1
|
Sgadari C, Scoppio B, Picconi O, Tripiciano A, Gaiani FM, Francavilla V, Arancio A, Campagna M, Palladino C, Moretti S, Monini P, Brambilla L, Ensoli B. Clinical Efficacy of the HIV Protease Inhibitor Indinavir in Combination with Chemotherapy for Advanced Classic Kaposi Sarcoma Treatment: A Single-Arm, Phase II Trial in the Elderly. CANCER RESEARCH COMMUNICATIONS 2024; 4:2112-2122. [PMID: 39028943 PMCID: PMC11324028 DOI: 10.1158/2767-9764.crc-24-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/04/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Kaposi sarcoma is a rare angioproliferative disease associated with human herpes virus-8 (HHV-8) infection. Kaposi sarcoma is frequent and aggressive in HIV-infected people, whereas the classic form (CKS) generally has an indolent course. Notably, all conventional therapies against Kaposi sarcoma have only temporary efficacy. We have previously shown that indinavir, a HIV protease-inhibitor with direct antiangiogenic and antitumor activity, is safe and effective in patients with early CKS, whereas effects are less prominent in advanced disease, probably due to the larger tumor mass. Therefore, the clinical response to indinavir was assessed in patients with advanced CKS after debulking chemotherapy. This was a monocentric phase 2 trial in elderly with progressive/advanced CKS treated with debulking chemotherapy and indinavir combined, followed by a maintenance phase with indinavir alone. Secondary endpoints included safety and Kaposi sarcoma biomarker evaluation.All evaluable patients (22) responded to debulking therapy. Out of these, 16 entered the indinavir maintenance phase. The overall response rate at end of maintenance was 75% (estimated median response-duration 43 months). Moreover, most responders showed further clinical improvements (lesion number/nodularity) during maintenance and post-treatment follow-up. Notably, after relapse, progressors did not require systemic Kaposi sarcoma therapy and showed clinical improvements (including disease stabilization) remaining on study. Responders also showed immune status amelioration with a consistent B-cell increase and positive changes of other biomarkers, including anti-HHV-8 natural killer activity. In advanced CKS a strategy combining indinavir and chemotherapy is safe and associated with high and durable response rates and it could be rapidly adopted for the clinical management of these patients. SIGNIFICANCE This phase-2 trial showed that the HIV protease inhibitor indinavir may boost and extend the duration of the effects of chemotherapy in elderly with advanced progressive classic Kaposi sarcoma, without additional toxicity. Further, the amelioration of the immune status seen in responders suggests a better control of HHV-8 infection and tumor-cell killing. Thus, indinavir combined with chemotherapy may represent an important tool for the clinical management of classic Kaposi sarcoma in elderly patients.
Collapse
Affiliation(s)
- Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Biancamaria Scoppio
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Francesca Maria Gaiani
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | | | - Angela Arancio
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Massimo Campagna
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Clelia Palladino
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Lucia Brambilla
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
2
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Roe K. Immunoregulatory natural killer cells. Clin Chim Acta 2024; 558:117896. [PMID: 38583553 DOI: 10.1016/j.cca.2024.117896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
This review discusses a broader scope of functional roles for NK cells. Despite the well-known cytolytic and inflammatory roles of NK cells against tumors and pathogenic diseases, extensive evidence demonstrates certain subsets of NK cells have defacto immunoregulatory effects and have a role in inducing anergy or lysis of antigen-activated T cells and regulating several autoimmune diseases. Furthermore, recent evidence suggests certain subsets of immunoregulatory NK cells can cause anergy or lysis of antigen-activated T cells to regulate hyperinflammatory diseases, including multisystem inflammatory syndrome. Several pathogens induce T cell and NK cell exhaustion and/or suppression, which impair the immune system's control of the replication speed of virulent pathogens and tumors and result in extensive antigens and antigen-antibody immune complexes, potentially inducing to some extent a Type III hypersensitivity immune reaction. The Type III hypersensitivity immune reaction induces immune cell secretion of proteinases, which can cleave specific proteins to create autoantigens which activate T cells to initiate autoimmune and/or hyperinflammatory diseases. Furthermore, pathogen induced NK cell exhaustion and/or suppression will inhibit NK cells which would have induced the anergy or lysis of activated T cells to regulate autoimmune and hyperinflammatory diseases. Autoimmune and hyperinflammatory diseases can be consequences of the dual lymphocyte exhaustion and/or suppression effects during infections, by creating autoimmune and/or hyperinflammatory diseases, while also impairing immunoregulatory lymphocytes which otherwise would have regulated these diseases.
Collapse
Affiliation(s)
- Kevin Roe
- Retired USPTO, San Jose, CA, United States of America.
| |
Collapse
|
4
|
Palmer WH, Norman PJ. The impact of HLA polymorphism on herpesvirus infection and disease. Immunogenetics 2023; 75:231-247. [PMID: 36595060 PMCID: PMC10205880 DOI: 10.1007/s00251-022-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Human Leukocyte Antigens (HLA) are cell surface molecules, central in coordinating innate and adaptive immune responses, that are targets of strong diversifying natural selection by pathogens. Of these pathogens, human herpesviruses have a uniquely ancient relationship with our species, where coevolution likely has reciprocating impact on HLA and viral genomic diversity. Consistent with this notion, genetic variation at multiple HLA loci is strongly associated with modulating immunity to herpesvirus infection. Here, we synthesize published genetic associations of HLA with herpesvirus infection and disease, both from case/control and genome-wide association studies. We analyze genetic associations across the eight human herpesviruses and identify HLA alleles that are associated with diverse herpesvirus-related phenotypes. We find that whereas most HLA genetic associations are virus- or disease-specific, HLA-A*01 and HLA-A*02 allotypes may be more generally associated with immune susceptibility and control, respectively, across multiple herpesviruses. Connecting genetic association data with functional corroboration, we discuss mechanisms by which diverse HLA and cognate receptor allotypes direct variable immune responses during herpesvirus infection and pathogenesis. Together, this review examines the complexity of HLA-herpesvirus interactions driven by differential T cell and Natural Killer cell immune responses.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| |
Collapse
|
5
|
Co-Infection of the Epstein-Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus. Viruses 2022; 14:v14122709. [PMID: 36560713 PMCID: PMC9782805 DOI: 10.3390/v14122709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The two human tumor viruses, Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future.
Collapse
|
6
|
Dalla-Pozza P, Hentzien M, Allavena C, Doe de Maindreville A, Bouiller K, Valantin MA, Lafont E, Zaegel-Faucher O, Cheret A, Martin-Blondel G, Cotte L, Bani-Sadr F. Progressive multifocal leukoencephalopathy in patients with immunovirological control and at least 6 months of combination antiretroviral therapy. AIDS 2022; 36:539-549. [PMID: 34873087 DOI: 10.1097/qad.0000000000003145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES AND METHODS : Progressive multifocal leukoencephalopathy (PML) has rarely been reported in people with HIV (PWH) with long-term HIV immune-virological control. We describe the clinical and biological characteristics of patients with confirmed PML among PWH with a CD4+ cell count more than 200 cells/μl and an undetectable HIV RNA viral load after at least 6 months of combined antiretroviral therapy (cART) at the time of PML diagnosis, in the large French multicenter Dat'AIDS cohort. RESULTS : Among 571 diagnoses of PML reported in the Dat'AIDS cohort between 2000 and 2019, 10 cases (1.75%) occurred in PWH with a CD4+ cell count greater than 200 cells/μl and an undetectable HIV RNA viral load after at least 6 months of cART. Median CD4+ cell count at PML diagnosis was 395 cells/μl (IQR 310-477). The median duration between the last detectable HIV viral load and the PML diagnosis was 41.1 months (IQR 8.2-67.4). Only one patient treated with rituximab-based chemotherapy for a large B-cell lymphoma had an established risk factor for PML. Among the nine other patients with no apparent severe immunodeficiency, multiple factors of impaired immunity could have led to the development of PML: hepatitis C virus (HCV) co-infection (n = 6), cirrhosis (n = 4), HHV-8 co-infection (n = 3) with Kaposi's sarcoma (n = 2) in association with Castleman's disease (n = 1) and indolent IgA multiple myeloma (n = 1). CONCLUSION : This study highlights that factors other than low CD4+ cell count and high HIV viral load may be associated with the occurrence of PML. Further studies are warranted to investigate in greater detail the immunologic characteristics of PWH with immune-virological control who develop PML.
Collapse
Affiliation(s)
- Paul Dalla-Pozza
- Department of Internal Medicine, Clinical Immunology and Infectious Diseases, Robert Debré Hospital, University Hospital of Reims
| | - Maxime Hentzien
- Department of Internal Medicine, Clinical Immunology and Infectious Diseases, Robert Debré Hospital, University Hospital of Reims
| | - Clotilde Allavena
- Department of Infectious Diseases, University Hospital of Nantes, Nantes
| | | | - Kévin Bouiller
- Department of Infectious Diseases, University Hospital of Besancon
| | - Marc-Antoine Valantin
- Department of Infectious Diseases, Pitié-Salpêtrière Hospital, Assistance Publique des Hôpitaux de Paris
| | - Emmanuel Lafont
- Department of Infectious Diseases, Necker Hospital, Assistance Publique des Hôpitaux de Paris, Paris
| | - Olivia Zaegel-Faucher
- Department of Immunology and Hematology, Sainte-Marguerite Hospital, Assistance Publique des Hôpitaux de Marseille, Marseille
| | - Antoine Cheret
- Department of Internal Medicine, Kremlin Bicêtre Hospital, Assistance Publique des Hôpitaux de Paris, Bicêtre
| | - Guillaume Martin-Blondel
- Department of Infectious Diseases, University Hospital of Toulouse, Toulouse, France and Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse
| | - Laurent Cotte
- Department of Infectious Diseases, Croix-Rousse Hospital, Hospices Civils de Lyon, and INSERM U1052, Lyon
| | - Firouzé Bani-Sadr
- Department of Internal Medicine, Clinical Immunology and Infectious Diseases, Robert Debré Hospital, University Hospital of Reims
- University of Reims Champagne-Ardenne, EA-4684/SFR CAP-SANTE, Reims, F-51095, France
| |
Collapse
|
7
|
Abbasi B, Shamsasenjan K, Ahmadi M, Beheshti SA, Saleh M. Mesenchymal stem cells and natural killer cells interaction mechanisms and potential clinical applications. Stem Cell Res Ther 2022; 13:97. [PMID: 35255980 PMCID: PMC8900412 DOI: 10.1186/s13287-022-02777-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/09/2021] [Indexed: 12/29/2022] Open
Abstract
Natural killer cells (NK cells) are innate immune cells that are activated to fight tumor cells and virus-infected cells. NK cells also play an important role in the graft versus leukemia response. However, they can over-develop inflammatory reactions by secreting inflammatory cytokines and increasing Th1 differentiation, eventually leading to tissue damage. Today, researchers have attributed some autoimmune diseases and GVHD to NK cells. On the other hand, it has been shown that mesenchymal stem cells (MSCs) can modulate the activity of NK cells, while some researchers have shown that NK cells can cause MSCs to lysis. Therefore, we considered it is necessary to investigate the effect of these two cells and their signaling pathway in contact with each other, also their clinical applications.
Collapse
Affiliation(s)
- Batol Abbasi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedeh Ameneh Beheshti
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
PD-1 blockade with pembrolizumab in classic or endemic Kaposi's sarcoma: a multicentre, single-arm, phase 2 study. Lancet Oncol 2022; 23:491-500. [DOI: 10.1016/s1470-2045(22)00097-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/26/2022]
|
9
|
Münz C. Natural killer cell responses to human oncogenic γ-herpesvirus infections. Semin Immunol 2022; 60:101652. [PMID: 36162228 DOI: 10.1016/j.smim.2022.101652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 01/15/2023]
Abstract
The two γ-herpesviruses Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are each associated with more than 1% of all tumors in humans. While EBV establishes persistent infection in nearly all adult individuals, KSHV benefits from this widespread EBV prevalence for its own persistence. Interestingly, EBV infection expands early differentiated NKG2A+KIR- NK cells that protect against lytic EBV infection, while KSHV co-infection drives accumulation of poorly functional CD56-CD16+ NK cells. Thus persistent γ-herpesvirus infections are sculptors of human NK cell repertoires and the respectively stimulated NK cell subsets should be considered for immunotherapies of EBV and KSHV associated malignancies.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
10
|
Kim N, Yi E, Kwon SJ, Park HJ, Kwon HJ, Kim HS. Filamin A Is Required for NK Cell Cytotoxicity at the Expense of Cytokine Production via Synaptic Filamentous Actin Modulation. Front Immunol 2022; 12:792334. [PMID: 35058930 PMCID: PMC8764188 DOI: 10.3389/fimmu.2021.792334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that efficiently eliminate malignant and virus-infected cells without prior activation via the directed and focused release of lytic granule contents for target cell lysis. This cytolytic process is tightly regulated at discrete checkpoint stages to ensure the selective killing of diseased target cells and is highly dependent on the coordinated regulation of cytoskeletal components. The actin-binding protein filamin crosslinks cortical actin filaments into orthogonal networks and links actin filament webs to cellular membranes to modulate cell migration, adhesion, and signaling. However, its role in the regulation of NK cell functions remains poorly understood. Here, we show that filamin A (FLNa), a filamin isoform with preferential expression in leukocytes, is recruited to the NK cell lytic synapse and is required for NK cell cytotoxicity through the modulation of conjugate formation with target cells, synaptic filamentous actin (F-actin) accumulation, and cytotoxic degranulation, but not granule polarization. Interestingly, we also find that the loss of FLNa augments the target cell-induced expression of IFN-γ and TNF-α by NK cells, correlating with enhanced activation signals such as Ca2+ mobilization, ERK, and NF-κB, and a delayed down-modulation of the NKG2D receptor. Thus, our results identify FLNa as a new regulator of NK cell effector functions during their decision to kill target cells through a balanced regulation of NK cell cytotoxicity vs cytokine production. Moreover, this study implicates the cross-linking/bundling of F-actin mediated by FLNa as a necessary process coordinating optimal NK effector functions.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eunbi Yi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soon Jae Kwon
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Jin Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyung-Joon Kwon
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hun Sik Kim
- Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Flores-Gonzalez J, Ramon-Luing LA, Ocaña-Guzman R, Buendia-Roldan I, Islas-Muñoz B, Volkow-Fernández P, Chavez-Galan L. Valganciclovir as Add-On Therapy Modifies the Frequency of NK and NKT Cell Subpopulations in Disseminated Kaposi Sarcoma Patients. Cancers (Basel) 2022; 14:cancers14020412. [PMID: 35053573 PMCID: PMC8773484 DOI: 10.3390/cancers14020412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Kaposi sarcoma is one disease that develops in people living with HIV with severe immunosuppression and impacts morbidity and associated mortality. This disease is currently treated with antiretroviral therapy and chemotherapy agents that can further contribute to immunosuppression in patients. Thus, searching for new therapies to induce a robust immune system activation in these patients is necessary. Herein, the frequency and phenotype of natural killer subpopulation cells in people living with HIV with Kaposi sarcoma were evaluated. After KS diagnosis, patients started antiretroviral therapy or valganciclovir plus antiretroviral therapy. Results showed that in patients treated with valganciclovir plus antiretroviral therapy, the expression of CD57 and CD27 proteins on natural killer cells was regulated, enhancing the immune response of the study cohort. This finding contributes to understanding more about the immune response of people living with HIV with Kaposi sarcoma. Abstract Human herpesvirus-8 infection (HHV-8) is the causative agent of Kaposi sarcoma (KS) and is highly prevalent among people living with HIV (KS/HIV). It has been reported that valganciclovir (VGC) reduces HHV-8 replication in KS/HIV patients. However, currently it is unclear if VGC modifies the frequency and induces changes in markers of immune regulation of immune cells necessary to eliminate HHV8-infected cells, such as Natural Killer (NK) and NK T cells (NKT). This study evaluated the effect of VGC used as antiviral HHV8 therapy in KS patients on the frequency of NK and NKT subpopulations based on the CD27 and CD57 expression, and the immunosenescence markers, PD-1 and KLRG1. Twenty KS/HIV patients were followed-up at baseline (W0), 4 (W4), and 12 weeks (W12) of the study protocol. Among them, 10 patients received a conventional treatment scheme (CT), solely antiretroviral therapy (ART), and 10 patients received a modified treatment regime (MT), including VGC plus ART. In both groups, bleomycin/vincristine was administrated according to the treating physician’s decision. The soluble levels of IL-15, PD-L1, PD-L2, and E-cadherin were quantified across the follow-up. Our results showed that the higher IL-15 levels and lower NK frequencies cells in KS/HIV patients reach almost normal values with both treatments regimes at W12. CD27+ NK and NKT cell frequencies increased since W4 on KS/HIV patients with MT. Furthermore, PD-1 expression decreased while KLRG1 increased on NK and NKT subpopulations at W12, and it is accompanied by increased PD-L1 plasma level since W4. Our study highlights the disruption of NK and NKT subpopulations in patients with KS/HIV and explores VGC treatment’s contribution to immune reconstitution during the first weeks of treatment.
Collapse
Affiliation(s)
- Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (J.F.-G.); (L.A.R.-L.); (R.O.-G.)
| | - Lucero A. Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (J.F.-G.); (L.A.R.-L.); (R.O.-G.)
| | - Ranferi Ocaña-Guzman
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (J.F.-G.); (L.A.R.-L.); (R.O.-G.)
| | - Ivette Buendia-Roldan
- Laboratory of Translational Research in Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Beda Islas-Muñoz
- Infectious Diseases Department, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (B.I.-M.); (P.V.-F.)
| | - Patricia Volkow-Fernández
- Infectious Diseases Department, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (B.I.-M.); (P.V.-F.)
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (J.F.-G.); (L.A.R.-L.); (R.O.-G.)
- Correspondence: or ; Tel.: +52-555-487-1700 (ext. 5270)
| |
Collapse
|
12
|
Jary A, Veyri M, Gothland A, Leducq V, Calvez V, Marcelin AG. Kaposi's Sarcoma-Associated Herpesvirus, the Etiological Agent of All Epidemiological Forms of Kaposi's Sarcoma. Cancers (Basel) 2021; 13:cancers13246208. [PMID: 34944828 PMCID: PMC8699694 DOI: 10.3390/cancers13246208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Kaposi’s sarcoma-associated herpesvirus (KSHV) is one of the seven oncogenic viruses currently recognized by the International Agency for Research on Cancer. Its presence for Kaposi’s sarcoma development is essential and knowledge on the oncogenic process has increased since its discovery in 1994. However, some uncertainties remain to be clarified, in particular on the exact routes of transmission and disparities in KSHV seroprevalence and the prevalence of Kaposi’s sarcoma worldwide. Here, we summarized the current data on the KSHV viral particle’s structure, its genome, the replication, its seroprevalence, the viral diversity and the lytic and latent oncogenesis proteins involved in Kaposi’s sarcoma. Lastly, we reported the environmental, immunological and viral factors possibly associated with KSHV transmission that could also play a role in the development of Kaposi’s sarcoma. Abstract Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is an oncogenic virus belonging to the Herpesviridae family. The viral particle is composed of a double-stranded DNA harboring 90 open reading frames, incorporated in an icosahedral capsid and enveloped. The viral cycle is divided in the following two states: a short lytic phase, and a latency phase that leads to a persistent infection in target cells and the expression of a small number of genes, including LANA-1, v-FLIP and v-cyclin. The seroprevalence and risk factors of infection differ around the world, and saliva seems to play a major role in viral transmission. KSHV is found in all epidemiological forms of Kaposi’s sarcoma including classic, endemic, iatrogenic, epidemic and non-epidemic forms. In a Kaposi’s sarcoma lesion, KSHV is mainly in a latent state; however, a small proportion of viral particles (<5%) are in a replicative state and are reported to be potentially involved in the proliferation of neighboring cells, suggesting they have crucial roles in the process of tumorigenesis. KSHV encodes oncogenic proteins (LANA-1, v-FLIP, v-cyclin, v-GPCR, v-IL6, v-CCL, v-MIP, v-IRF, etc.) that can modulate cellular pathways in order to induce the characteristics found in all cancer, including the inhibition of apoptosis, cells’ proliferation stimulation, angiogenesis, inflammation and immune escape, and, therefore, are involved in the development of Kaposi’s sarcoma.
Collapse
Affiliation(s)
- Aude Jary
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
- Correspondence: ; Tel.: +33-1-4217-7401
| | - Marianne Veyri
- Service d’Oncologie Médicale, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France;
| | - Adélie Gothland
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Valentin Leducq
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Vincent Calvez
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Anne-Geneviève Marcelin
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| |
Collapse
|
13
|
Song AY, Kim H, Kim JM, Hwang SH, Ko DH, Kim HS. Bispecific Antibody Designed for Targeted NK Cell Activation and Functional Assessment for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42370-42381. [PMID: 34486371 DOI: 10.1021/acsami.1c08986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural killer (NK) cells serve as key innate effectors and their activity has been considered a prognostic biomarker in diverse human diseases. Currently, NK cell functional assays have several problems primarily related to adequate preparation, labeling, or treatment of target cells, which are cumbersome and often hamper consistent sensitivity for NK cells. Here, bispecific antibodies (BsAb's) targeting NKG2D and 2B4 receptors, whose combination mounts selective cytotoxicity and IFN-γ production of NK cells, are developed as acellular, consistent, and easy-to-use strategies for assessing NK cell functions. These NK cell activator BsAb's (NKABs) are constructed in symmetric dual bivalent formats with different interdomain spacings [immunoglobulin G (IgG)-single-chain variable fragment (scFv) and dual-variable domain (DVD)-Ig] and kappa constant (Cκ)-scFv format linking two scFv's with a Cκ domain. These NKABs are specific and superior to a combination of monospecific antibodies for NK cell activation. NKAB elicits both direct cytotoxicity and IFN-γ production via integration of NKG2D and 2B4 signals. Moreover, stimulation with NKAB IgG-scFv and Cκ-scFv reveals defective NK cell functions in X-linked lymphoproliferative disease involving 2B4 dysfunction in NK cells and multiple myeloma in peripheral blood mononuclear cells and whole blood, respectively. Hence, this work provides a proof of concept that NKAB facilitates the reliable and comprehensive measurement of NK cell function in clinical settings for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Ah-Young Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyori Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jung Min Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dae-Hyun Ko
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
14
|
Natural Killer Cell Responses during Human γ-Herpesvirus Infections. Vaccines (Basel) 2021; 9:vaccines9060655. [PMID: 34203904 PMCID: PMC8232711 DOI: 10.3390/vaccines9060655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Herpesviruses are main sculptors of natural killer (NK) cell repertoires. While the β-herpesvirus human cytomegalovirus (CMV) drives the accumulation of adaptive NKG2C-positive NK cells, the human γ-herpesvirus Epstein–Barr virus (EBV) expands early differentiated NKG2A-positive NK cells. While adaptive NK cells support adaptive immunity by antibody-dependent cellular cytotoxicity, NKG2A-positive NK cells seem to preferentially target lytic EBV replicating B cells. The importance of this restriction of EBV replication during γ-herpesvirus pathogenesis will be discussed. Furthermore, the modification of EBV-driven NK cell expansion by coinfections, including by the other human γ-herpesvirus Kaposi sarcoma-associated herpesvirus (KSHV), will be summarized.
Collapse
|
15
|
KSHV infection drives poorly cytotoxic CD56-negative natural killer cell differentiation in vivo upon KSHV/EBV dual infection. Cell Rep 2021; 35:109056. [PMID: 33951431 DOI: 10.1016/j.celrep.2021.109056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/29/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus infections shape the human natural killer (NK) cell compartment. While Epstein-Barr virus (EBV) expands immature NKG2A+ NK cells, human cytomegalovirus (CMV) drives accumulation of adaptive NKG2C+ NK cells. Kaposi sarcoma-associated herpesvirus (KSHV) is a close relative of EBV, and both are associated with lymphomas, including primary effusion lymphoma (PEL), which nearly always harbors both viruses. In this study, KSHV dual infection of mice with reconstituted human immune system components leads to the accumulation of CD56-CD16+CD38+CXCR6+ NK cells. CD56-CD16+ NK cells were also more frequently found in KSHV-seropositive Kenyan children. This NK cell subset is poorly cytotoxic against otherwise-NK-cell-susceptible and antibody-opsonized targets. Accordingly, NK cell depletion does not significantly alter KSHV infection in humanized mice. These data suggest that KSHV might escape NK-cell-mediated immune control by driving CD56-CD16+ NK cell differentiation.
Collapse
|
16
|
Salimi-Jeda A, Badrzadeh F, Esghaei M, Abdoli A. The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat Res Commun 2021; 27:100323. [PMID: 33530025 DOI: 10.1016/j.ctarc.2021.100323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is an enzyme that is critically involved in elongating and maintaining telomeres length to control cell life span and replicative potential. Telomerase activity is continuously expressed in human germ-line cells and most cancer cells, whereas it is suppressed in most somatic cells. In normal cells, by reducing telomerase activity and progressively shortening the telomeres, the cells progress to the senescence or apoptosis process. However, in cancer cells, telomere lengths remain constant due to telomerase's reactivation, and cells continue to proliferate and inhibit apoptosis, and ultimately lead to cancer development and human death due to metastasis. Studies demonstrated that several DNA and RNA oncoviruses could interact with telomerase by integrating their genome sequence within the host cell telomeres specifically. Through the activation of the hTERT promoter and lengthening the telomere, these cells contributes to cancer development. Since oncoviruses can activate telomerase and increase hTERT expression, there are several therapeutic strategies based on targeting the telomerase of cancer cells like telomerase-targeted peptide vaccines, hTERT-targeting dendritic cells (DCs), hTERT-targeting gene therapy, and hTERT-targeting CRISPR/Cas9 system that can overcome tumor-mediated toleration mechanisms and specifically apoptosis in cancer cells. This study reviews available data on the molecular structure of telomerase and the role of oncoviruses and telomerase interaction in cancer development and telomerase-dependent therapeutic approaches to conquest the cancer cells.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Badrzadeh
- Faculti of Medicine, Golestan University of Medical sciences, Golestan, Iran.
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
17
|
Prospects for NK Cell Therapy of Sarcoma. Cancers (Basel) 2020; 12:cancers12123719. [PMID: 33322371 PMCID: PMC7763692 DOI: 10.3390/cancers12123719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Sarcomas are a group of aggressive tumors originating from mesenchymal tissues. Patients with advanced disease have poor prognosis due to the ineffectiveness of current treatment protocols. A subset of lymphocytes called natural killer (NK) cells is capable of effective surveillance and clearance of sarcomas, constituting a promising tool for immunotherapeutic treatment. However, sarcomas can cause impairment in NK cell function, associated with enhanced tumor growth and dissemination. In this review, we discuss the molecular mechanisms of sarcoma-mediated suppression of NK cells and their implications for the design of novel NK cell-based immunotherapies against sarcoma. Abstract Natural killer (NK) cells are innate lymphoid cells with potent antitumor activity. One of the most NK cell cytotoxicity-sensitive tumor types is sarcoma, an aggressive mesenchyme-derived neoplasm. While a combination of radical surgery and radio- and chemotherapy can successfully control local disease, patients with advanced sarcomas remain refractory to current treatment regimens, calling for novel therapeutic strategies. There is accumulating evidence for NK cell-mediated immunosurveillance of sarcoma cells during all stages of the disease, highlighting the potential of using NK cells as a therapeutic tool. However, sarcomas display multiple immunoevasion mechanisms that can suppress NK cell function leading to an uncontrolled tumor outgrowth. Here, we review the current evidence for NK cells’ role in immune surveillance of sarcoma during disease initiation, promotion, progression, and metastasis, as well as the molecular mechanisms behind sarcoma-mediated NK cell suppression. Further, we apply this basic understanding of NK–sarcoma crosstalk in order to identify and summarize the most promising candidates for NK cell-based sarcoma immunotherapy.
Collapse
|
18
|
Domagala J, Lachota M, Klopotowska M, Graczyk-Jarzynka A, Domagala A, Zhylko A, Soroczynska K, Winiarska M. The Tumor Microenvironment-A Metabolic Obstacle to NK Cells' Activity. Cancers (Basel) 2020; 12:cancers12123542. [PMID: 33260925 PMCID: PMC7761432 DOI: 10.3390/cancers12123542] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
NK cells have unique capabilities of recognition and destruction of tumor cells, without the requirement for prior immunization of the host. Maintaining tolerance to healthy cells makes them an attractive therapeutic tool for almost all types of cancer. Unfortunately, metabolic changes associated with malignant transformation and tumor progression lead to immunosuppression within the tumor microenvironment, which in turn limits the efficacy of various immunotherapies. In this review, we provide a brief description of the metabolic changes characteristic for the tumor microenvironment. Both tumor and tumor-associated cells produce and secrete factors that directly or indirectly prevent NK cell cytotoxicity. Here, we depict the molecular mechanisms responsible for the inhibition of immune effector cells by metabolic factors. Finally, we summarize the strategies to enhance NK cell function for the treatment of tumors.
Collapse
Affiliation(s)
- Joanna Domagala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Marta Klopotowska
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Antoni Domagala
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland;
- Department of Urology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Karolina Soroczynska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Correspondence: ; Tel.: +48-225-992-199
| |
Collapse
|
19
|
Cells of the Innate and Adaptive Immune Systems in Kaposi's Sarcoma. J Immunol Res 2020; 2020:8852221. [PMID: 33294468 PMCID: PMC7700054 DOI: 10.1155/2020/8852221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 01/16/2023] Open
Abstract
Kaposi's sarcoma (KS) is an angioproliferative malignancy whose associated etiologic agent is the Kaposi's sarcoma-associated herpesvirus (KSHV). KS is the most prevalent malignancy among HIV-infected individuals globally and is considered an AIDS-defining malignancy. The different forms of KS including HIV-associated KS, iatrogenic (immunosuppression-related) KS, and classical KS in elderly males suggest that immune cell dysregulation is among the key components in promoting KS development in KSHV-infected individuals. It is therefore expected that different cell types of the immune system likely play distinct roles in promoting or inhibiting KS development. This narrative review is focused on discussing cells of the innate and adaptive immune systems in KSHV infection and KS pathogenesis, including how these cells can be useful in the control of KSHV infection and treatment of KS.
Collapse
|
20
|
Poppe LK, Wood C, West JT. The Presence of Antibody-Dependent Cell Cytotoxicity-Mediating Antibodies in Kaposi Sarcoma-Associated Herpesvirus-Seropositive Individuals Does Not Correlate with Disease Pathogenesis or Progression. THE JOURNAL OF IMMUNOLOGY 2020; 205:2742-2749. [PMID: 32998986 DOI: 10.4049/jimmunol.2000489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/04/2020] [Indexed: 01/29/2023]
Abstract
Although the immune response is likely to play a pivotal role in controlling Kaposi sarcoma (KS)-associated herpesvirus (KSHV) and preventing disease development, the exact factors responsible for that control remain ill defined. T cell responses are weak and variable, and neutralizing Abs are more frequently detected in individuals with KS. This suggests a potential role for nonneutralizing Abs, which to date have been largely uninvestigated. Ab-dependent cell cytotoxicity (ADCC) is a common effector function for nonneutralizing Abs and is known to play a protective role in other herpesvirus infections; yet, ADCC has never been investigated in the context of KSHV infection. In this study, we provide, to our knowledge, the first evidence that anti-KSHV Abs are capable of mediating ADCC responses against infected human cells undergoing lytic reactivation. ADCC activity significantly higher than seronegative controls was detected in 24 of 68 KSHV-seropositive individuals tested. However, ADCC responses were not associated with KS development or progression. ADCC activity was also found to be independent of HIV status, sex, age, KSHV Ab titer, and KSHV-neutralizing activity. Nevertheless, additional investigations into effector cell function between KS and asymptomatic individuals are needed to determine whether ADCC has a role in preventing KS.
Collapse
Affiliation(s)
- Lisa K Poppe
- Nebraska Center for Virology, Lincoln, NE 68583.,School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583; and
| | - Charles Wood
- Nebraska Center for Virology, Lincoln, NE 68583.,School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583; and.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - John T West
- Nebraska Center for Virology, Lincoln, NE 68583; .,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
21
|
Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D. Overview of biological mechanisms of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:288-359. [PMID: 31631808 DOI: 10.1080/10937404.2019.1643539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.
Collapse
Affiliation(s)
- Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mustafa Al-Zoughool
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A Baan
- International Agency for Research on Cancer, Lyon, France
| | - Jan Zielinski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| |
Collapse
|
22
|
Frutoso M, Mortier E. NK Cell Hyporesponsiveness: More Is Not Always Better. Int J Mol Sci 2019; 20:ijms20184514. [PMID: 31547251 PMCID: PMC6770168 DOI: 10.3390/ijms20184514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
Natural Killer (NK) cells are a type of cytotoxic lymphocytes that play an important role in the innate immune system. They are of particular interest for their role in elimination of intracellular pathogens, viral infection and tumor cells. As such, numerous strategies are being investigated in order to potentiate their functions. One of these techniques aims at promoting the function of their activating receptors. However, different observations have revealed that providing activation signals could actually be counterproductive and lead to NK cells’ hyporesponsiveness. This phenomenon can occur during the NK cell education process, under pathological conditions, but also after treatment with different agents, including cytokines, that are promising tools to boost NK cell function. In this review, we aim to highlight the different circumstances where NK cells become hyporesponsive and the methods that could be used to restore their functionality.
Collapse
Affiliation(s)
- Marie Frutoso
- CRCINA, CNRS, Inserm, University of Nantes, F-44200 Nantes, France.
- LabEX IGO, Immuno-Onco-Greffe, Nantes, France.
| | - Erwan Mortier
- CRCINA, CNRS, Inserm, University of Nantes, F-44200 Nantes, France.
- LabEX IGO, Immuno-Onco-Greffe, Nantes, France.
| |
Collapse
|
23
|
Jun E, Song AY, Choi JW, Lee HH, Kim MY, Ko DH, Kang HJ, Kim SW, Bryceson Y, Kim SC, Kim HS. Progressive Impairment of NK Cell Cytotoxic Degranulation Is Associated With TGF-β1 Deregulation and Disease Progression in Pancreatic Cancer. Front Immunol 2019; 10:1354. [PMID: 31281312 PMCID: PMC6598013 DOI: 10.3389/fimmu.2019.01354] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/29/2019] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells are key effectors in cancer immunosurveillance and can be used as a prognostic biomarker in diverse cancers. Nonetheless, the role of NK cells in pancreatic cancer (PC) remains elusive, given conflicting data on their association with disease prognosis. In this study, using conventional K562 target cells and complementary engineered target cells providing defined and synergistic stimulation for NK cell activation, a correlation between impaired NK cell cytotoxic degranulation and PC progression was determined. Peripheral blood mononuclear cells (PBMCs) from 31 patients with newly diagnosed PC, 24 patients with non-malignant tumors, and 37 healthy controls were analyzed by flow cytometry. The frequency, phenotype, and effector functions of the NK cells were evaluated, and correlations between NK cell functions and disease stage and prognosis were analyzed. The results demonstrated that effector functions, but not frequency, of NK cells was progressively decreased on a per-cell basis during PC progression. Impaired cytotoxic degranulation, but not IFN-γ production, was associated with clinical features indicating disease progression, such as high serum CA19-9 and high-grade tumors. Significantly, this impairment correlated with cancer recurrence and mortality in a prospective analysis. Furthermore, the impaired cytotoxic degranulation was unrelated to NKG2D downregulation but was associated with increased circulating and tumor-associated TGF-β1 expression. Thus, NK cell cytotoxic activity was associated with PC progression and may be a favorable biomarker with predictive and prognostic value in PC.
Collapse
Affiliation(s)
- Eunsung Jun
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Convergence Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ah Young Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Wan Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyeon Ho Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Yeon Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dae-Hyun Ko
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Jeong Kang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seong Who Kim
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yenan Bryceson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Bisceglia M, Minenna E, Altobella A, Sanguedolce F, Panniello G, Bisceglia S, Ben-Dor DJ. Anaplastic Kaposi's Sarcoma of the Adrenal in an HIV-negative Patient With Literature Review. Adv Anat Pathol 2019; 26:133-149. [PMID: 30212382 DOI: 10.1097/pap.0000000000000213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kaposi's sarcoma (KS) is a peculiar tumor of viral etiology, with the HHV8 rhadinovirus playing a fundamental role in its development. Several epidemiological categories of KS have been identified, of which the sporadic, endemic, iatrogenic, and the epidemic are the main ones. Several histologic disease morphologies have been described, such as inflammatory, angiomatous, spindle cell, mixed, and the anaplastic (sarcomatous) subtypes. The skin of the limbs is most commonly affected, but any other organ or site may be involved. Microscopically KS may enter the differential diagnosis with several different entities, and for this purpose the immunohistochemical detection of the viral latent nuclear antigen-1 (LNA-1) may be crucial. Sporadic KS is usually benign, but rarely it may be aggressive. Anaplastic histology heralds an ominous course in any clinical context. We report a case of anaplastic retroperitoneal KS, occurring in an HIV-negative adult man. This patient presented with a huge left suprarenal mass, which was totally resected, and initially diagnosed as inflammatory leiomyosarcoma, because of the monomorphic spindle cell tumor morphology. After 12 years the tumor recurred locally as an unresectable mass, which was biopsied and examined. At the time of recurrence, the histologic slides of the primary tumor were reviewed, and the previous diagnosis was changed to that of atypical KS. Histologically the recurrent tumor showed both spindle cell and epithelioid appearances. Strongly diffuse HHV8/LAN-1 immunopositivity was documented in both tumors. The final diagnosis for the entire case was anaplastic KS. Then, the patient died in a few months.
Collapse
Affiliation(s)
- Michele Bisceglia
- Department of Anatomic Pathology, School of Biomedical Sciences, Etromapmax Pole, Lesina (FG)
| | - Elena Minenna
- Department of Medical and Surgical Sciences, School of Allergology and Clinical Immunology, University of Foggia
| | | | | | | | - Stefano Bisceglia
- Department of Emergency Medicine, Polyclinic of Modena, Modena, Italy
| | - David J Ben-Dor
- Department of Pathology, The Barzilai Medical Center, Ashkelon, Israel
| |
Collapse
|
25
|
Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, Wang Y, Xiong F, Guo C, Li Y, Li X, Li G, Zeng Z, Xiong W, Wang F. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer 2019; 18:29. [PMID: 30813924 PMCID: PMC6391774 DOI: 10.1186/s12943-019-0956-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
The immune system plays important roles in tumor development. According to the immune-editing theory, immune escape is the key to tumor survival, and exploring the mechanisms of tumor immune escape can provide a new basis for the treatment of tumors. In this review, we describe the mechanisms of natural killer group 2D (NKG2D) receptor and NKG2D ligand (NKG2DL) in tumor immune responses. Natural killer (NK) cells are important cytotoxic cells in the immune system, and the activated NKG2D receptor on the NK cell surface can bind to NKG2DL expressed in tumor cells, enabling NK cells to activate and kill tumor cells. However, tumors can escape the immune clearance mediated by NKG2D receptor/NKG2DL through various mechanisms. The expression of NKG2D receptor on NK cells can be regulated by cells, molecules, and hypoxia in the tumor microenvironment. Tumor cells regulate the expression of NKG2DL at the level of transcription, translation, and post-translation and thereby escape recognition by NK cells. In particular, viruses and hormones have special mechanisms to affect the expression of NKG2D receptor and NKG2DL. Therefore, NKG2D\NKG2DL may have applications as targets for more effective antitumor therapy.
Collapse
Affiliation(s)
- Shixin Duan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Guo
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zuxing Xu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yunbo He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chuting Liang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yian Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
26
|
Wei J, Gronert K. Eicosanoid and Specialized Proresolving Mediator Regulation of Lymphoid Cells. Trends Biochem Sci 2018; 44:214-225. [PMID: 30477730 DOI: 10.1016/j.tibs.2018.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
Eicosanoids and specialized proresolving mediators (SPMs) regulate leukocyte function and inflammation. They are ideally positioned at the interface of the innate and adaptive immune responses when lymphocytes interact with leukocytes. Receptors for leukotriene B4 (LTB4), prostaglandin E2 (PGE2), and SPMs are expressed on lymphocytes. Evidence points toward an essential role of these lipid mediators (LMs) in direct regulation of lymphocyte functions. SPMs, which include lipoxins, demonstrate comprehensive protective actions with lymphocytes. LTB4 and PGE2 regulation of lymphocytes is diverse and depends on the interaction of lymphocytes with other cells. Importantly, both LTB4 and PGE2 are essential regulators of T cell antitumor activity. These LMs are attractive therapeutic targets to control dysregulated innate and adaptive immune responses, promote lymphocyte antitumor activity, and prevent tumor immune evasion.
Collapse
Affiliation(s)
- Jessica Wei
- Vision Science Program, School of Optometry, Infectious Disease and Immunity Program, University of California Berkeley, Berkeley, CA 94720, USA
| | - Karsten Gronert
- Vision Science Program, School of Optometry, Infectious Disease and Immunity Program, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
27
|
PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 2018; 7:72961-72977. [PMID: 27662664 PMCID: PMC5341956 DOI: 10.18632/oncotarget.12150] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Programmed Death-1 (PD-1), an inhibitory receptor expressed by activated lymphocytes, is involved in regulating T- and B-cell responses. PD-1 and its ligands are exploited by a variety of cancers to facilitate tumor escape through PD-1-mediated functional exhaustion of effector T cells. Here, we report that PD-1 is upregulated on Natural Killer (NK) cells from patients with Kaposi sarcoma (KS). PD-1 was expressed in a sub-population of activated, mature CD56dimCD16pos NK cells with otherwise normal expression of NK surface receptors. PD-1pos NK cells from KS patients were hyporesponsive ex vivo following direct triggering of NKp30, NKp46 or CD16 activating receptors, or short stimulation with NK cell targets. PD-1pos NK cells failed to degranulate and release IFNγ, but exogenous IL-2 or IL-15 restored this defect. That PD-1 contributed to NK cell functional impairment and was not simply a marker of dysfunctional NK cells was confirmed in PD-1-transduced NKL cells. In vitro, PD-1 was induced at the surface of healthy control NK cells upon prolonged contact with cells expressing activating ligands, i.e. a condition mimicking persistent stimulation by tumor cells. Thus, PD-1 appears to plays a critical role in mediating NK cell exhaustion. The existence of this negative checkpoint fine-tuning NK activation highlights the possibility that manipulation of the PD-1 pathway may be a strategy for circumventing tumor escape not only from the T cell-, but also the NK-cell mediated immune surveillance.
Collapse
|
28
|
Control of NK Cell Activation by Immune Checkpoint Molecules. Int J Mol Sci 2017; 18:ijms18102129. [PMID: 29023417 PMCID: PMC5666811 DOI: 10.3390/ijms18102129] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
The development of cancer and chronic infections is facilitated by many subversion mechanisms, among which enhanced expression of immune checkpoints molecules, such as programmed death-1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), on exhausted T cells. Recently, immune checkpoint inhibitors have shown remarkable efficiency in the treatment of a number of cancers. However, expression of immune checkpoints on natural killer (NK) cells and its functional consequences on NK cell effector functions are much less explored. In this review, we focus on the current knowledge on expression of various immune checkpoints in NK cells, how it can alter NK cell-mediated cytotoxicity and cytokine production. Dissecting the role of these inhibitory mechanisms in NK cells is critical for the full understanding of the mode of action of immunotherapies using checkpoint inhibitors in the treatment of cancers and chronic infections.
Collapse
|
29
|
Schmidt S, Ullrich E, Bochennek K, Zimmermann SY, Lehrnbecher T. Role of natural killer cells in antibacterial immunity. Expert Rev Hematol 2016; 9:1119-1127. [DOI: 10.1080/17474086.2016.1254546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Chávez-Blanco A, Chacón-Salinas R, Dominguez-Gomez G, Gonzalez-Fierro A, Perez-Cardenas E, Taja-Chayeb L, Trejo-Becerril C, Duenas-Gonzalez A. Viral inhibitors of NKG2D ligands for tumor surveillance. Expert Opin Ther Targets 2016; 20:1375-1387. [PMID: 27322108 DOI: 10.1080/14728222.2016.1202928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Natural Killer cells (NK) are key for the innate immune response against tumors and viral infections. Several viral proteins evade host immune response and target the NK cell receptor NKG2D and its ligands. Areas covered: This review aimed to describe the viruses and their proteins that interfere with the NKG2D receptor and their ligands, and how these interactions lead to immune evasion, host protection, and tissue damage from acute and chronic viral infections. Expert opinion: The study of viral proteins has already impacted the field of oncology. A prime example is the HBV vaccine and the development of antiviral drugs for HIV, Hepatitis C, and the family of Herpesviridae viruses. The NKG2D system seems to be a rational therapeutic target. Nevertheless, an effective cytotoxic response by NK cells is mediated by a network of activating and inhibitory receptors, the integration of which determines if the NK cell becomes cytotoxic or permissive. Immunotherapeutic agents that increase the antitumor lytic activity of NK cells through modulating activation and inhibitory signaling of NK cells are being developed. Nevertheless, more research is needed to dissect the integrative mechanism of NK cells function to fully exploit their antitumor and antiviral effector mechanisms.
Collapse
Affiliation(s)
- Alma Chávez-Blanco
- a Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | - Rommel Chacón-Salinas
- b Departamento de Inmunología , Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN , Mexico City , México
| | | | - Aurora Gonzalez-Fierro
- a Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | - Enrique Perez-Cardenas
- a Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | - Lucia Taja-Chayeb
- a Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | | | - Alfonso Duenas-Gonzalez
- c Unidad de Investigacion Biomedica en Cancer , Instituto de Investigaciones Biomédicas UNAM/Instituto Nacional de Cancerología , Mexico City , Mexico.,d Unidad de Investigacion Basica Aplicada , ISSEMyM Cancer Center , Toluca , Mexico
| |
Collapse
|
31
|
Kwon HJ, Choi GE, Ryu S, Kwon SJ, Kim SC, Booth C, Nichols KE, Kim HS. Stepwise phosphorylation of p65 promotes NF-κB activation and NK cell responses during target cell recognition. Nat Commun 2016; 7:11686. [PMID: 27221592 PMCID: PMC4894962 DOI: 10.1038/ncomms11686] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
NF-κB is a key transcription factor that dictates the outcome of diverse immune responses. How NF-κB is regulated by multiple activating receptors that are engaged during natural killer (NK)-target cell contact remains undefined. Here we show that sole engagement of NKG2D, 2B4 or DNAM-1 is insufficient for NF-κB activation. Rather, cooperation between these receptors is required at the level of Vav1 for synergistic NF-κB activation. Vav1-dependent synergistic signalling requires a separate PI3K-Akt signal, primarily mediated by NKG2D or DNAM-1, for optimal p65 phosphorylation and NF-κB activation. Vav1 controls downstream p65 phosphorylation and NF-κB activation. Synergistic signalling is defective in X-linked lymphoproliferative disease (XLP1) NK cells entailing 2B4 dysfunction and required for p65 phosphorylation by PI3K-Akt signal, suggesting stepwise signalling checkpoint for NF-κB activation. Thus, our study provides a framework explaining how signals from different activating receptors are coordinated to determine specificity and magnitude of NF-κB activation and NK cell responses. NK cell activation requires multiple signals. Here the authors show that while NKG2D, 2B4, or DNAM-1 receptor activation is insufficient to induce cytokine production, these signals synergize by Vav-1-mediated NF-κB multiphosphorylation, and this signaling checkpoint is defective in X-linked lymphoproliferative disease.
Collapse
Affiliation(s)
- Hyung-Joon Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Seoul 138-735, Korea
| | - Go-Eun Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Seoul 138-735, Korea.,Institute of Convergence Bio-Health, Dong-A University, Busan, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Soon Jae Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Seoul 138-735, Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Claire Booth
- Molecular Immunology Unit, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Kim E Nichols
- Department of Oncology, Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Hun Sik Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Seoul 138-735, Korea.,Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-735, Korea.,Cellular Dysfunction Research Center, University of Ulsan College of Medicine, Seoul 138-735, Korea
| |
Collapse
|
32
|
Marafini I, Monteleone I, Di Fusco D, Sedda S, Cupi ML, Fina D, Paoluzi AO, Pallone F, Monteleone G. Celiac Disease-Related Inflammation Is Marked by Reduction of Nkp44/Nkp46-Double Positive Natural Killer Cells. PLoS One 2016; 11:e0155103. [PMID: 27171408 PMCID: PMC4865226 DOI: 10.1371/journal.pone.0155103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/25/2016] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION AND AIM Natural killer (NK) cells are a first line of defence against viruses and down-regulation of NK cell cytotoxic receptors represents one of the strategies by which viruses escape the host's immune system. Since onset of celiac disease (CD), a gluten-driven enteropathy, has been associated with viral infections, we examined whether CD-associated inflammation is characterized by abnormal distribution of NK cell receptors involved in recognition of viral-infected cells. MATERIALS AND METHODS Intraepithelial mononuclear cells, isolated from duodenal biopsies of active and inactive CD patients and healthy controls (CTR) and jejunal specimens of obese subjects undergoing gastro-intestinal bypass, were analysed for NK cell markers by flow-cytometry. Expression of granzyme B, interleukin (IL)-22 and tumor necrosis factor (TNF)-α was as assessed in freshly isolated and toll-like receptor (TLR) ligand-stimulated cells. RESULTS The percentages of total NK cells and NKT cells did not significantly differ between CD patients and CTR. In active CD, the fractions of NKp30+ NK cells, NKG2D+ NK cells and NKG2D+ NKT cells were significantly increased as compared to inactive CD patients and CTR. In contrast, CD-associated inflammation was marked by diminished presence of NKG2A+ NK cells and NKG2A+ NKT cells. The fractions of NK cells and NKT cells expressing either NKp44 or NKp46 did not differ between CD and controls, but in CD less NK cells and NKT cells co-expressed these receptors. NKp44/NKp46-double positive cells produced granzyme B and IL-22 but not TNF-α and responded to TLR ligands with enhanced expression of granzyme B. CONCLUSIONS These data indicate that active phase of CD associates with reduced presence of NKp44/NKp46-double positive NK cells and NKT cells in the epithelial compartment.
Collapse
Affiliation(s)
- Irene Marafini
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Ivan Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Silvia Sedda
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Maria Laura Cupi
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Daniele Fina
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Francesco Pallone
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
33
|
Ma Y, Li X, Kuang E. Viral Evasion of Natural Killer Cell Activation. Viruses 2016; 8:95. [PMID: 27077876 PMCID: PMC4848590 DOI: 10.3390/v8040095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.
Collapse
Affiliation(s)
- Yi Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xiaojuan Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
34
|
Jung J, Münz C. Immune control of oncogenic γ-herpesviruses. Curr Opin Virol 2015; 14:79-86. [PMID: 26372881 DOI: 10.1016/j.coviro.2015.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 08/27/2015] [Accepted: 08/30/2015] [Indexed: 11/26/2022]
Abstract
Human γ-herpesviruses contain Epstein Barr virus (EBV), the first human tumor virus that was identified in man, and Kaposi Sarcoma associated herpesvirus (KSHV), one of the most recently identified human oncogenic pathogens. Both of these have co-evolved with humans to cause tumors only in a minority of infected individuals, despite their exquisite ability to establish persistent infections. In this review we will summarize the fine-tuned balance between immune responses, immune escape and cellular transformation by these viruses, which results in life-long persistent, but asymptomatic infection with immune control in most virus carriers. A detailed understanding of this balance is required to immunotherapeutically reinstall it in patients that suffer from EBV and KSHV associated malignancies.
Collapse
Affiliation(s)
- Jae Jung
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, CA 90033, USA.
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
35
|
Cantoni C, Grauwet K, Pietra G, Parodi M, Mingari MC, Maria AD, Favoreel H, Vitale M. Role of NK cells in immunotherapy and virotherapy of solid tumors. Immunotherapy 2015; 7:861-82. [PMID: 26314197 DOI: 10.2217/imt.15.53] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although natural killer (NK) cells are endowed with powerful cytolytic activity against cancer cells, their role in different therapies against solid tumors has not yet been fully elucidated. Their interactions with various elements of the tumor microenvironment as well as their possible effects in contributing to and/or limiting oncolytic virotherapy render this potential immunotherapeutic tool still difficult to exploit at the bedside. Here, we will review the current literature with the aim of providing new hints to manage this powerful cell type in future innovative therapies, such as the use of NK cells in combination with new cytokines, specific mAbs (inducing ADCC), Tyr-Kinase inhibitors, immunomodulatory drugs and/or the design of oncolytic viruses aimed at optimizing the effect of NK cells in virotherapy.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,Istituto Giannina Gaslini, Genova, Italy
| | - Korneel Grauwet
- Laboratory of Immunology, Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Gabriella Pietra
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Monica Parodi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Andrea De Maria
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Herman Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | | |
Collapse
|
36
|
Interplay between Kaposi's sarcoma-associated herpesvirus and the innate immune system. Cytokine Growth Factor Rev 2014; 25:597-609. [PMID: 25037686 DOI: 10.1016/j.cytogfr.2014.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023]
Abstract
Understanding of the innate immune response to viral infections is rapidly progressing, especially with regards to the detection of DNA viruses. Kaposi's sarcoma-associated herpesvirus (KSHV) is a large dsDNA virus that is responsible for three human diseases: Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. The major target cells of KSHV (B cells and endothelial cells) express a wide range of pattern recognition receptors (PRRs) and play a central role in mobilizing inflammatory responses. On the other hand, KSHV encodes an array of immune evasion genes, including several pirated host genes, which interfere with multiple aspects of the immune response. This review summarizes current understanding of innate immune recognition of KSHV and the role of immune evasion genes that shape the antiviral and inflammatory responses.
Collapse
|
37
|
Santos M, Vilasboas V, Mendes L, Talhari C, Talhari S. Lymphangiectatic Kaposi's sarcoma in a patient with AIDS. An Bras Dermatol 2014; 88:276-8. [PMID: 23739700 PMCID: PMC3750897 DOI: 10.1590/s0365-05962013000200019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/09/2012] [Indexed: 11/21/2022] Open
Abstract
Kaposi's sarcoma is a malignant disease that originates in the lymphatic endothelium. It has a broad spectrum of clinical manifestations. Its four distinct clinical forms are: classic, endemic, iatrogenic and epidemic Kaposi's sarcoma. In non-HIV-associated Kaposi's sarcoma, the disease is typically limited to the lower extremities, but in immunodeficient patients, it is a multifocal systemic disease. The clinical course of the disease differs among patients, ranging from a single or a few indolent lesions to an aggressive diffuse disease. Advanced Kaposi's sarcoma lesions, typically those on the lower extremities, are often associated with lymphedema. In this paper, we report a case of a patient with a rare form of AIDS-associated Kaposi sarcoma called lymphangiectatic Kaposis's sarcoma.
Collapse
|
38
|
Dow DE, Cunningham CK, Buchanan AM. A Review of Human Herpesvirus 8, the Kaposi's Sarcoma-Associated Herpesvirus, in the Pediatric Population. J Pediatric Infect Dis Soc 2014; 3:66-76. [PMID: 24567845 PMCID: PMC3933043 DOI: 10.1093/jpids/pit051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/27/2013] [Indexed: 01/30/2023]
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma (KS)-associated herpesvirus, is the etiologic agent responsible for all types of KS. Although the majority of pediatric KS cases occur in sub-Saharan Africa, a rise in pediatric transplant KS has been reported in developed countries. In addition, HHV-8 is increasingly described as an infectious cause of hemophagocytic lymphohistiocytosis in children. Transmission of HHV-8 among children is poorly understood; however, the literature strongly suggests that horizontal transmission plays a critical role. Acute infection with HHV-8 and progression to KS in children may be different than in adults, and diagnosis may be overlooked. Currently, neither adult nor pediatric treatment guidelines exist. This review provides an overview of HHV-8 disease in children as it relates to epidemic KS, transplant KS, and other disease manifestations. The current state of the literature is reviewed and knowledge gaps are identified for future exploration.
Collapse
Affiliation(s)
- Dorothy E. Dow
- Division of Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina,Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Coleen K. Cunningham
- Division of Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Ann M. Buchanan
- Division of Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina,Kilimanjaro Christian Medical Centre, Moshi, Tanzania,Duke Global Health Institute, Duke University, Durham, North Carolina
| |
Collapse
|
39
|
Alibek K, Baiken Y, Kakpenova A, Mussabekova A, Zhussupbekova S, Akan M, Sultankulov B. Implication of human herpesviruses in oncogenesis through immune evasion and supression. Infect Agent Cancer 2014; 9:3. [PMID: 24438207 PMCID: PMC3904197 DOI: 10.1186/1750-9378-9-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/07/2014] [Indexed: 12/20/2022] Open
Abstract
All human herpesviruses (HHVs) have been implicated in immune system evasion and suppression. Moreover, two HHV family members, i.e. EBV and KSHV, are recognised as oncogenic viruses. Our literature review summarises additional examples of possible oncogenic mechanisms that have been attributed to other HHVs. In general, HHVs affect almost every cancer-implicated branch of the immune system, namely tumour-promoting inflammation, immune evasion, and immunosuppression. Some HHVs accomplish these effects by inhibiting apoptotic pathways and by promoting proliferation. Mechanisms related to immunosupression and low grade chronic inflammation could eventually result in the initiation and progression of cancer. In this article we open a discussion on the members of Herpesviridae, their immune evasion and suppression mechanisms, and their possible role in cancer development. We conclude that discerning the mechanisms of interplay between HHV, immune system, and cancer is essential for the development of novel preventative and therapeutic approaches for cancer treatment and prophylaxis.
Collapse
Affiliation(s)
| | | | - Ainur Kakpenova
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| | | | | | | | | |
Collapse
|
40
|
Natural killer cells from patients with chronic rhinosinusitis have impaired effector functions. PLoS One 2013; 8:e77177. [PMID: 24204766 PMCID: PMC3799692 DOI: 10.1371/journal.pone.0077177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/31/2013] [Indexed: 11/21/2022] Open
Abstract
Natural killer (NK) cells are multicompetent lymphocytes of the innate immune system that play a central role in host defense and immune regulation. Although increasing evidence suggests that innate immunity plays a key role in the pathogenesis of chronic rhinosinusitis (CRS), the role of NK cells in CRS has been poorly studied. This study aimed to characterize the peripheral blood NK cells from patients with CRS, and to compare the functions of these cells with those from non-CRS controls. The correlation between NK cell functional activity and prognosis was also assessed. Eighteen CRS patients and 19 healthy non-CRS controls were included. The patients with CRS were classified into two subgroups, namely a treatment-responsive group and recalcitrant group. NK cell degranulation was determined by measuring the cell surface expression of CD107a against 721.221 and K562 cells. Intracytoplasmic cytokine production was determined by flow cytometry. Compared to the controls, the NK cells of CRS group had an impaired ability to degranulate and to produce cytokines such as IFN-γ and TNF-α. The recalcitrant subgroup showed the most severe defects in NK cell effector functions. Moreover, the decreased NK cell functions in patients with CRS were associated with poor prognostic factors such as concomitant asthma and peripheral blood eosinophilia. NK cells, which were originally named for their ability to mediate spontaneous cytotoxicity towards diseased cells including infected cells, may play an important role in regulating the inflammatory process in CRS pathogenesis.
Collapse
|
41
|
Agard M, Asakrah S, Morici LA. PGE(2) suppression of innate immunity during mucosal bacterial infection. Front Cell Infect Microbiol 2013; 3:45. [PMID: 23971009 PMCID: PMC3748320 DOI: 10.3389/fcimb.2013.00045] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 12/28/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important lipid mediator in inflammatory and immune responses during acute and chronic infections. Upon stimulation by various proinflammatory stimuli such as lipopolysaccharide (LPS), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, PGE2 synthesis is upregulated by the expression of cyclooxygenases. Biologically active PGE2 is then able to signal through four primary receptors to elicit a response. PGE2 is a critical molecule that regulates the activation, maturation, migration, and cytokine secretion of several immune cells, particularly those involved in innate immunity such as macrophages, neutrophils, natural killer cells, and dendritic cells. Both Gram-negative and Gram-positive bacteria can induce PGE2 synthesis to regulate immune responses during bacterial pathogenesis. This review will focus on PGE2 in innate immunity and how bacterial pathogens influence PGE2 production during enteric and pulmonary infections. The conserved ability of many bacterial pathogens to promote PGE2 responses during infection suggests a common signaling mechanism to deter protective pro-inflammatory immune responses. Inhibition of PGE2 production and signaling during infection may represent a therapeutic alternative to treat bacterial infections. Further study of the immunosuppressive effects of PGE2 on innate immunity will lead to a better understanding of potential therapeutic targets within the PGE2 pathway.
Collapse
Affiliation(s)
- Mallory Agard
- Department of Microbiology and Immunology, Tulane University School of Medicine New Orleans, LA 70119, USA
| | | | | |
Collapse
|
42
|
Paul AG, Chandran B, Sharma-Walia N. Cyclooxygenase-2-prostaglandin E2-eicosanoid receptor inflammatory axis: a key player in Kaposi's sarcoma-associated herpes virus associated malignancies. Transl Res 2013; 162:77-92. [PMID: 23567332 PMCID: PMC7185490 DOI: 10.1016/j.trsl.2013.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 02/13/2013] [Accepted: 03/15/2013] [Indexed: 12/28/2022]
Abstract
The role of cyclooxygenase-2 (COX-2), its lipid metabolite prostaglandin E2 (PGE2), and Eicosanoid (EP) receptors (EP; 1-4) underlying the proinflammatory mechanistic aspects of Burkitt's lymphoma, nasopharyngeal carcinoma, cervical cancer, prostate cancer, colon cancer, and Kaposi's sarcoma (KS) is an active area of investigation. The tumorigenic potential of COX-2 and PGE2 through EP receptors forms the mechanistic context underlying the chemotherapeutic potential of nonsteroidal anti-inflammatory drugs (NSAIDs). Although role of the COX-2 is described in several viral associated malignancies, the biological significance of the COX-2/PGE2/EP receptor inflammatory axis is extensively studied only in Kaposi's sarcoma-associated herpes virus (KSHV/HHV-8) associated malignancies such as KS, a multifocal endothelial cell tumor and primary effusion lymphoma (PEL), a B cell-proliferative disorder. The purpose of this review is to summarize the salient findings delineating the molecular mechanisms downstream of COX-2 involving PGE2 secretion and its autocrine and paracrine interactions with EP receptors (EP1-4), COX-2/PGE2/EP receptor signaling regulating KSHV pathogenesis and latency. KSHV infection induces COX-2, PGE2 secretion, and EP receptor activation. The resulting signal cascades modulate the expression of KSHV latency genes (latency associated nuclear antigen-1 [LANA-1] and viral-Fas (TNFRSF6)-associated via death domain like interferon converting enzyme-like- inhibitory protein [vFLIP]). vFLIP was also shown to be crucial for the maintenance of COX-2 activation. The mutually interdependent interactions between viral proteins (LANA-1/vFLIP) and COX-2/PGE2/EP receptors was shown to play key roles in the biological mechanisms involved in KS and PEL pathogenesis such as blockage of apoptosis, cell cycle regulation, transformation, proliferation, angiogenesis, adhesion, invasion, and immune-suppression. Understanding the COX-2/PGE2/EP axis is very important to develop new safer and specific therapeutic modalities for KS and PEL. In addition to COX-2 being a therapeutic target, EP receptors represent ideal targets for pharmacologic agents as PGE2 analogues and their blockers/antagonists possess antineoplastic activity, without the reported gastrointestinal and cardiovascular toxicity observed with few a NSAIDs.
Collapse
MESH Headings
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antineoplastic Agents/pharmacology
- Cyclooxygenase 2/metabolism
- Dinoprostone/metabolism
- Gene Expression Regulation, Viral
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/drug therapy
- Lymphoma, Primary Effusion/metabolism
- Receptors, Eicosanoid/metabolism
- Sarcoma, Kaposi/drug therapy
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Signal Transduction
- Virus Latency/genetics
Collapse
Affiliation(s)
- Arun George Paul
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| |
Collapse
|
43
|
Knowlton ER, Lepone LM, Li J, Rappocciolo G, Jenkins FJ, Rinaldo CR. Professional antigen presenting cells in human herpesvirus 8 infection. Front Immunol 2013; 3:427. [PMID: 23346088 PMCID: PMC3549500 DOI: 10.3389/fimmu.2012.00427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/24/2012] [Indexed: 12/18/2022] Open
Abstract
Professional antigen presenting cells (APC), i.e., dendritic cells (DC), monocytes/macrophages, and B lymphocytes, are critically important in the recognition of an invading pathogen and presentation of antigens to the T cell-mediated arm of immunity. Human herpesvirus 8 (HHV-8) is one of the few human viruses that primarily targets these APC for infection, altering their cytokine profiles, manipulating their surface expression of MHC molecules, and altering their ability to activate HHV-8-specific T cells. This could be why T cell responses to HHV-8 antigens are not very robust. Of these APC, only B cells support complete, lytic HHV-8 infection. However, both complete and abortive virus replication cycles in APC could directly affect viral pathogenesis and progression to Kaposi's sarcoma (KS) and HHV-8-associated B cell cancers. In this review, we discuss the effects of HHV-8 infection on professional APC and their relationship to the development of KS and B cell lymphomas.
Collapse
Affiliation(s)
- Emilee R Knowlton
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The NKG2D receptor is expressed on the surface of NK, T, and macrophage lineage cells and plays an important role in antiviral and antitumor immunity. To evade NKG2D recognition, herpesviruses block the expression of NKG2D ligands on the surface of infected cells using a diverse repertoire of sabotage methods. Cowpox and monkeypox viruses have taken an alternate approach by encoding a soluble NKG2D ligand, the orthopoxvirus major histocompatibility complex (MHC) class I-like protein (OMCP), which can block NKG2D-mediated cytotoxicity. This approach has the advantage of targeting a single conserved receptor instead of numerous host ligands that exhibit significant sequence diversity. Here, we show that OMCP binds the NKG2D homodimer as a monomer and competitively blocks host ligand engagement. We have also determined the 2.25-Å-resolution crystal structure of OMCP from the cowpox virus Brighton Red strain, revealing a truncated MHC class I-like platform domain consisting of a beta sheet flanked with two antiparallel alpha helices. OMCP is generally similar in structure to known host NKG2D ligands but has notable variations in regions typically used to engage NKG2D. Additionally, the determinants responsible for the 14-fold-higher affinity of OMCP for human than for murine NKG2D were mapped to a single loop in the NKG2D ligand-binding pocket.
Collapse
|
45
|
|
46
|
Human herpesviridae methods of natural killer cell evasion. Adv Virol 2012; 2012:359869. [PMID: 22829821 PMCID: PMC3399383 DOI: 10.1155/2012/359869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 04/24/2012] [Indexed: 11/17/2022] Open
Abstract
Human herpesviruses cause diseases of considerable morbidity and mortality, ranging from encephalitis to hematologic malignancies. As evidence emerges about the role of innate immunity and natural killer (NK) cells in the control of herpesvirus infection, evidence of viral methods of innate immune evasion grows as well. These methods include interference with the ligands on infected cell surfaces that bind NK cell activating or inhibitory receptors. This paper summarizes the most extensively studied NK cell receptor/ligand pairs and then describes the methods of NK cell evasion used by all eight herpesviruses through these receptors and ligands. Although great strides have been made in elucidating their mechanisms, there is still a disparity between viruses in the amount of knowledge regarding innate immune evasion. Further research of herpesvirus innate immune evasion can provide insight for circumventing viral mechanisms in future therapies.
Collapse
|
47
|
Abstract
INTRODUCTION NKG2D (natural killer group 2, member D) is expressed on the surface of all mouse and human NK cells, and subpopulation of T cells. Stimulation of NK cells through NKG2D triggers cell-mediated cytotoxicity and induces the production of cytokines. NKG2D binds to family of unique ligands with structurally similar to MHC class I, however, NKG2D ligands can be up-regulated in their expression on stressed cells including tumor cells unlike conventional MHC class I molecules. Mounting evidences clearly implicate that NKG2D recognition plays an important role in tumor immune surveillance. AREAS COVERED While NKG2D detect for potentially dangerous cells, various inhibitory and/or escape mechanisms counteract immune surveillance system and thereby limit effective elimination of transformed tumor cells. In addition, tumors often generate an immunosuppressive microenvironment where inhibitory molecules or cytokines negatively effect the function of anti-tumor immune responses. NKG2D ligand expression can be up-regulated by transcriptional or posttranscriptional mechanisms, therefore, certain therapy targeting those regulatory mechanisms could regain the expression of NKG2D ligands on tumor cells to be detected by the host immune responses. EXPERT OPINION Our knowledge in the precise mechanism of anti-tumor immunity is rapidly increasing. While NKG2D is known as primary cytotoxicity receptor in NK cell activation by recognizing 'induced-self' ligands on stressed cells including tumor cells, there are increasing evidences that NKG2D recognition can result in both immune activation and immune silencing. Future combined application of conventional cancer therapy and new therapy utilizing such stress-induced recognition systems will provide a novel opportunity to control malignant tumor progression of cancer disease.
Collapse
Affiliation(s)
- Yoshihiro Hayakawa
- The University of Tokyo, Graduate School of Pharmaceutical Sciences, Laboratory of Cancer Biology and Molecular Immunology, Bunkyo-ku, Japan.
| |
Collapse
|