycetes, 1,8-dihydroxynaphthalene (DHN) melanin plays important protective functions and its production is usually coupled with development and environmental stress responses. The regulation of melanin biosynthesis, however, remains obscure. Colletotrichum fructicola is a phytopathogen with a broad host range that produces melanized appressoria and perithecia. In this study, we annotated melanin genes in a high-quality C. fructicola genome and characterized two zinc finger transcription factors (TFs) (cmr1 and cmr2) that form a loosely organized gene cluster with several melanin biosynthesis genes. Deleting either TF abolished melanization in both mycelia and perithecia but did not affect appressoria. The deletion mutants also showed perithecial development defects. Overexpressing cmr1 in Δcmr2 strongly activated the expression of melanin biosynthesis genes including pks1, scd1, t4hr1, and thr1 and caused hyper-accumulation of charcoal to black pigment(s). On the other hand, overexpressing cmr2 in Δcmr1 activated pks1, t4hr1, and thr1, but not scd1. We conclude that proper DHN melanin accumulation in C. fructicola requires the cooperative function of two in-cluster TFs that also regulate perithecial development. The study clarifies DHN melanin regulations in C. fructicola and expands the function of melanin in-cluster TFs to sex regulation.
Collapse
Affiliation(s)
- Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Bingxuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xuemei Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Liqiang Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yuanyuan Kong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Wenkui Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
14
|
Li C, Liu C. Enantioselective effect of chiral fungicide prothioconazole on Fusarium graminearum: Fungicidal activity and DON biosynthesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119553. [PMID: 35640724 DOI: 10.1016/j.envpol.2022.119553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Prothioconazole, a chiral triazole fungicide, is widely used to control Fusarium head blight (FHB) of wheat. Fusarium graminearum (F. graminearum), as the main pathogen of FHB, can produce many secondary metabolites including deoxynivalenol (DON), which threatens the health of humans and animals. However, some fungicides may stimulate F. graminearum to synthesize more DON under certain conditions. Until now, the fungicidal activity and enantioselective effect of prothioconazole enantiomers on DON production, transcriptome and metabolome of F. graminearum were unclear. The fungicidal activity of R-(-)-prothioconazole against F. graminearum was 9.12-17.73 times higher than that of S-(+)-prothioconazole under all conditions. Prothioconazole enantiomers can induce F. graminearum to synthesize more DON under 0.99 water activity (aw) and 30 °C, especially R-(-)-prothioconazole. The expression levels of TRI6, TRI10 and TRI101 under R-(-)-prothioconazole treatment were significantly higher than those under S-(+)-prothioconazole treatment. Most genes in glycolysis, pyruvate metabolism, the target of rapamycin (TOR) signaling transduction pathway and the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling transduction pathway showed higher expression levels under R-(-)-prothioconazole treatment than uner S-(+)-prothioconazole treatment and the control. The peroxisome pathway displayed higher transcriptional activity under S-(+)-prothioconazole treatment compared with R-(-)-prothioconazole and the control. Based on metabolomic data, R-(-)-prothioconazole can significantly influence phenylalanine metabolism, and no significantly enriched pathway was found under S-(+)-prothioconazole treatment. These results are helpful to understand the risk of prothioconazole enantiomers on DON production of F. graminearum and uncover the relevant underlying mechanisms of prothioconazole enantiomers.
Collapse
Affiliation(s)
- Chaofeng Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture& Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China.
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture& Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Identification of Candidate Genes Associated with Trichothecene Biosynthesis in Fusarium graminearum Species Complex Combined with Transcriptomic and Proteomic Analysis. Microorganisms 2022; 10:microorganisms10081479. [PMID: 35893537 PMCID: PMC9332169 DOI: 10.3390/microorganisms10081479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
The Fusarium graminearum species complex is the main causal agent of wheat head blight worldwide. Trichothecenes produced by the pathogen in infected grains have important food safety implications. Previously reported studies on trichothecene production have all focused on the conditions conducive to mycotoxin production, while the molecular mechanisms of trichothecene biosynthesis in Fusarium strains under normal or non-inducing conditions are still unclear. Here, a global analysis of the fungal gene expression of three strains using the Affymetrix Fusarium GeneChip under non-inducing conditions is reported. Differentially expressed genes were identified among strains with different trichothecene-production ability, and some novel genes associated with trichothecene biosynthesis were found by bioinformatics analysis. To verify the transcriptome results, proteomic analyses of the three strains were conducted under the same culture conditions. In total, 69 unique fungal proteins were identified in 77 protein spots. Combined with transcriptome and proteome analysis, 27 novel genes were predicted to be associated with trichothecene mycotoxin production. A protein, encoded by FGSG_01403, was found to be associated with trichothecene production via proteome analysis. Gene knock-out mutations of FGSG_01403 resulted in mutants with increased production of trichothecenes. Future functional analysis of the candidate genes identified in this study may reveal new insights into the negative regulation of trichothecene production in the Fusarium graminearum species complex.
Collapse
|
16
|
Li K, Liu D, Pan X, Yan S, Song J, Liu D, Wang Z, Xie Y, Dai J, Liu J, Li H, Zhang X, Gao F. Deoxynivalenol Biosynthesis in Fusarium pseudograminearum Significantly Repressed by a Megabirnavirus. Toxins (Basel) 2022; 14:toxins14070503. [PMID: 35878241 PMCID: PMC9324440 DOI: 10.3390/toxins14070503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin widely detected in cereal products contaminated by Fusarium. Fusarium pseudograminearum megabirnavirus 1 (FpgMBV1) is a double-stranded RNA virus infecting Fusarium pseudograminearum. In this study, it was revealed that the amount of DON in F. pseudograminearum was significantly suppressed by FpgMBV1 through a high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) assay. A total of 2564 differentially expressed genes were identified by comparative transcriptomic analysis between the FpgMBV1-containing F. pseudograminearum strain FC136-2A and the virus-free strain FC136-2A-V-. Among them, 1585 genes were up-regulated and 979 genes were down-regulated. Particularly, the expression of 12 genes (FpTRI1, FpTRI3, FpTRI4, FpTRI5, FpTRI6, FpTRI8, FpTRI10, FpTRI11, FpTRI12, FpTRI14, FpTRI15, and FpTRI101) in the trichothecene biosynthetic (TRI) gene cluster was significantly down-regulated. Specific metabolic and transport processes and pathways including amino acid and lipid metabolism, ergosterol metabolic and biosynthetic processes, carbohydrate metabolism, and biosynthesis were regulated. These results suggest an unrevealing mechanism underlying the repression of DON and TRI gene expression by the mycovirus FpgMBV1, which would provide new methods in the detoxification of DON and reducing the yield loss in wheat.
Collapse
Affiliation(s)
- Ke Li
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Dongmei Liu
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (D.L.); (J.L.)
| | - Xin Pan
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Shuwei Yan
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Jiaqing Song
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Dongwei Liu
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Zhifang Wang
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Yuan Xie
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Junli Dai
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Jihong Liu
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (D.L.); (J.L.)
| | - Honglian Li
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Xiaoting Zhang
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
- Correspondence: (X.Z.); (F.G.)
| | - Fei Gao
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
- Correspondence: (X.Z.); (F.G.)
| |
Collapse
|
17
|
Sun F, Lv B, Zhang X, Wang C, Zhang L, Chen X, Liang Y, Chen L, Zou S, Dong H. The Endoplasmic Reticulum Cargo Receptor FgErv14 Regulates DON Production, Growth and Virulence in Fusarium graminearum. Life (Basel) 2022; 12:life12060799. [PMID: 35743830 PMCID: PMC9224835 DOI: 10.3390/life12060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium graminearum is a plant filamentous pathogenic fungi and the predominant causal agent of Fusarium head blight (FHB) in cereals worldwide. The regulators of the secretory pathway contribute significantly to fungal mycotoxin synthesis, development, and virulence. However, their roles in these processes in F. graminearum remain poorly understood. Here, we identified and functionally characterized the endoplasmic reticulum (ER) cargo receptor FgErv14 in F. graminearum. Firstly, it was observed that FgErv14 is mainly localized in the ER. Then, we constructed the FgErv14 deletion mutant (ΔFgerv14) and found that the absence of the FgErv14 caused a serious reduction in vegetative growth, significant defects in asexual and sexual reproduction, and severely impaired virulence. Furthermore, we found that the ΔFgerv14 mutant exhibited a reduced expression of TRI genes and defective toxisome generation, both of which are critical for deoxynivalenol (DON) biosynthesis. Importantly, we found the green fluorescent protein (GFP)-tagged FgRud3 was dispersed in the cytoplasm, whereas GFP-FgSnc1-PEM was partially trapped in the late Golgi in ΔFgerv14 mutant. These results demonstrate that FgErv14 mediates anterograde ER-to-Golgi transport as well as late secretory Golgi-to-Plasma membrane transport and is necessary for DON biosynthesis, asexual and sexual reproduction, vegetative growth, and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Fengjiang Sun
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
| | - Beibei Lv
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Xuemeng Zhang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
| | - Chenyu Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
| | - Liyuan Zhang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaochen Chen
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Yuancun Liang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
| | - Lei Chen
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (L.C.); (S.Z.)
| | - Shenshen Zou
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (L.C.); (S.Z.)
| | - Hansong Dong
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
18
|
Wu L, Yuan Z, Wang P, Mao X, Zhou M, Hou Y. The plasma membrane H + -ATPase FgPMA1 regulates the development, pathogenicity, and phenamacril sensitivity of Fusarium graminearum by interacting with FgMyo-5 and FgBmh2. MOLECULAR PLANT PATHOLOGY 2022; 23:489-502. [PMID: 34921490 PMCID: PMC8916210 DOI: 10.1111/mpp.13173] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 05/06/2023]
Abstract
Fusarium graminearum, as the causal agent of Fusarium head blight (FHB), not only causes yield loss, but also contaminates the quality of wheat by producing mycotoxins, such as deoxynivalenol (DON). The plasma membrane H+ -ATPases play important roles in many growth stages in plants and yeasts, but their functions and regulation in phytopathogenic fungi remain largely unknown. Here we characterized two plasma membrane H+ -ATPases: FgPMA1 and FgPMA2 in F. graminearum. The FgPMA1 deletion mutant (∆FgPMA1), but not FgPMA2 deletion mutant (∆FgPMA2), was impaired in vegetative growth, pathogenicity, and sexual and asexual development. FgPMA1 was localized to the plasma membrane, and ∆FgPMA1 displayed reduced integrity of plasma membrane. ∆FgPMA1 not only impaired the formation of the toxisome, which is a compartment where DON is produced, but also suppressed the expression level of DON biosynthetic enzymes, decreased DON production, and decreased the amount of mycelial invasion, leading to impaired pathogenicity by exclusively developing disease on inoculation sites of wheat ears and coleoptiles. ∆FgPMA1 exhibited decreased sensitivity to some osmotic stresses, a cell wall-damaging agent (Congo red), a cell membrane-damaging agent (sodium dodecyl sulphate), and heat shock stress. FgMyo-5 is the target of phenamacril used for controlling FHB. We found FgPMA1 interacted with FgMyo-5, and ∆FgPMA1 showed an increased expression level of FgMyo-5, resulting in increased sensitivity to phenamacril, but not to other fungicides. Furthermore, co-immunoprecipitation confirmed that FgPMA1, FgMyo-5, and FgBmh2 (a 14-3-3 protein) form a complex to regulate the sensitivity to phenamacril and biological functions. Collectively, this study identified a novel regulating mechanism of FgPMA1 in pathogenicity and phenamacril sensitivity of F. graminearum.
Collapse
Affiliation(s)
- Luoyu Wu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Zhili Yuan
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Pengwei Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Xuewei Mao
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Mingguo Zhou
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yiping Hou
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
19
|
Li T, Kim D, Lee J. NADPH Oxidase Gene, FgNoxD, Plays a Critical Role in Development and Virulence in Fusarium graminearum. Front Microbiol 2022; 13:822682. [PMID: 35308369 PMCID: PMC8928025 DOI: 10.3389/fmicb.2022.822682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
NADPH oxidase is an enzyme that generates reactive oxygen species from oxygen and NADPH and is highly conserved in eukaryotes. In Fusarium graminearum, a series of different Nox enzymes have been identified. NoxA is involved in sexual development and ascospore production and, like NoxB, also contributes to pathogenicity. Both NoxA and NoxB are regulated by the subunit NoxR, whereas NoxC is usually self-regulated by EF-hand motifs found on the enzyme. In this study, we characterized another NADPH oxidase in F. graminearum, FgNoxD. In the FgNoxD deletion mutant, vegetative growth and conidia production were reduced, while sexual development was totally abolished. The FgNoxD deletion mutant also showed reduced resistance to cell wall perturbing agents; cell membrane inhibitors; and osmotic, fungicide, cold, and extracellular oxidative stress, when compared to the wild type. Moreover, in comparison to the wild type, the FgNoxD deletion mutant exhibited reduced virulence against the host plant. The FgNoxD deletion mutant produced less deoxynivalenol than the wild type, and the Tri5 and Tri6 gene expression was also downregulated. In conclusion, our findings show that FgNoxD is involved in the survival against various stresses, conidiation, sexual development, and virulence, highlighting this enzyme as a new target to control the disease caused by F. graminearum.
Collapse
Affiliation(s)
- Taiying Li
- Department of Applied Biology, Dong-A University, Busan, South Korea
| | - Dohyun Kim
- Department of Applied Biology, Dong-A University, Busan, South Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, South Korea
| |
Collapse
|
20
|
Zhang J, Li L, Yang Y, Zhao C, Hu J, Xue X, Gao Q, Wang D, Zhuang Z, Zhang Y. Deletion and Overexpression of the AnOTAbzip Gene, a Positive Regulator of Ochratoxin A Biosynthesis in Aspergillus niger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2169-2178. [PMID: 35143724 DOI: 10.1021/acs.jafc.1c08160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ochratoxin A (OTA) biosynthetic gene cluster includes a bZIP transcription factor (TF) gene (OTAbzip) that has been identified in different fungal species. However, most previous studies identified the OTAbzip gene in ochratoxigenic fungi using bioinformatics methods, while few studies focused on deleting the gene, let alone overexpressing it, to characterize the function of the OTAbZIP TF. Here, we characterized the AnOTAbZIP TF in an ochratoxigenic isolate of Aspergillus niger by deleting and overexpressing the AnOTAbzip gene and examining the role of AnOTAbZIP in morphological development, OTA biosynthesis, and pathogenicity. Chemical and gene expression analyses revealed that AnOTAbZIP positively regulates OTA biosynthesis, since the loss of OTA production and the downregulation of the OTA biosynthetic genes were observed in the ΔAnOTAbzip strain, compared with the wild-type (WT) and OE::AnOTAbzip strains. In terms of pathogenicity, the ΔAnOTAbzip strain produced a greater lesion on grape berries, especially with respect to the OE::AnOTAbzip strain, rather than WT. Finally, the ΔAnOTAbzip strain was also more tolerant to oxidative stress with respect to the OE::AnOTAbzip and WT strains in that order. These new findings improve our understanding of the AnOTAbZIP regulatory mechanism and help develop strategies to attenuate plant pathogenicity and reduce OTA biosynthesis of A. niger.
Collapse
Affiliation(s)
- Jian Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linlin Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chaofan Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiuju Hu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xianli Xue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
21
|
Chen H, Mao L, Zhao N, Xia C, Liu J, Kubicek CP, Wu W, Xu S, Zhang C. Verification of TRI3 Acetylation of Trichodermol to Trichodermin in the Plant Endophyte Trichoderma taxi. Front Microbiol 2021; 12:731425. [PMID: 34759898 PMCID: PMC8573352 DOI: 10.3389/fmicb.2021.731425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Trichodermin, a trichothecene first isolated in Trichoderma species, is a sesquiterpenoid antibiotic that exhibits significant inhibitory activity to the growth of many pathogenic fungi such as Candida albicans, Rhizoctonia solani, and Botrytis cinerea by inhibiting the peptidyl transferase involved in eukaryotic protein synthesis. Trichodermin has also been shown to selectively induce cell apoptosis in several cancer cell lines and thus can act as a potential lead compound for developing anticancer therapeutics. The biosynthetic pathway of trichodermin in Trichoderma has been identified, and most of the involved genes have been functionally characterized. An exception is TRI3, which encodes a putative acetyltransferase. Here, we report the identification of a gene cluster that contains seven genes expectedly involved in trichodermin biosynthesis (TRI3, TRI4, TRI6, TRI10, TRI11, TRI12, and TRI14) in the trichodermin-producing endophytic fungus Trichoderma taxi. As in Trichoderma brevicompactum, TRI5 is not included in the cluster. Functional analysis provides evidence that TRI3 acetylates trichodermol, the immediate precursor, to trichodermin. Disruption of TRI3 gene eliminated the inhibition to R. solani by T. taxi culture filtrates and significantly reduced the production of trichodermin but not of trichodermol. Both the inhibitory activity and the trichodermin production were restored when native TRI3 gene was reintroduced into the disruption mutant. Furthermore, a His-tag-purified TRI3 protein, expressed in Escherichia coli, was able to convert trichodermol to trichodermin in the presence of acetyl-CoA. The disruption of TRI3 also resulted in lowered expression of both the upstream biosynthesis TRI genes and the regulator genes. Our data demonstrate that T. taxi TRI3 encodes an acetyltransferase that catalyzes the esterification of the C-4 oxygen atom on trichodermol and thus plays an essential role in trichodermin biosynthesis in this fungus.
Collapse
Affiliation(s)
- Haijiang Chen
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang, China.,Institute of Biotechnology, Zhejiang University, Hangzhou, China.,Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang, China
| | - Lijuan Mao
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou, China
| | - Nan Zhao
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chenyang Xia
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jian Liu
- Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang, China
| | - Christian P Kubicek
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, TU Wien, Vienna, Austria
| | - Wenneng Wu
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang, China
| | - Su Xu
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang, China
| | - Chulong Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Tang G, Yuan J, Wang J, Zhang YZ, Xie SS, Wang H, Tao Z, Liu H, Kistler HC, Zhao Y, Duan CG, Liu W, Ma Z, Chen Y. Fusarium BP1 is a reader of H3K27 methylation. Nucleic Acids Res 2021; 49:10448-10464. [PMID: 34570240 PMCID: PMC8501951 DOI: 10.1093/nar/gkab844] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Histone H3 lysine 27 methylation catalyzed by polycomb repressive complex 2 (PRC2) is conserved from fungi to humans and represses gene transcription. However, the mechanism for recognition of methylated H3K27 remains unclear, especially in fungi. Here, we found that the bromo-adjacent homology (BAH)-plant homeodomain (PHD) domain containing protein BAH–PHD protein 1 (BP1) is a reader of H3K27 methylation in the cereal fungal pathogen Fusarium graminearum. BP1 interacts with the core PRC2 component Suz12 and directly binds methylated H3K27. BP1 is distributed in a subset of genomic regions marked by H3K27me3 and co-represses gene transcription. The BP1 deletion mutant shows identical phenotypes on mycelial growth and virulence, as well as similar expression profiles of secondary metabolite genes to the strain lacking the H3K27 methyltransferase Kmt6. More importantly, BP1 can directly bind DNA through its PHD finger, which might increase nucleosome residence and subsequently reinforce transcriptional repression in H3K27me3-marked target regions. A phylogenetic analysis showed that BP1 orthologs are mainly conserved in fungi. Overall, our findings provide novel insights into the mechanism by which PRC2 mediates gene repression in fungi, which is distinct from the PRC1-PRC2 system in plants and mammals.
Collapse
Affiliation(s)
- Guangfei Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianlong Yuan
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jing Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi-Zhe Zhang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Si-Si Xie
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, Northwest A&F University, Yangling 712100, China
| | - H Corby Kistler
- Cereal Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, Saint Paul, MN 55108, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Xu C, Chen H, Wu Q, Wu Y, Daly P, Chen J, Yang H, Wei L, Zhuang Y. Trehalose-6-phosphate phosphatase inhibitor: N-(phenylthio) phthalimide, which can inhibit the DON biosynthesis of Fusarium graminearum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104917. [PMID: 34446193 DOI: 10.1016/j.pestbp.2021.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Fusarium head blight(FHB)caused by Fusarium graminearum species complex (FGSC) is one of the most important diseases around the world. Deoxynivalenol (DON) is a type of mycotoxin produced by FGSC when infecting cereal crops. It is a serious threat to the health of both humans and livestock. Trehalose-6-phosphate phosphatase (TPP), a conserved metabolic enzyme found in many plants and pathogens, catalyzes the formation of trehalose. N-(phenylthio) phthalimide (NPP) has been reported to inhibit the normal growth of nematodes by inhibiting the activity of TPP, but this inhibitor of nematodes has not previously been tested against F. graminearum. In this study, we found that TPP in F. graminearum (FgTPP) had similar secondary structures and conserved cysteine (Cys356) to nematodes by means of bioinformatics. At the same time, the sensitivity of F. graminearum strains to NPP was determined. NPP exhibited a better inhibitory effect on conidia germination than mycelial growth. In addition, the effects of NPP on DON biosynthesis and trehalose biosynthesis pathway in PH-1 were also determined. We found that NPP decreased DON production, trehalose content, glucose content and TPP enzyme activity but increased trehalose-6-phosphate content and trehalose-6-phosphate synthase (TPS) enzyme activity. Moreover, the expression of TRI1, TRI4, TRI5, TRI6, and TPP genes were downregulated, on the contrary, the TPS gene was upregulated. Finally, in order to further determine the control ability of NPP on DON production in the field, we conducted a series of field experiments, and found that NPP could effectively reduce the DON content in wheat grain and had a general control effect on FHB. In conclusion, the research in this study will provide important theoretical basis for controlling FHB caused by F. graminearum and reducing DON production in the field.
Collapse
Affiliation(s)
- Chao Xu
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China.
| | - Hongzhou Chen
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China
| | - Qinyan Wu
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China
| | - Yuqi Wu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jian Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Hongfu Yang
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yiqing Zhuang
- Testing Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| |
Collapse
|
24
|
Huang L, Li X, Dong L, Wang B, Pan L. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species. BMC Biol 2021; 19:189. [PMID: 34488759 PMCID: PMC8419926 DOI: 10.1186/s12915-021-01114-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/02/2021] [Indexed: 12/30/2022] Open
Abstract
Background The identification of open chromatin regions and transcription factor binding sites (TFBs) is an important step in understanding the regulation of gene expression in diverse species. ATAC-seq is a technique used for such purpose by providing high-resolution measurements of chromatin accessibility revealed through integration of Tn5 transposase. However, the existence of cell walls in filamentous fungi and associated difficulty in purifying nuclei have precluded the routine application of this technique, leading to a lack of experimentally determined and computationally inferred data on the identity of genome-wide cis-regulatory elements (CREs) and TFBs. In this study, we constructed an ATAC-seq platform suitable for filamentous fungi and generated ATAC-seq libraries of Aspergillus niger and Aspergillus oryzae grown under a variety of conditions. Results We applied the ATAC-seq assay for filamentous fungi to delineate the syntenic orthologue and differentially changed chromatin accessibility regions among different Aspergillus species, during different culture conditions, and among specific TF-deleted strains. The syntenic orthologues of accessible regions were responsible for the conservative functions across Aspergillus species, while regions differentially changed between culture conditions and TFs mutants drove differential gene expression programs. Importantly, we suggest criteria to determine TFBs through the analysis of unbalanced cleavage of distinct TF-bound DNA strands by Tn5 transposase. Based on this criterion, we constructed data libraries of the in vivo genomic footprint of A. niger under distinct conditions, and generated a database of novel transcription factor binding motifs through comparison of footprints in TF-deleted strains. Furthermore, we validated the novel TFBs in vivo through an artificial synthetic minimal promoter system. Conclusions We characterized the chromatin accessibility regions of filamentous fungi species, and identified a complete TFBs map by ATAC-seq, which provides valuable data for future analyses of transcriptional regulation in filamentous fungi. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01114-0.
Collapse
Affiliation(s)
- Lianggang Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xuejie Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Liangbo Dong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. .,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. .,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Bekalu ZE, Dionisio G, Madsen CK, Etzerodt T, Fomsgaard IS, Brinch-Pedersen H. Barley Nepenthesin-Like Aspartic Protease HvNEP-1 Degrades Fusarium Phytase, Impairs Toxin Production, and Suppresses the Fungal Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:702557. [PMID: 34394154 PMCID: PMC8358834 DOI: 10.3389/fpls.2021.702557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Nepenthesins are categorized under the subfamily of the nepenthesin-like plant aspartic proteases (PAPs) that form a distinct group of atypical PAPs. This study describes the effect of nepenthesin 1 (HvNEP-1) protease from barley (Hordeum vulgare L.) on fungal histidine acid phosphatase (HAP) phytase activity. Signal peptide lacking HvNEP-1 was expressed in Pichia pastoris and biochemically characterized. Recombinant HvNEP-1 (rHvNEP-1) strongly inhibited the activity of Aspergillus and Fusarium phytases, which are enzymes that release inorganic phosphorous from phytic acid. Moreover, rHvNEP-1 suppressed in vitro fungal growth and strongly reduced the production of mycotoxin, 15-acetyldeoxynivalenol (15-ADON), from Fusarium graminearum. The quantitative PCR analysis of trichothecene biosynthesis genes (TRI) confirmed that rHvNEP-1 strongly repressed the expression of TRI4, TRI5, TRI6, and TRI12 in F. graminearum. The co-incubation of rHvNEP-1 with recombinant F. graminearum (rFgPHY1) and Fusarium culmorum (FcPHY1) phytases induced substantial degradation of both Fusarium phytases, indicating that HvNEP-1-mediated proteolysis of the fungal phytases contributes to the HvNEP-1-based suppression of Fusarium.
Collapse
|
26
|
John E, Singh KB, Oliver RP, Tan K. Transcription factor control of virulence in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2021; 22:858-881. [PMID: 33973705 PMCID: PMC8232033 DOI: 10.1111/mpp.13056] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Plant-pathogenic fungi are a significant threat to economic and food security worldwide. Novel protection strategies are required and therefore it is critical we understand the mechanisms by which these pathogens cause disease. Virulence factors and pathogenicity genes have been identified, but in many cases their roles remain elusive. It is becoming increasingly clear that gene regulation is vital to enable plant infection and transcription factors play an essential role. Efforts to determine their regulatory functions in plant-pathogenic fungi have expanded since the annotation of fungal genomes revealed the ubiquity of transcription factors from a broad range of families. This review establishes the significance of transcription factors as regulatory elements in plant-pathogenic fungi and provides a systematic overview of those that have been functionally characterized. Detailed analysis is provided on regulators from well-characterized families controlling various aspects of fungal metabolism, development, stress tolerance, and the production of virulence factors such as effectors and secondary metabolites. This covers conserved transcription factors with either specialized or nonspecialized roles, as well as recently identified regulators targeting key virulence pathways. Fundamental knowledge of transcription factor regulation in plant-pathogenic fungi provides avenues to identify novel virulence factors and improve our understanding of the regulatory networks linked to pathogen evolution, while transcription factors can themselves be specifically targeted for disease control. Areas requiring further insight regarding the molecular mechanisms and/or specific classes of transcription factors are identified, and direction for future investigation is presented.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Karam B. Singh
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationFloreatWestern AustraliaAustralia
| | - Richard P. Oliver
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kar‐Chun Tan
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
27
|
Li C, Fan S, Wen Y, Tan Z, Liu C. Enantioselective Effect of Flutriafol on Growth, Deoxynivalenol Production, and TRI Gene Transcript Levels in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1684-1692. [PMID: 33522237 DOI: 10.1021/acs.jafc.0c06800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, deoxynivalenol (DON) has frequently been detected in wheat grains and their products. The enantioselective impact of flutriafol on the growth and DON biosynthesis of Fusarium graminearum was investigated in relation to water activity (αw, 0.97 and 0.99) and temperature (20, 25, and 30 °C) on the wheat-based medium. R-(-)-flutriafol exhibited higher bioactivity than S-(+)-flutriafol and Rac-flutriafol under the above conditions. Flutriafol enantiomers reduced or stimulated DON biosynthesis depending on αw. DON levels were negligible after 14 or 7 days of incubation times under 0.97 and 0.99 aw, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses showed that the expression levels of trichothecene biosynthetic (TRI) genes of F. graminearum under 0.97 aw were significantly higher than those under 0.99 aw. In addition, R-(-)-flutriafol can induce more TRI gene expression than S-(+)-flutriafol. Taken together, this study indicated that aw and temperature play important roles in regulating DON biosynthesis in F. graminearum with flutriafol enantiomers.
Collapse
Affiliation(s)
- Chaofeng Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| | - Shuai Fan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| | - Yan Wen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| | - Zhenchao Tan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, Guangdong Province 510642, China
| |
Collapse
|
28
|
Shostak K, Bonner C, Sproule A, Thapa I, Shields SWJ, Blackwell B, Vierula J, Overy D, Subramaniam R. Activation of biosynthetic gene clusters by the global transcriptional regulator TRI6 in Fusarium graminearum. Mol Microbiol 2020; 114:664-680. [PMID: 32692880 DOI: 10.1111/mmi.14575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 12/30/2022]
Abstract
In F. graminearum, the transcription factor TRI6 positively regulates the trichothecene biosynthetic gene cluster (BGC) leading to the production of the secondary metabolite 15-acetyl deoxynivalenol. Secondary metabolites are not essential for survival, instead, they enable the pathogen to successfully infect its host. F. graminearum has the potential to produce a diverse array of secondary metabolites (SMs). However, given high functional specificity and energetic cost, most of these clusters remain silent, unless the organism is subjected to an environment conducive to SM production. Alternatively, secondary metabolite gene clusters (SMCs) can be activated by genetically manipulating their activators or repressors. In this study, a combination of transcriptomic and metabolomics analyses with a deletion and overexpressor mutants of TRI6 was used to establish the role of TRI6 in the regulation of several BGCs in F. graminearum. Evidence for direct and indirect regulation of BGCs by TRI6 was obtained by chromatin immunoprecipitation and yeast two-hybrid experiments. The results showed that the trichothecene genes are under direct control, while the gramillin gene cluster is indirectly controlled by TRI6 through its interaction with the pathway-specific transcription factor GRA2.
Collapse
Affiliation(s)
- Kristina Shostak
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Christopher Bonner
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Indira Thapa
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Samuel W J Shields
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Barbara Blackwell
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - John Vierula
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Overy
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Rajagopal Subramaniam
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
29
|
Hay WT, McCormick SP, Hojilla-Evangelista MP, Bowman MJ, Dunn RO, Teresi JM, Berhow MA, Vaughan MM. Changes in Wheat Nutritional Content at Elevated [CO 2] Alter Fusarium graminearum Growth and Mycotoxin Production on Grain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6297-6307. [PMID: 32407107 DOI: 10.1021/acs.jafc.0c01308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rising atmospheric [CO2] has been shown to impact plant primary metabolism and the severity of Fusarium head blight (FHB) in wheat. In this study, we evaluated how changes in grain nutritional content due to growth at elevated [CO2] affected Fusarium graminearum growth and mycotoxin production. Susceptible (Norm) and moderately resistant (Alsen) hard spring wheat grains that had been grown at ambient (400 ppm) or elevated [CO2] (800 ppm) were independently inoculated with two F. graminearum fungal strains, which produce the trichothecene mycotoxin, deoxynivalenol. Under higher [CO2], FHB-susceptible and moderately resistant wheat had disproportionate losses in protein and mineral contents, with Alsen being more severely impacted. Furthermore, the F. graminearum strain 9F1 had increased mycotoxin biosynthesis in response to the loss of wheat nutritional content in Alsen. Our results demonstrate that future [CO2] conditions may provide a strain-specific pathogenic advantage on hosts, with greater losses in nutritional content.
Collapse
Affiliation(s)
- William T Hay
- Mycotoxin Prevention and Applied Microbiology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 North, University Street, Peoria, Illinois 61604, United States
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 North, University Street, Peoria, Illinois 61604, United States
| | - Milagros P Hojilla-Evangelista
- Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, United States
| | - Michael J Bowman
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, United States
| | - Robert O Dunn
- Bio-oils Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, United States
| | - Jennifer M Teresi
- Mycotoxin Prevention and Applied Microbiology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 North, University Street, Peoria, Illinois 61604, United States
| | - Mark A Berhow
- Functional Foods Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, United States
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 North, University Street, Peoria, Illinois 61604, United States
| |
Collapse
|
30
|
Bekalu ZE, Dionisio G, Brinch-Pedersen H. Molecular Properties and New Potentials of Plant Nepenthesins. PLANTS (BASEL, SWITZERLAND) 2020; 9:E570. [PMID: 32365700 PMCID: PMC7284499 DOI: 10.3390/plants9050570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022]
Abstract
Nepenthesins are aspartic proteases (APs) categorized under the A1B subfamily. Due to nepenthesin-specific sequence features, the A1B subfamily is also named nepenthesin-type aspartic proteases (NEPs). Nepenthesins are mostly known from the pitcher fluid of the carnivorous plant Nepenthes, where they are availed for the hydrolyzation of insect protein required for the assimilation of insect nitrogen resources. However, nepenthesins are widely distributed within the plant kingdom and play significant roles in plant species other than Nepenthes. Although they have received limited attention when compared to other members of the subfamily, current data indicates that they have exceptional molecular and biochemical properties and new potentials as fungal-resistance genes. In the current review, we provide insights into the current knowledge on the molecular and biochemical properties of plant nepenthesins and highlights that future focus on them may have strong potentials for industrial applications and crop trait improvement.
Collapse
Affiliation(s)
- Zelalem Eshetu Bekalu
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, DK-4200 Slagelse, Denmark; (G.D.); (H.B.-P.)
| | | | | |
Collapse
|
31
|
Dynamic network inference and association computation discover gene modules regulating virulence, mycotoxin and sexual reproduction in Fusarium graminearum. BMC Genomics 2020; 21:179. [PMID: 32093656 PMCID: PMC7041293 DOI: 10.1186/s12864-020-6596-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
Background The filamentous fungus Fusarium graminearum causes devastating crop diseases and produces harmful mycotoxins worldwide. Understanding the complex F. graminearum transcriptional regulatory networks (TRNs) is vital for effective disease management. Reconstructing F. graminearum dynamic TRNs, an NP (non-deterministic polynomial) -hard problem, remains unsolved using commonly adopted reductionist or co-expression based approaches. Multi-omic data such as fungal genomic, transcriptomic data and phenomic data are vital to but so far have been largely isolated and untapped for unraveling phenotype-specific TRNs. Results Here for the first time, we harnessed these resources to infer global TRNs for F. graminearum using a Bayesian network based algorithm called “Module Networks”. The inferred TRNs contain 49 regulatory modules that show condition-specific gene regulation. Through a thorough validation based on prior biological knowledge including functional annotations and TF binding site enrichment, our network prediction displayed high accuracy and concordance with existing knowledge. One regulatory module was partially validated using network perturbations caused by Tri6 and Tri10 gene disruptions, as well as using Tri6 Chip-seq data. We then developed a novel computational method to calculate the associations between modules and phenotypes, and identified major module groups regulating different phenotypes. As a result, we identified TRN subnetworks responsible for F. graminearum virulence, sexual reproduction and mycotoxin production, pinpointing phenotype-associated modules and key regulators. Finally, we found a clear compartmentalization of TRN modules in core and lineage-specific genomic regions in F. graminearum, reflecting the evolution of the TRNs in fungal speciation. Conclusions This system-level reconstruction of filamentous fungal TRNs provides novel insights into the intricate networks of gene regulation that underlie key processes in F. graminearum pathobiology and offers promise for the development of improved disease control strategies.
Collapse
|
32
|
Enniatin Production Influences Fusarium avenaceum Virulence on Potato Tubers, but not on Durum Wheat or Peas. Pathogens 2020; 9:pathogens9020075. [PMID: 31973184 PMCID: PMC7168684 DOI: 10.3390/pathogens9020075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Fusarium avenaceum is a generalist pathogen responsible for diseases in numerous crop species. The fungus produces a series of mycotoxins including the cyclohexadepsipeptide enniatins. Mycotoxins can be pathogenicity and virulence factors in various plant–pathogen interactions, and enniatins have been shown to influence aggressiveness on potato tubers. To determine the role of these mycotoxins in other F. avenaceum–host interactions, ENNIATIN SYNTHASE 1 (ESYN1) disruption and overexpression mutants were generated and their ability to infect wheat and peas investigated. As a preliminary study, the transformants were screened for their ability to cause potato tuber necrosis and, consistent with a previous report, enniatin production increased necrotic lesion size on the tubers. By contrast, when the same mutants were assessed in their ability to cause disease in pea roots or durum wheat spikes, no changes in disease symptoms or virulence were observed. While it is known that, at least in the case of wheat, exogenously applied enniatins can cause tissue necrosis, this group of mycotoxins does not appear to be a key factor on its own in disease development on peas or durum wheat.
Collapse
|
33
|
Gain and loss of a transcription factor that regulates late trichothecene biosynthetic pathway genes in Fusarium. Fungal Genet Biol 2019; 136:103317. [PMID: 31841670 DOI: 10.1016/j.fgb.2019.103317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Trichothecenes are among the mycotoxins of most concern to food and feed safety and are produced by species in two lineages of Fusarium: the F. incarnatum-equiseti (FIESC) and F. sambucinum (FSAMSC) species complexes. Previous functional analyses of the trichothecene biosynthetic gene (TRI) cluster in members of FSAMSC indicate that the transcription factor gene TRI6 activates expression of other TRI cluster genes. In addition, previous sequence analyses indicate that the FIESC TRI cluster includes TRI6 and another uncharacterized transcription factor gene (hereafter TRI21) that was not reported in FSAMSC. Here, gene deletion analysisindicated that in FIESC TRI6 functions in a manner similar to FSAMSC, whereas TRI21 activated expression of some genes that function late in the trichothecene biosynthetic pathway but not early-pathway genes. Consistent with this finding, TRI21 was required for formation of diacetoxyscripenol, a late-trichothecene-pathway product, but not for isotrichodermin, an early-pathway product. Although intact homologs of TRI21 were not detected in FSAMSC or other trichothecene-producing fungal genera, TRI21 fragments were detected in some FSAMSC species. This suggests that the gene was acquired by Fusarium after divergence from other trichothecene-producing fungi, was subsequently lost in FSAMSC, but was retained in FIESC. Together, our results indicate fundamental differences in regulation of trichothecene biosynthesis in FIESC and FSAMSC.
Collapse
|
34
|
Foroud NA, Baines D, Gagkaeva TY, Thakor N, Badea A, Steiner B, Bürstmayr M, Bürstmayr H. Trichothecenes in Cereal Grains - An Update. Toxins (Basel) 2019; 11:E634. [PMID: 31683661 PMCID: PMC6891312 DOI: 10.3390/toxins11110634] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Trichothecenes are sesquiterpenoid mycotoxins produced by fungi from the order Hypocreales, including members of the Fusarium genus that infect cereal grain crops. Different trichothecene-producing Fusarium species and strains have different trichothecene chemotypes belonging to the Type A and B class. These fungi cause a disease of small grain cereals, called Fusarium head blight, and their toxins contaminate host tissues. As potent inhibitors of eukaryotic protein synthesis, trichothecenes pose a health risk to human and animal consumers of infected cereal grains. In 2009, Foroud and Eudes published a review of trichothecenes in cereal grains for human consumption. As an update to this review, the work herein provides a comprehensive and multi-disciplinary review of the Fusarium trichothecenes covering topics in chemistry and biochemistry, pathogen biology, trichothecene toxicity, molecular mechanisms of resistance or detoxification, genetics of resistance and breeding strategies to reduce their contamination of wheat and barley.
Collapse
Affiliation(s)
- Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.
| | - Danica Baines
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.
| | - Tatiana Y Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection (VIZR), St. Petersburg, Pushkin 196608, Russia.
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada.
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| | - Maria Bürstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| | - Hermann Bürstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| |
Collapse
|
35
|
Brauer EK, Manes N, Bonner C, Subramaniam R. Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum. Fungal Genet Biol 2019; 134:103277. [PMID: 31605748 DOI: 10.1016/j.fgb.2019.103277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/24/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Fusarium graminearum responds to environmental cues to modulate its growth and metabolism during wheat pathogenesis. Nitrogen limitation activates virulence-associated behaviours in F. graminearum including mycotoxin production and penetrative growth. In other filamentous fungi, nitrogen sensing is mediated by both the Target of Rapamycin (TOR) and the glutamine synthetase (GS)-dependent signaling pathways. While TOR-dependent nitrogen responses have been demonstrated in F. graminearum, the involvement of GS remains unclear. Our study indicates that both the TOR and GS signalling pathways are involved in nitrogen sensing in F. graminearum and contribute to glutamine-induced mycelial growth. However, neither pathway is required for glutamine-induced repression of the mycotoxin deoxynivalenol (DON) indicating that an additional nitrogen sensing pathway must exist. Further, two genes FgBMH1 and FgBMH2 encoding 14-3-3 proteins regulate nitrogen responses with effects on gene expression, DON production and mycelial growth. Unlike yeast, where 14-3-3s function redundantly in regulating nitrogen sensing, the 14-3-3 proteins have differing functions in F. graminearum. While both FgBMH1 and FgBMH2 regulate early glutamine-induced DON repression, only FgBMH2 is involved in regulating reproduction, virulence and glutamine-induced AreA repression. Together, our findings help to clarify the nitrogen sensing pathways in F. graminearum and highlight the involvement of 14-3-3s in the nitrogen response of filamentous fungi.
Collapse
Affiliation(s)
- Elizabeth K Brauer
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Nimrat Manes
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Christopher Bonner
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
36
|
Zhang Z, Gao B, He Z, Li L, Zhang Q, Kaziem AE, Wang M. Stereoselective bioactivity of the chiral triazole fungicide prothioconazole and its metabolite. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:112-118. [PMID: 31519245 DOI: 10.1016/j.pestbp.2019.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Chiral triazole fungicides have played a significant role in plant pathogen control. Although their enantiomers often exhibit different bioactivity, the mechanism of the stereoselectivity has not been well studied. The stereoselective bioactivity and mechanisms of prothioconazole and its chiral metabolite against plant pathogenic fungi were investigated. The results indicated that the metabolite exerted more fungicidal activities than the activities of the parent compound. R-Prothioconazole and R-prothioconazole-desthio were 6-262 and 19-954 times more potent against pathogenic fungi than the S-enantiomers, respectively. The R-enantiomers were more effective than in inhibiting the biosynthesis of ergosterol and deoxynivalenol the S-enantiomer. Homology modeling and molecular docking suggested that the R-enantiomers of prothioconazole and prothioconazole-desthio possessed better binding modes than S-enantiomers to CYP51B. Moreover, exposure to prothioconazole and its metabolite enantiomers significantly changed the transcription levels of the CYP51 (CYP 51A, CYP51B, CYP 51C) and Tri (Tri5, Tri6, Tri12) genes. The results showed that application of the R-prothioconazole could require a smaller application amount to eliminate the carcinogenic mycotoxins and any environmental risks.
Collapse
Affiliation(s)
- Zhaoxian Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Qing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Amir E Kaziem
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China; Department of Environmental Agricultural Science, Institute of Environmental Studies and Research, Ain Shams University, Cairo 11566, Egypt
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
37
|
Wang Z, Ma T, Huang Y, Wang J, Chen Y, Kistler HC, Ma Z, Yin Y. A fungal ABC transporter FgAtm1 regulates iron homeostasis via the transcription factor cascade FgAreA-HapX. PLoS Pathog 2019; 15:e1007791. [PMID: 31545842 PMCID: PMC6788720 DOI: 10.1371/journal.ppat.1007791] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/11/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Iron homeostasis is important for growth, reproduction and other metabolic processes in all eukaryotes. However, the functions of ATP-binding cassette (ABC) transporters in iron homeostasis are largely unknown. Here, we found that one ABC transporter (named FgAtm1) is involved in regulating iron homeostasis, by screening sensitivity to iron stress for 60 ABC transporter mutants of Fusarium graminearum, a devastating fungal pathogen of small grain cereal crops worldwide. The lack of FgAtm1 reduces the activity of cytosolic Fe-S proteins nitrite reductase and xanthine dehydrogenase, which causes high expression of FgHapX via activating transcription factor FgAreA. FgHapX represses transcription of genes for iron-consuming proteins directly but activates genes for iron acquisition proteins by suppressing another iron regulator FgSreA. In addition, the transcriptional activity of FgHapX is regulated by the monothiol glutaredoxin FgGrx4. Furthermore, the phosphorylation of FgHapX, mediated by the Ser/Thr kinase FgYak1, is required for its functions in iron homeostasis. Taken together, this study uncovers a novel regulatory mechanism of iron homeostasis mediated by an ABC transporter in an important pathogenic fungus. Essential element iron plays important roles in many cellular processes in all organisms. The function of an ATP-binding cassette (ABC) transporter Atm1 in iron homeostasis has been characterized in Saccharomyces cerevisiae. Our study found that FgAtm1 regulates iron homeostasis via the transcription factor cascade FgAreA-HapX in F. graminearum and the function of FgHapX is dependent on its interaction with FgGrx4 and phosphorylation by the Ser/Thr kinase FgYak1. This study reveals a novel regulatory mechanism of iron homeostasis in an important plant pathogenic fungus, and advances our understanding in iron homeostasis and functions of ABC transporters in eukaryotes.
Collapse
Affiliation(s)
- Zhihui Wang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Tianling Ma
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yunyan Huang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Jing Wang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - H. Corby Kistler
- United States Department of Agriculture, Agricultural Research Service, St. Paul, Minnesota, United States of America
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- * E-mail: (ZM); (YY)
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- * E-mail: (ZM); (YY)
| |
Collapse
|
38
|
Chen Y, Kistler HC, Ma Z. Fusarium graminearum Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:15-39. [PMID: 30893009 DOI: 10.1146/annurev-phyto-082718-100318] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fusarium head blight (FHB) of small grain cereals caused by Fusarium graminearum and other Fusarium species is an economically important plant disease worldwide. Fusarium infections not only result in severe yield losses but also contaminate grain with various mycotoxins, especially deoxynivalenol (DON). With the complete genome sequencing of F. graminearum, tremendous progress has been made during the past two decades toward understanding the basis for DON biosynthesis and its regulation. Here, we summarize the current understanding of DON biosynthesis and the effect of regulators, signal transduction pathways, and epigenetic modifications on DON production and the expression of biosynthetic TRI genes. In addition, strategies for controlling FHB and DON contamination are reviewed. Further studies on these biosynthetic and regulatory systems will provide useful knowledge for developing novel management strategies to prevent FHB incidence and mycotoxin accumulation in cereals.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - H Corby Kistler
- Cereal Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, Saint Paul, Minnesota 55108, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
39
|
A cytochrome P450 monooxygenase gene required for biosynthesis of the trichothecene toxin harzianum A in Trichoderma. Appl Microbiol Biotechnol 2019; 103:8087-8103. [DOI: 10.1007/s00253-019-10047-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 01/08/2023]
|
40
|
Stringlis IA, Zhang H, Pieterse CMJ, Bolton MD, de Jonge R. Microbial small molecules - weapons of plant subversion. Nat Prod Rep 2019; 35:410-433. [PMID: 29756135 DOI: 10.1039/c7np00062f] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: up to 2018 Plants live in close association with a myriad of microbes that are generally harmless. However, the minority of microbes that are pathogens can severely impact crop quality and yield, thereby endangering food security. By contrast, beneficial microbes provide plants with important services, such as enhanced nutrient uptake and protection against pests and diseases. Like pathogens, beneficial microbes can modulate host immunity to efficiently colonize the nutrient-rich niches within and around the roots and aerial tissues of a plant, a phenomenon mirroring the establishment of commensal microbes in the human gut. Numerous ingenious mechanisms have been described by which pathogenic and beneficial microbes in the plant microbiome communicate with their host, including the delivery of immune-suppressive effector proteins and the production of phytohormones, toxins and other bioactive molecules. Plants signal to their associated microbes via exudation of photosynthetically fixed carbon sources, quorum-sensing mimicry molecules and selective secondary metabolites such as strigolactones and flavonoids. Molecular communication thus forms an integral part of the establishment of both beneficial and pathogenic plant-microbe relations. Here, we review the current knowledge on microbe-derived small molecules that can act as signalling compounds to stimulate plant growth and health by beneficial microbes on the one hand, but also as weapons for plant invasion by pathogens on the other. As an exemplary case, we used comparative genomics to assess the small molecule biosynthetic capabilities of the Pseudomonas genus; a genus rich in both plant pathogenic and beneficial microbes. We highlight the biosynthetic potential of individual microbial genomes and the population at large, providing evidence for the hypothesis that the distinction between detrimental and beneficial microbes is increasingly fading. Knowledge on the biosynthesis and molecular activity of microbial small molecules will aid in the development of successful biological agents boosting crop resiliency in a sustainable manner and could also provide scientific routes to pathogen inhibition or eradication.
Collapse
Affiliation(s)
- Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum. mBio 2019; 10:mBio.00792-19. [PMID: 31186319 PMCID: PMC6561021 DOI: 10.1128/mbio.00792-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fusarium head blight caused by the fungal pathogen Fusarium graminearum is a devastating disease of cereal crops worldwide, with limited effective chemical treatments available. Here we show that the natural alkaloid compound antofine can inhibit fusarium head blight in wheat. Using yeast genomic screening, we identified the TOR pathway component RRD2 as a target of antofine that is also required for F. graminearum pathogenicity. Antofine, a phenanthroindolizidine alkaloid, is a bioactive natural product isolated from milkweeds that exhibits numerous biological activities, including anticancer, antimicrobial, antiviral, and anti-inflammatory properties. However, the direct targets and mode of action of antofine have not been determined. In this report, we show that antofine displays antifungal properties against the phytopathogen Fusarium graminearum, the cause of Fusarium head blight disease (FHB). FHB does devastating damage to agriculture, causing billions of dollars in economic losses annually. We therefore sought to understand the mode of action of antofine in F. graminearum using insights from yeast chemical genomic screens. We used haploinsufficiency profiling (HIP) to identify putative targets of antofine in yeast and identified three candidate targets, two of which had homologs in F. graminearum. The Fusarium homologues of two targets, glutamate dehydrogenase (FgGDH) and resistance to rapamycin deletion 2 (FgRRD2), can bind antofine. Of the two genes, only the Fgrrd2 knockout displayed a loss of virulence in wheat, indicating that RRD2 is an antivirulence target of antofine in F. graminearum. Mechanistically, we demonstrate that antofine disrupts the interaction between FgRRD2 and FgTap42, which is part of the Tap42-phosphatase complex in the target of rapamycin (TOR) signaling pathway, a central regulator of cell growth in eukaryotes and a pathway of extensive study for controlling numerous pathologies.
Collapse
|
42
|
Genetic regulation of aflatoxin, ochratoxin A, trichothecene, and fumonisin biosynthesis: A review. Int Microbiol 2019; 23:89-96. [DOI: 10.1007/s10123-019-00084-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
|
43
|
Sharma S, Ahmed M, Akhter Y. The molecular link between tyrosol binding to tri6 transcriptional regulator and downregulation of trichothecene biosynthesis. Biochimie 2019; 160:14-23. [DOI: 10.1016/j.biochi.2019.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
|
44
|
A phosphorylated transcription factor regulates sterol biosynthesis in Fusarium graminearum. Nat Commun 2019; 10:1228. [PMID: 30874562 PMCID: PMC6420630 DOI: 10.1038/s41467-019-09145-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/20/2019] [Indexed: 11/08/2022] Open
Abstract
Sterol biosynthesis is controlled by transcription factor SREBP in many eukaryotes. Here, we show that SREBP orthologs are not involved in the regulation of sterol biosynthesis in Fusarium graminearum, a fungal pathogen of cereal crops worldwide. Instead, sterol production is controlled in this organism by a different transcription factor, FgSR, that forms a homodimer and binds to a 16-bp cis-element of its target gene promoters containing two conserved CGAA repeat sequences. FgSR is phosphorylated by the MAP kinase FgHog1, and the phosphorylated FgSR interacts with the chromatin remodeling complex SWI/SNF at the target genes, leading to enhanced transcription. Interestingly, FgSR orthologs exist only in Sordariomycetes and Leotiomycetes fungi. Additionally, FgSR controls virulence mainly via modulating deoxynivalenol biosynthesis and responses to phytoalexin.
Collapse
|
45
|
New insights into fumonisin production and virulence of Fusarium proliferatum underlying different carbon sources. Food Res Int 2019; 116:397-407. [DOI: 10.1016/j.foodres.2018.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/08/2018] [Accepted: 08/18/2018] [Indexed: 01/09/2023]
|
46
|
Villafana RT, Ramdass AC, Rampersad SN. Selection of Fusarium Trichothecene Toxin Genes for Molecular Detection Depends on TRI Gene Cluster Organization and Gene Function. Toxins (Basel) 2019; 11:E36. [PMID: 30646506 PMCID: PMC6357111 DOI: 10.3390/toxins11010036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/15/2018] [Accepted: 01/08/2019] [Indexed: 01/07/2023] Open
Abstract
Food security is a global concern. Fusarium are among the most economically important fungal pathogens because they are ubiquitous, disease management remains a challenge, they produce mycotoxins that affect food and feed safety, and trichothecene mycotoxin production can increase the pathogenicity of some Fusarium species depending on the host species. Although trichothecenes may differ in structure by their patterns of hydroxylation or acetylation, these small changes have a significant impact on toxicity and the biological activity of these compounds. Therefore, detecting and identifying which chemotype is present in a given population are important to predicting the specific toxins that may be produced and, therefore, to evaluating the risk of exposure. Due to the challenges of inducing trichothecene production by Fusarium isolates in vitro for subsequent chemical analysis, PCR assays using gene-specific primers, either singly or in combination, designed against specific genes of the trichothecene gene cluster of multiple species of Fusarium have been developed. The establishment of TRI genotypes that potentially correspond to a specific chemotype requires examination of an information and knowledge pipeline whose critical aspects in sequential order are: (i) understanding the TRI gene cluster organization which differs according to Fusarium species under study; (ii) knowledge of the re-arrangements to the core TRI gene cluster over evolutionary time, which also differs according to Fusarium species; (iii) the functions of the TRI genes in the biosynthesis of trichothecene analogs; and (iv) based on (i)⁻(iii), selection of appropriate target TRI gene(s) for primer design in PCR amplification for the Fusarium species under study. This review, therefore, explains this pipeline and its connection to utilizing TRI genotypes as a possible proxy to chemotype designation.
Collapse
Affiliation(s)
- Ria T Villafana
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Amanda C Ramdass
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Sephra N Rampersad
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
47
|
Yun Y, Zhou X, Yang S, Wen Y, You H, Zheng Y, Norvienyeku J, Shim WB, Wang Z. Fusarium oxysporum f. sp. lycopersici C 2H 2 transcription factor FolCzf1 is required for conidiation, fusaric acid production, and early host infection. Curr Genet 2019; 65:773-783. [PMID: 30631890 DOI: 10.1007/s00294-019-00931-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 11/26/2022]
Abstract
The soil-borne, asexual fungus Fusarium oxysporum f.sp. lycopersici (Fol) is a causal agent of tomato wilt disease. The infection process of Fol comprises root recognition, adhesion, penetration, colonization of the root cortex and hyphal proliferation within the xylem vessels, which are under the regulation of virulence-involved transcription factors (TFs). In this study, we identified a gene, designated FolCZF1, which encodes a C2H2 TF in Fol. The homologs of FolCzf1 are also known to affect pathogenicity in F. graminearum and Magnaporthe oryzae on wheat and rice, respectively. We learned that FolCZF1 transcript level is upregulated in conidia and early host infection stage, which led us to hypothesize that FolCzf1 is associated with early host infection in Fol. The FolCZF1 deletion mutant (ΔFolCZF1) exhibited defects in growth rate, conidiation, conidia morphology and a complete loss of virulence on tomato root. Further microscopic observation showed that ΔFolCZF1 can penetrate the root but the primary infection hypha cannot extend its colonization inside the host tissue, suggesting that FolCzf1 TF plays an important role in early infection. Fusaric acid, a secondary metabolite produced by Fusarium species, is suggested as a virulence factor in many crop diseases. We found that FolCzf1 plays a critical role in fusaric acid production by regulating the expression of fusaric acid biosynthesis genes. In summary, FolCzf1 is required for conidiation, secondary metabolism, and early host infection in Fol, and we propose that homologs of FolCzf1 are required for early parasitic growth in other plant pathogenic filamentous fungi.
Collapse
Affiliation(s)
- Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Xin Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Wen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haixia You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuru Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Institute for Food and Drug Quality Control, Fuzhou, China
| | - Justice Norvienyeku
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Won-Bo Shim
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.
- Institute of Oceanography, Minjiang University, Fuzhou, China.
| |
Collapse
|
48
|
Fernando U, Chatur S, Joshi M, Thomas Bonner C, Fan T, Hubbard K, Chabot D, Rowland O, Wang L, Subramaniam R, Rampitsch C. Redox signalling from NADPH oxidase targets metabolic enzymes and developmental proteins in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2019; 20:92-106. [PMID: 30113774 PMCID: PMC6430467 DOI: 10.1111/mpp.12742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
NADPH oxidase (NOX) is one of the sources of reactive oxygen species (ROS) that modulates the activity of proteins through modifications of their cysteine residues. In a previous study, we demonstrated the importance of NOX in both the development and pathogenicity of the phytopathogen Fusarium graminearum. In this article, comparative proteomics between the wild-type and a Nox mutant of F. graminearum was used to identify active cysteine residues on candidate redox-sensing proteins. A two-dimensional gel approach based on labelling with monobromobimane (mBBR) identified 19 candidate proteins, and was complemented with a gel-free shotgun approach based on a biotin switch method, which yielded 99 candidates. The results indicated that, in addition to temporal regulation, a large number of primary metabolic enzymes are potentially targeted by NoxAB-generated ROS. Targeted disruption of these metabolic genes showed that, although some are dispensable, others are essential. In addition to metabolic enzymes, developmental proteins, such as the Woronin body major protein (FGSG_08737) and a glycosylphosphatidylinositol (GPI)-anchored protein (FGSG_10089), were also identified. Deletion of either of these genes reduced the virulence of F. graminearum. Furthermore, changing the redox-modified cysteine (Cys325 ) residue in FGSG_10089 to either serine or phenylalanine resulted in a similar phenotype to the FGSG_10089 knockout strain, which displayed reduced virulence and altered cell wall morphology; this underscores the importance of Cys325 to the function of the protein. Our results indicate that NOX-generated ROS act as intracellular signals in F. graminearum and modulate the activity of proteins affecting development and virulence in planta.
Collapse
Affiliation(s)
- Ursla Fernando
- Agriculture and Agrifood Canada, Morden Research & Development CentreMordenR6M 1Y5MBCanada
| | - Salima Chatur
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
| | - Manisha Joshi
- Agriculture and Agrifood Canada, Morden Research & Development CentreMordenR6M 1Y5MBCanada
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
| | - Christopher Thomas Bonner
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
- Department of BiologyCarleton UniversityOttawaK1S 5B6ONCanada
| | - Tao Fan
- Agriculture and Agrifood Canada, Morden Research & Development CentreMordenR6M 1Y5MBCanada
| | - Keith Hubbard
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
| | - Denise Chabot
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
| | - Owen Rowland
- Department of BiologyCarleton UniversityOttawaK1S 5B6ONCanada
| | - Li Wang
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
| | - Rajagopal Subramaniam
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
| | - Christof Rampitsch
- Agriculture and Agrifood Canada, Morden Research & Development CentreMordenR6M 1Y5MBCanada
| |
Collapse
|
49
|
Lindo L, McCormick SP, Cardoza RE, Kim HS, Brown DW, Alexander NJ, Proctor RH, Gutiérrez S. Role of Trichoderma arundinaceum tri10 in regulation of terpene biosynthetic genes and in control of metabolic flux. Fungal Genet Biol 2019; 122:31-46. [DOI: 10.1016/j.fgb.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/03/2023]
|
50
|
Lindo L, McCormick SP, Cardoza RE, Brown DW, Kim HS, Alexander NJ, Proctor RH, Gutiérrez S. Effect of deletion of a trichothecene toxin regulatory gene on the secondary metabolism transcriptome of the saprotrophic fungus Trichoderma arundinaceum. Fungal Genet Biol 2018; 119:29-46. [PMID: 30121242 DOI: 10.1016/j.fgb.2018.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022]
Abstract
Trichothecenes are terpenoid toxins produced by multiple fungal species with diverse lifestyles. In these fungi, the trichothecene biosynthetic gene (tri) cluster includes a gene encoding a Cys2His2 Zn-finger protein (TRI6). Analyses of plant pathogenic Fusarium species indicate that tri6 regulates tri gene expression. Here, we analyzed TRI6 function in the saprotrophic fungus Trichoderma arundinaceum, which produces the antimicrobial trichothecene harzianum A (HA). Deletion of the TRI6-encoding gene, tri6, blocked HA production and reduced expression of tri genes, and mevalonate biosynthetic genes required for synthesis of farnesyl diphosphate (FPP), the primary metabolite that feeds into trichothecene biosynthesis. In contrast, tri6 deletion did not affect expression of ergosterol biosynthetic genes required for synthesis of ergosterol from FPP, but did increase ergosterol production, perhaps because increased levels of FPP were available for ergosterol synthesis in the absence of trichothecene production. RNA-seq analyses indicated that genes in 10 of 49 secondary metabolite (SM) biosynthetic gene clusters in T. arundinaceum exhibited increased expression and five exhibited reduced expression in a tri6 deletion mutant (Δtri6). Despite the metabolic and transcriptional changes, Δtri6 mutants were not reduced in their ability to inhibit growth of fungal plant pathogens. Our results indicate that T. arundinaceum TRI6 regulates expression of both tri and mevalonate pathway genes. It remains to be determined whether the effects of tri6 deletion on expression of other SM clusters resulted because TRI6 can bind to promoter regions of cluster genes or because trichothecene production affects other SM pathways.
Collapse
Affiliation(s)
- Laura Lindo
- Area of Microbiology, University of León, Campus de Ponferrada, Ponferrada, Spain.
| | - Susan P McCormick
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, IL, United States.
| | - Rosa E Cardoza
- Area of Microbiology, University of León, Campus de Ponferrada, Ponferrada, Spain.
| | - Daren W Brown
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, IL, United States.
| | - Hye-Seon Kim
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, IL, United States.
| | - Nancy J Alexander
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, IL, United States
| | - Robert H Proctor
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, IL, United States.
| | - Santiago Gutiérrez
- Area of Microbiology, University of León, Campus de Ponferrada, Ponferrada, Spain.
| |
Collapse
|