1
|
Pérez-Arques C, Navarro-Mendoza MI, Xu Z, Walther G, Heitman J. RNAi epimutations conferring antifungal drug resistance are inheritable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618540. [PMID: 39463932 PMCID: PMC11507787 DOI: 10.1101/2024.10.15.618540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Epimutations modify gene expression and lead to phenotypic variation while the encoding DNA sequence remains unchanged. Epimutations mediated by RNA interference (RNAi) and/or chromatin modifications can confer antifungal drug resistance and may impact virulence traits in fungi (1-5). However, whether these epigenetic modifications can be transmitted across generations following sexual reproduction was unclear. This study demonstrates that RNAi epimutations conferring antifungal drug resistance are transgenerationally inherited in the human fungal pathogen Mucor circinelloides . Our research revealed that RNAi-based antifungal resistance follows a DNA sequence-independent, non-Mendelian inheritance pattern. Small RNAs (sRNAs) are the exclusive determinants of inheritance, transmitting drug resistance independently of other known repressive epigenetic modifications. Unique sRNA signature patterns can be traced through inheritance from parent to progeny, further supporting RNA as an alternative molecule for transmitting information across generations. This study marks a significant advance in understanding epigenetic inheritance, highlighting RNAi-exclusive epimutations as a widespread phenomenon in the pathogenic M. circinelloides species complex. Understanding how epimutations occur, propagate, and confer resistance may enable their detection in other eukaryotic pathogens, provide solutions for challenges posed by rising antimicrobial drug resistance (AMR), and also advance research on phenotypic adaptability and its evolutionary implications.
Collapse
|
2
|
Stakheev AA, Taliansky M, Kalinina NO, Zavriev SK. RNAi-Based Approaches to Control Mycotoxin Producers: Challenges and Perspectives. J Fungi (Basel) 2024; 10:682. [PMID: 39452634 PMCID: PMC11508363 DOI: 10.3390/jof10100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Mycotoxin contamination of food and feed is a worldwide problem that needs to be addressed with highly efficient and biologically safe techniques. RNA interference (RNAi) is a natural mechanism playing an important role in different processes in eukaryotes, including the regulation of gene expression, maintenance of genome stability, protection against viruses and others. Recently, RNAi-based techniques have been widely applied for the purposes of food safety and management of plant diseases, including those caused by mycotoxin-producing fungi. In this review, we summarize the current state-of-the-art RNAi-based approaches for reducing the aggressiveness of key toxigenic fungal pathogens and mycotoxin contamination of grain and its products. The ways of improving RNAi efficiency for plant protection and future perspectives of this technique, including progress in methods of double-stranded RNA production and its delivery to the target cells, are also discussed.
Collapse
Affiliation(s)
- Alexander A. Stakheev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Michael Taliansky
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Natalia O. Kalinina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergey K. Zavriev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| |
Collapse
|
3
|
Marques JT, Meignin C, Imler JL. An evolutionary perspective to innate antiviral immunity in animals. Cell Rep 2024; 43:114678. [PMID: 39196781 DOI: 10.1016/j.celrep.2024.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/22/2024] [Accepted: 08/08/2024] [Indexed: 08/30/2024] Open
Abstract
Viruses pose a significant threat to cellular organisms. Innate antiviral immunity encompasses both RNA- and protein-based mechanisms designed to sense and respond to infections, a fundamental aspect present in all living organisms. A potent RNA-based antiviral mechanism is RNA interference, where small RNA-programmed nucleases target viral RNAs. Protein-based mechanisms often rely on the induction of transcriptional responses triggered by the recognition of viral infections through innate immune receptors. These responses involve the upregulation of antiviral genes aimed at countering viral infections. In this review, we delve into recent advances in understanding the diversification of innate antiviral immunity in animals. An evolutionary perspective on the gains and losses of mechanisms in diverse animals coupled to mechanistic studies in model organisms such as the fruit fly Drosophila melanogaster is essential to provide deep understanding of antiviral immunity that can be translated to new strategies in the treatment of viral diseases.
Collapse
Affiliation(s)
- Joao T Marques
- Université de Strasbourg, INSERM U1257, CNRS UPR9022, 67084 Strasbourg, France; Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, 67084 Strasbourg, France
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, 67084 Strasbourg, France; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Yu X, Lin X, Zhou T, Cao L, Hu K, Li F, Qu S. Host-induced gene silencing in wild apple germplasm Malus hupehensis confers resistance to the fungal pathogen Botryosphaeria dothidea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1174-1193. [PMID: 38430515 DOI: 10.1111/tpj.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/24/2023] [Accepted: 01/22/2024] [Indexed: 03/04/2024]
Abstract
Host-induced gene silencing (HIGS) is an inherent mechanism of plant resistance to fungal pathogens, resulting from cross-kingdom RNA interference (RNAi) mediated by small RNAs (sRNAs) delivered from plants into invading fungi. Introducing artificial sRNA precursors into crops can trigger HIGS of selected fungal genes, and thus has potential applications in agricultural disease control. To investigate the HIGS of apple (Malus sp.) during the interaction with Botryosphaeria dothidea, the pathogenic fungus causing apple ring rot disease, we evaluated whether apple miRNAs can be transported into and target genes in B. dothidea. Indeed, miR159a from Malus hupehensis, a wild apple germplasm with B. dothidea resistance, silenced the fungal sugar transporter gene BdSTP. The accumulation of miR159a in extracellular vesicles (EVs) of both infected M. hupehensis and invading B. dothidea suggests that this miRNA of the host is transported into the fungus via the EV pathway. Knockout of BdSTP caused defects in fungal growth and proliferation, whereas knockin of a miR159a-insensitive version of BdSTP resulted in increased pathogenicity. Inhibition of miR159a in M. hupehensis substantially enhanced plant sensitivity to B. dothidea, indicating miR159a-mediated HIGS against BdSTP being integral to apple immunity. Introducing artificial sRNA precursors targeting BdSTP and BdALS, an acetolactate synthase gene, into M. hupehensis revealed that double-stranded RNAs were more potent than engineered MIRNAs in triggering HIGS alternative to those natural of apple and inhibiting infection. These results provide preliminary evidence for cross-kingdom RNAi in the apple-B. dothidea interaction and establish HIGS as a potential disease control strategy in apple.
Collapse
Affiliation(s)
- Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Xinxin Lin
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Tingting Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Kaixu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Fangzhu Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| |
Collapse
|
5
|
Maor-Landaw K, Avidor I, Rostowsky N, Salti B, Smirnov M, Ofek-Lalzar M, Levin L, Brekhman V, Lotan T. The Molecular Mechanisms Employed by the Parasite Myxobolus bejeranoi (Cnidaria: Myxozoa) from Invasion through Sporulation for Successful Proliferation in Its Fish Host. Int J Mol Sci 2023; 24:12824. [PMID: 37629003 PMCID: PMC10454682 DOI: 10.3390/ijms241612824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Myxozoa is a unique group of obligate endoparasites in the phylum Cnidaria that can cause emerging diseases in wild and cultured fish populations. Recently, we identified a new myxozoan species, Myxobolus bejeranoi, which infects the gills of cultured tilapia while suppressing host immunity. To uncover the molecular mechanisms underlying this successful parasitic strategy, we conducted transcriptomics analysis of M. bejeranoi throughout the infection. Our results show that histones, which are essential for accelerated cell division, are highly expressed even one day after invasion. As the infection progressed, conserved parasitic genes that are known to modulate the host immune reaction in different parasitic taxa were upregulated. These genes included energy-related glycolytic enzymes, as well as calreticulin, proteases, and miRNA biogenesis proteins. Interestingly, myxozoan calreticulin formed a distinct phylogenetic clade apart from other cnidarians, suggesting a possible function in parasite pathogenesis. Sporogenesis was in its final stages 20 days post-exposure, as spore-specific markers were highly expressed. Lastly, we provide the first catalog of transcription factors in a Myxozoa species, which is minimized compared to free-living cnidarians and is dominated by homeodomain types. Overall, these molecular insights into myxozoan infection support the concept that parasitic strategies are a result of convergent evolution.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Itamar Avidor
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Nadav Rostowsky
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Barbara Salti
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 1080300, Israel;
| | - Maya Ofek-Lalzar
- Bioinformatic Unit, University of Haifa, Mt. Carmel, Haifa 3498838, Israel;
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| |
Collapse
|
6
|
Ouyang SQ, Ji HM, Feng T, Luo SJ, Cheng L, Wang N. Artificial trans-kingdom RNAi of FolRDR1 is a potential strategy to control tomato wilt disease. PLoS Pathog 2023; 19:e1011463. [PMID: 37339156 DOI: 10.1371/journal.ppat.1011463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Tomato is cultivated worldwide as a nutrient-rich vegetable crop. Tomato wilt disease caused by Fusarium oxysporum f.sp. Lycopersici (Fol) is one of the most serious fungal diseases posing threats to tomato production. Recently, the development of Spray-Induced Gene Silencing (SIGS) directs a novel plant disease management by generating an efficient and environmental friendly biocontrol agent. Here, we characterized that FolRDR1 (RNA-dependent RNA polymerase 1) mediated the pathogen invasion to the host plant tomato, and played as an essential regulator in pathogen development and pathogenicity. Our fluorescence tracing data further presented that effective uptakes of FolRDR1-dsRNAs were observed in both Fol and tomato tissues. Subsequently, exogenous application of FolRDR1-dsRNAs on pre-Fol-infected tomato leaves resulted in significant alleviation of tomato wilt disease symptoms. Particularly, FolRDR1-RNAi was highly specific without sequence off-target in related plants. Our results of pathogen gene-targeting RNAi have provided a new strategy for tomato wilt disease management by developing an environmentally-friendly biocontrol agent.
Collapse
Affiliation(s)
- Shou-Qiang Ouyang
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hui-Min Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tao Feng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Shu-Jie Luo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lu Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Zohrabi T, Azimi-Resketi M, Talaei F, Yaghoubi M, Ganjalikhany MR, Mohamadi Farsani F, Eskandarian A. Knocking down the expression of the molecular motors, myosin A, C and F genes in Toxoplasma gondii to decrease the parasite virulence. Exp Parasitol 2023:108565. [PMID: 37331576 DOI: 10.1016/j.exppara.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Toxoplasmosis is a serious parasitic infection and novel therapeutic options are highly demanded to effectively eliminate it. In current study, Toxoplasma gondii myosin A, C and F genes were knocked down using small interference RNA (siRNA) method and the parasite survival and virulence was evaluated in vitro and in vivo. The parasites were transfected with specific siRNA, virtually designed for myosin mRNAs, and co-cultured with human foreskin fibroblasts. The transfection rate and the viability of the transfected parasites were measured using flow cytometry and methyl thiazole tetrazolium (MTT) assays, respectively. Finally, the survival of BALB/c mice infected with siRNAs-transfected T. gondii was assessed. It was demonstrated that a transfection rate of 75.4% existed for siRNAs, resulting in 70% (P = 0.032), 80.6% (P = 0.017) and 85.5% (P = 0.013) gene suppression for myosin A, C and F in affected parasites, respectively, which was subsequently confirmed by Western blot analysis. Moreover, lower parasite viability was observed in those with knocked down myosin C with 80% (P = 0.0001), followed by 86.15% (P = 0.004) for myosin F and 92.3% (P = 0.083) for myosin A. Considerably higher mouse survival (about 40 h) was, also, demonstrated in mice challenged with myosin siRNA-transfected T. gondii, in comparison with control group challenged with wild-type parasites. In conclusion, myosin proteins knock down proposes a promising therapeutic strategy to combat toxoplasmosis.
Collapse
Affiliation(s)
- Tayebeh Zohrabi
- Department of Biology, School of Sciences, Nourdanesh University of Meymeh, Meymeh, Isfahan, Iran
| | - Mojtaba Azimi-Resketi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Talaei
- Department of Biology, School of Sciences, Nourdanesh University of Meymeh, Meymeh, Isfahan, Iran
| | - Maryam Yaghoubi
- Department of Biology, School of Sciences, Nourdanesh University of Meymeh, Meymeh, Isfahan, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Farzaneh Mohamadi Farsani
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Abbasali Eskandarian
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Iwama RE, Moran Y. Origins and diversification of animal innate immune responses against viral infections. Nat Ecol Evol 2023; 7:182-193. [PMID: 36635343 DOI: 10.1038/s41559-022-01951-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/11/2022] [Indexed: 01/14/2023]
Abstract
Immune systems are of pivotal importance to any living organism on Earth, as they protect the organism against deleterious effects of viral infections. Though the current knowledge about these systems is still biased towards the immune response in vertebrates, some studies have focused on the identification and characterization of components of invertebrate antiviral immune systems. Two classic model organisms, the insect Drosophila melanogaster and the nematode Caenorhabditis elegans, were instrumental in the discovery of several important components of the innate immune system, such as the Toll-like receptors and the RNA interference pathway. However, these two model organisms provide only a limited view of the evolutionary history of the immune system, as they both are ecdysozoan protostomes. Recent functional studies in non-classic models such as unicellular holozoans (for example, choanoflagellates), lophotrochozoans (for example, oysters) and cnidarians (for example, sea anemones) have added crucial information for understanding the evolution of antiviral systems, as they revealed unexpected ancestral complexity. This Review aims to summarize this information and present the ancestral nature of the antiviral immune response in animals. We also discuss lineage-specific adaptations and future perspectives for the comparative study of the innate immune system that are essential for understanding its evolution.
Collapse
Affiliation(s)
- Rafael E Iwama
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
9
|
Similar Characteristics of siRNAs of Plant Viruses Which Replicate in Plant and Fungal Hosts. BIOLOGY 2022; 11:biology11111672. [PMID: 36421386 PMCID: PMC9687825 DOI: 10.3390/biology11111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary RNA silencing in fungi was shown to confer antiviral defense against plant viruses. In this study, using high-throughput sequencing and bioinformatic analyses, we showed that small interfering RNAs (siRNAs) of cucumber mosaic virus and tobacco mosaic virus (TMV) which replicated in phytopathogenic fungi Rhizoctonia solani and Fusarium graminearum had similarities with viral siRNAs produced in plant hosts in regard to the size distributions, proportion of plus and minus senses, and nucleotide preference for the 5′ termini. Additionally, our results also determined that both F. graminearum DCL1 and DCL2 were involved in the production of TMV siRNAs. Thus, the fungal RNA silencing machineries have adaptive capabilities to recognize and process the genome of invading plant viruses. Abstract RNA silencing is a host innate antiviral mechanism which acts via the synthesis of viral-derived small interfering RNAs (vsiRNAs). We have previously reported the infection of phytopathogenic fungi by plant viruses such as cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV). Furthermore, fungal RNA silencing was shown to suppress plant virus accumulation, but the characteristics of plant vsiRNAs associated with the antiviral response in this nonconventional host remain unknown. Using high-throughput sequencing, we characterized vsiRNA profiles in two plant RNA virus–fungal host pathosystems: CMV infection in phytopathogenic fungus Rhizoctonia solani and TMV infection in phytopathogenic fungus Fusarium graminearum. The relative abundances of CMV and TMV siRNAs in the respective fungal hosts were much lower than those in the respective experimental plant hosts, Nicotiana benthamiana and Nicotiana tabacum. However, CMV and TMV siRNAs in fungi had similar characteristics to those in plants, particularly in their size distributions, proportion of plus and minus senses, and nucleotide preference for the 5′ termini of vsiRNAs. The abundance of TMV siRNAs largely decreased in F. graminearum mutants with a deletion in either dicer-like 1 (dcl1) or dcl2 genes which encode key proteins for the production of siRNAs and antiviral responses. However, deletion of both dcl1 and dcl2 restored TMV siRNA accumulation in F. graminearum, indicating the production of dcl-independent siRNAs with no antiviral function in the absence of the dcl1 and dcl2 genes. Our results suggest that fungal RNA silencing recognizes and processes the invading plant RNA virus genome in a similar way as in plants.
Collapse
|
10
|
Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A. RNA Interference for Improving Disease Resistance in Plants and Its Relevance in This Clustered Regularly Interspaced Short Palindromic Repeats-Dominated Era in Terms of dsRNA-Based Biopesticides. FRONTIERS IN PLANT SCIENCE 2022; 13:885128. [PMID: 35645997 PMCID: PMC9141053 DOI: 10.3389/fpls.2022.885128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
RNA interference (RNAi) has been exploited by scientists worldwide to make a significant contribution in the arena of sustainable agriculture and integrated pest management. These strategies are of an imperative need to guarantee food security for the teeming millions globally. The already established deleterious effects of chemical pesticides on human and livestock health have led researchers to exploit RNAi as a potential agri-biotechnology tool to solve the burning issue of agricultural wastage caused by pests and pathogens. On the other hand, CRISPR/Cas9, the latest genome-editing tool, also has a notable potential in this domain of biotic stress resistance, and a constant endeavor by various laboratories is in progress for making pathogen-resistant plants using this technique. Considerable outcry regarding the ill effects of genetically modified (GM) crops on the environment paved the way for the research of RNAi-induced double-stranded RNAs (dsRNA) and their application to biotic stresses. Here, we mainly focus on the application of RNAi technology to improve disease resistance in plants and its relevance in today's CRISPR-dominated world in terms of exogenous application of dsRNAs. We also focused on the ongoing research, public awareness, and subsequent commercialization of dsRNA-based biocontrol products.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, New Delhi, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, New Delhi, India
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Manoj Majee
- National Institute of Plant Genome Research, New Delhi, India
| | - Asis Datta
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
11
|
Lax C, Cánovas-Márquez JT, Tahiri G, Navarro E, Garre V, Nicolás FE. Genetic Manipulation in Mucorales and New Developments to Study Mucormycosis. Int J Mol Sci 2022; 23:3454. [PMID: 35408814 PMCID: PMC8998210 DOI: 10.3390/ijms23073454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
The study of the Mucoralean fungi physiology is a neglected field that the lack of effective genetic tools has hampered in the past. However, the emerging fungal infection caused by these fungi, known as mucormycosis, has prompted many researchers to study the pathogenic potential of Mucorales. The main reasons for this current attraction to study mucormycosis are its high lethality, the lack of effective antifungal drugs, and its recent increased incidence. The most contemporary example of the emergence character of mucormycosis is the epidemics declared in several Asian countries as a direct consequence of the COVID-19 pandemic. Fortunately, this pressure to understand mucormycosis and develop new treatment strategies has encouraged the blossoming of new genetic techniques and methodologies. This review describes the history of genetic manipulation in Mucorales, highlighting the development of methods and how they allowed the main genetic studies in these fungi. Moreover, we have emphasized the recent development of new genetic models to study mucormycosis, a landmark in the field that will configure future research related to this disease.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (G.T.); (E.N.); (V.G.)
| | | | | | | | | | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (G.T.); (E.N.); (V.G.)
| |
Collapse
|
12
|
Zhao JH, Guo HS. RNA silencing: From discovery and elucidation to application and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:476-498. [PMID: 34964265 DOI: 10.1111/jipb.13213] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes. The discovery of natural trans-kingdom RNAi indicated that small RNAs act as signaling molecules and enable communication between organisms in different kingdoms. The phenomenon and potential mechanisms of trans-kingdom RNAi are among the most exciting research topics. To better understand trans-kingdom RNAi, we review the history of the discovery and elucidation of RNAi mechanisms. Based on canonical RNAi mechanisms, we summarize the major points of divergence around RNAi pathways in the main eukaryotes' kingdoms, including plants, animals, and fungi. We review the representative incidents associated with the mechanisms and applications of trans-kingdom RNAi in crop protection, and discuss the critical factors that should be considered to develop successful trans-kingdom RNAi-based crop protection strategies.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Torres DE, Thomma BPHJ, Seidl MF. Transposable Elements Contribute to Genome Dynamics and Gene Expression Variation in the Fungal Plant Pathogen Verticillium dahliae. Genome Biol Evol 2021; 13:evab135. [PMID: 34100895 PMCID: PMC8290119 DOI: 10.1093/gbe/evab135] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a major source of genetic and regulatory variation in their host genome and are consequently thought to play important roles in evolution. Many fungal and oomycete plant pathogens have evolved dynamic and TE-rich genomic regions containing genes that are implicated in host colonization and adaptation. TEs embedded in these regions have typically been thought to accelerate the evolution of these genomic compartments, but little is known about their dynamics in strains that harbor them. Here, we used whole-genome sequencing data of 42 strains of the fungal plant pathogen Verticillium dahliae to systematically identify polymorphic TEs that may be implicated in genomic as well as in gene expression variation. We identified 2,523 TE polymorphisms and characterize a subset of 8% of the TEs as polymorphic elements that are evolutionary younger, less methylated, and more highly expressed when compared with the remaining 92% of the total TE complement. As expected, the polyrmorphic TEs are enriched in the adaptive genomic regions. Besides, we observed an association of polymorphic TEs with pathogenicity-related genes that localize nearby and that display high expression levels. Collectively, our analyses demonstrate that TE dynamics in V. dahliae contributes to genomic variation, correlates with expression of pathogenicity-related genes, and potentially impacts the evolution of adaptive genomic regions.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, Germany
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, The Netherlands
| |
Collapse
|
14
|
Habig M, Schotanus K, Hufnagel K, Happel P, Stukenbrock EH. Ago1 Affects the Virulence of the Fungal Plant Pathogen Zymoseptoria tritici. Genes (Basel) 2021; 12:1011. [PMID: 34208898 PMCID: PMC8303167 DOI: 10.3390/genes12071011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/04/2022] Open
Abstract
In host-pathogen interactions RNA interference (RNAi) has emerged as a pivotal mechanism to modify both, the immune responses of the host as well as the pathogenicity and virulence of the pathogen. In addition, in some fungi RNAi is also known to affect chromosome biology via its effect on chromatin conformation. Previous studies reported no effect of the RNAi machinery on the virulence of the fungal plant pathogen Zymoseptoria tritici however the role of RNAi is still poorly understood in this species. Herein, we elucidate whether the RNAi machinery is conserved within the genus Zymoseptoria. Moreover, we conduct functional analyses of Argonaute and Dicer-like proteins and test if the RNAi machinery affects chromosome stability. We show that the RNAi machinery is conserved among closely related Zymoseptoria species while an exceptional pattern of allelic diversity was possibly caused by introgression. The deletion of Ago1 reduced the ability of the fungus to produce asexual propagules in planta in a quantitative matter. Chromosome stability of the accessory chromosome of Z. tritici was not prominently affected by the RNAi machinery. These results indicate, in contrast to previous finding, a role of the RNAi pathway during host infection, but not in the stability of accessory chromosomes in Z. tritici.
Collapse
Affiliation(s)
- Michael Habig
- Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 1-11, 24118 Kiel, Germany; (M.H.); (K.S.); (K.H.)
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Klaas Schotanus
- Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 1-11, 24118 Kiel, Germany; (M.H.); (K.S.); (K.H.)
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Kim Hufnagel
- Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 1-11, 24118 Kiel, Germany; (M.H.); (K.S.); (K.H.)
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Petra Happel
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany;
| | - Eva H. Stukenbrock
- Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 1-11, 24118 Kiel, Germany; (M.H.); (K.S.); (K.H.)
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| |
Collapse
|
15
|
Pérez-Arques C, Navarro-Mendoza MI, Murcia L, Navarro E, Garre V, Nicolás FE. The RNAi Mechanism Regulates a New Exonuclease Gene Involved in the Virulence of Mucorales. Int J Mol Sci 2021; 22:ijms22052282. [PMID: 33668930 PMCID: PMC7956310 DOI: 10.3390/ijms22052282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Mucormycosis is a lethal disease caused by Mucorales, which are emerging as human causes that explain the high mortality for this disease. Consequently, the research community is searching for virulence determinants that could be repurposed as targets to develop new treatments against mucormycosis. Our work explores an RNA interference (RNAi)-based approach to find targets involved in the virulence of Mucorales. A transcriptomewide analysis compared sRNAs and their target mRNAs in two Mucor lusitanicus different pathotypes, virulent and avirulent, generating a list of 75 loci selected by their differential sRNA accumulation in these strains. As a proof of concept and validity, an experimental approach characterized two loci showing opposite behavior, confirming that RNAi activity causes their differential expression in the two pathotypes. We generated deletion mutants for two loci and a knockin-strain overexpressing for one of these loci. Their functional analysis in murine virulence assays identified the gene wex1, a putative DEDDy exonuclease with RNase domains, as an essential factor for virulence. The identification of wex1 showed the potential of our approach to discover virulence factors not only in Mucorales but also in any other fungal model with an active RNAi machinery. More importantly, it adds a new layer to the biological processes controlled by RNAi in M. lusitanicus, confirming that the Dicer-dependent RNAi pathway can silence gene expression to promote virulence.
Collapse
|
16
|
Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci 2021; 22:ijms22020616. [PMID: 33435485 PMCID: PMC7827160 DOI: 10.3390/ijms22020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
Collapse
|
17
|
Lax C, Tahiri G, Patiño-Medina JA, Cánovas-Márquez JT, Pérez-Ruiz JA, Osorio-Concepción M, Navarro E, Calo S. The Evolutionary Significance of RNAi in the Fungal Kingdom. Int J Mol Sci 2020; 21:E9348. [PMID: 33302447 PMCID: PMC7763443 DOI: 10.3390/ijms21249348] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood regulation of gene expression. Within the following two decades, a variety of different RNAi mechanisms were found in eukaryotes, reflecting the evolutive diversity that RNAi entails. The essential silencing mechanism consists of an RNase III enzyme called Dicer that cleaves double-stranded RNA (dsRNA) generating small interfering RNAs (siRNAs), a hallmark of RNAi. These siRNAs are loaded into the RNA-induced silencing complex (RISC) triggering the cleavage of complementary messenger RNAs by the Argonaute protein, the main component of the complex. Consequently, the expression of target genes is silenced. This mechanism has been thoroughly studied in fungi due to their proximity to the animal phylum and the conservation of the RNAi mechanism from lower to higher eukaryotes. However, the role and even the presence of RNAi differ across the fungal kingdom, as it has evolved adapting to the particularities and needs of each species. Fungi have exploited RNAi to regulate a variety of cell activities as different as defense against exogenous and potentially harmful DNA, genome integrity, development, drug tolerance, or virulence. This pathway has offered versatility to fungi through evolution, favoring the enormous diversity this kingdom comprises.
Collapse
Affiliation(s)
- Carlos Lax
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Ghizlane Tahiri
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - José Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán CP 58030, Mexico;
| | - José T. Cánovas-Márquez
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - José A. Pérez-Ruiz
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Macario Osorio-Concepción
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Eusebio Navarro
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Silvia Calo
- School of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, 51033 Santiago de los Caballeros, Dominican Republic
| |
Collapse
|
18
|
Wang M, Ren X, Wang L, Lu X, Han L, Zhang X, Feng J. A functional analysis of mitochondrial respiratory chain cytochrome bc 1 complex in Gaeumannomyces tritici by RNA silencing as a possible target of carabrone. MOLECULAR PLANT PATHOLOGY 2020; 21:1529-1544. [PMID: 32997435 PMCID: PMC7694678 DOI: 10.1111/mpp.12993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 05/05/2023]
Abstract
Gaeumannomyces tritici, an ascomycete soilborne fungus, causes a devastating root disease in wheat. Carabrone, a botanical bicyclic sesquiterpenic lactone, is a promising fungicidal agent that can effectively control G. tritici. However, the mechanism of action of carabrone against G. tritici remains largely unclear. Here, we used immunogold for subcellular localization of carabrone and the results showed that carabrone is subcellularly localized in the mitochondria of G. tritici. We then explored the functional analysis of genes GtCytc1 , GtCytb, and GtIsp of the mitochondrial respiratory chain cytochrome bc1 complex in G. tritici by RNA silencing as a possible target of carabrone. The results showed that the silenced mutant ∆GtIsp is less sensitive to carabrone compared to ∆GtCytc1 and ∆GtCytb. Compared with the control, the activities of complex III in all the strains, except ∆GtIsp and carabrone-resistant isolate 24-HN-1, were significantly decreased following treatment with carabrone at EC20 and EC80 in vitro (40%-50% and 70%-80%, respectively). The activities of mitochondrial respiratory chain complex III and the mitochondrial respiration oxygen consumption rates in all the strains, except ∆GtIsp and 24-HN-1, were higher with respect to the control when treated with carabrone at EC20 in vivo. The rates of mitochondrial respiration of all strains, except ∆GtIsp, were significantly inhibited following treatment with carabrone at EC80 (ranging from 57% to 81%). This study reveals that the targeting of the iron-sulphur protein encoded by GtIsp is highly sensitive to carabrone and provides a direction for the research of carabrone's target.
Collapse
Affiliation(s)
- Mei Wang
- Engineering and Research Center of Biological Pesticide of Shaanxi ProvinceNorthwest A&F UniversityYanglingChina
- College of Life SciencesYulin UniversityYulinChina
| | - Xingyu Ren
- Engineering and Research Center of Biological Pesticide of Shaanxi ProvinceNorthwest A&F UniversityYanglingChina
| | - Lanying Wang
- Engineering and Research Center of Biological Pesticide of Shaanxi ProvinceNorthwest A&F UniversityYanglingChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsMinistry of EducationHainan UniversityHaikouChina
| | - Xiang Lu
- Engineering and Research Center of Biological Pesticide of Shaanxi ProvinceNorthwest A&F UniversityYanglingChina
| | - Lirong Han
- Engineering and Research Center of Biological Pesticide of Shaanxi ProvinceNorthwest A&F UniversityYanglingChina
| | - Xing Zhang
- Engineering and Research Center of Biological Pesticide of Shaanxi ProvinceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Juntao Feng
- Engineering and Research Center of Biological Pesticide of Shaanxi ProvinceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| |
Collapse
|
19
|
Dubey H, Kiran K, Jaswal R, Bhardwaj SC, Mondal TK, Jain N, Singh NK, Kayastha AM, Sharma TR. Identification and characterization of Dicer-like genes in leaf rust pathogen (Puccinia triticina) of wheat. Funct Integr Genomics 2020; 20:711-721. [PMID: 32705366 DOI: 10.1007/s10142-020-00745-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Puccinia triticina (P. triticina) is one of the most devastating fungal pathogens of wheat which causes significant annual yield loss to the crop. Understanding the gene regulatory mechanism of the biotrophic pathogen is one of the important aspects of host-pathogen interaction studies. Dicer-like genes are considered as important mediators of RNAi-based gene regulation. In this study, we report the presence of three Dicer-like genes (Pt-DCL1, Pt-DCL2, Pt-DCL3) in P. triticina genome identified through computational and biological analyses. Quantitative real-time PCR studies revealed an increase in the expression of these genes in germinating spore stages. Heterologous expression combined with mass spectrometry analysis of Pt-DCL2 confirmed the presence of a canonical Dicer-like gene in P. triticina. Phylogenetic analysis of the Pt-DCLs with the Dicer-like proteins from other organisms showed a distinct cluster of rust pathogens from the order Pucciniales. The results indicated a species-specific duplication of Dicer-like genes within the wheat rust pathogens. This study, for the first time, reports the presence of Dicer-dependent RNAi pathway in P. triticina that may play a role in gene regulatory mechanism of the pathogen during its development. Our study serves as a vital source of information for further RNAi-based molecular studies for better understanding and management of the wheat leaf rust disease.
Collapse
Affiliation(s)
- Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India.,School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, Karnataka, 560035, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Rajdeep Jaswal
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, 171009, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Neha Jain
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India. .,Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India.
| |
Collapse
|
20
|
Guin K, Sreekumar L, Sanyal K. Implications of the Evolutionary Trajectory of Centromeres in the Fungal Kingdom. Annu Rev Microbiol 2020; 74:835-853. [PMID: 32706633 DOI: 10.1146/annurev-micro-011720-122512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome segregation during the cell cycle is an evolutionarily conserved, fundamental biological process. Dynamic interaction between spindle microtubules and the kinetochore complex that assembles on centromere DNA is required for faithful chromosome segregation. The first artificial minichromosome was constructed by cloning the centromere DNA of the budding yeast Saccharomyces cerevisiae. Since then, centromeres have been identified in >60 fungal species. The DNA sequence and organization of the sequence elements are highly diverse across these fungal centromeres. In this article, we provide a comprehensive view of the evolution of fungal centromeres. Studies of this process facilitated the identification of factors influencing centromere specification, maintenance, and propagation through many generations. Additionally, we discuss the unique features and plasticity of centromeric chromatin and the involvement of centromeres in karyotype evolution. Finally, we discuss the implications of recurrent loss of RNA interference (RNAi) and/or heterochromatin components on the trajectory of the evolution of fungal centromeres and propose the centromere structure of the last common ancestor of three major fungal phyla-Ascomycota, Basidiomycota, and Mucoromycota.
Collapse
Affiliation(s)
- Krishnendu Guin
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka 560064, India; , ,
| | - Lakshmi Sreekumar
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka 560064, India; , ,
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka 560064, India; , ,
| |
Collapse
|
21
|
Azimi-Resketi M, Eskandarian A, Ganjalikhani-Hakemi M, Zohrabi T. Knocking down of the DHFR-TS gene in Toxoplasma gondii using siRNA and assessing the subsequences on toxoplasmosis in mice. Acta Trop 2020; 207:105488. [PMID: 32277926 DOI: 10.1016/j.actatropica.2020.105488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/05/2023]
Abstract
Toxoplasma gondii (T. gondii), an obligatory intracellular parasite, is the etiologic agent of toxoplasmosis. Dihydrofolate reductase-thymidylate synthase (DHFR-TS) is one of the most important enzymes in toxoplasma folic acid cycle. Due to the emergence of resistance in RH strain of T. gondii against pyrimethamine that acts via DHFR-TS inhibition and also the crucial role of small interference RNA (siRNA) technology in gene silencing, we aimed to use siRNA to knock down DHFR-TS gene expression in T. gondii as a therapeutic target against toxoplasmosis in a mouse model. Based on the DHFR-TS gene sequence, siRNA was designed. The siRNAs were transfected into the parasites by electroporation. Total RNA was extracted using RNX-Plus kit. The viability of parasite was assessed by methylthiazole tetrazolium (MTT). The survival time of mice challenged with siRNA-treated T.gondii were compared to the control group infected with the same amount of wild-type tachyzoites. The viability of siRNA-embedded parasites was 70.7% (29.3% decreased) compared to the wild-type parasite as control (P = 0.0001). The transcription level of siRNA-transfected parasites was reduced to 17.4% (82.6% inhibition) (P = 0.016). The in vivo assessment showed that the mean survival time of the mice inoculated with modified parasites was increased about 2 days after the death of all mice in the control group. The designed siRNAs in the current study were able to silence the DHFR-TS gene efficiently. This silencing led to a decrease in viability of the parasites and an increase in the survival time of the parasites-treated mice.
Collapse
Affiliation(s)
- Mojtaba Azimi-Resketi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Eskandarian
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mazdak Ganjalikhani-Hakemi
- Department of Medical Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | |
Collapse
|
22
|
Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens 2020; 9:pathogens9050340. [PMID: 32369942 PMCID: PMC7281180 DOI: 10.3390/pathogens9050340] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
There is an urgency to supplant the heavy reliance on chemical control of Fusarium diseases in different economically important, staple food crops due to development of resistance in the pathogen population, the high cost of production to the risk-averse grower, and the concomitant environmental impacts. Pathogenomics has enabled (i) the creation of genetic inventories which identify those putative genes, regulators, and effectors that are associated with virulence, pathogenicity, and primary and secondary metabolism; (ii) comparison of such genes among related pathogens; (iii) identification of potential genetic targets for chemical control; and (iv) better characterization of the complex dynamics of host–microbe interactions that lead to disease. This type of genomic data serves to inform host-induced gene silencing (HIGS) technology for targeted disruption of transcription of select genes for the control of Fusarium diseases. This review discusses the various repositories and browser access points for comparison of genomic data, the strategies for identification and selection of pathogenicity- and virulence-associated genes and effectors in different Fusarium species, HIGS and successful Fusarium disease control trials with a consideration of loss of RNAi, off-target effects, and future challenges in applying HIGS for management of Fusarium diseases.
Collapse
|
23
|
Kettles GJ, Hofinger BJ, Hu P, Bayon C, Rudd JJ, Balmer D, Courbot M, Hammond-Kosack KE, Scalliet G, Kanyuka K. sRNA Profiling Combined With Gene Function Analysis Reveals a Lack of Evidence for Cross-Kingdom RNAi in the Wheat - Zymoseptoria tritici Pathosystem. FRONTIERS IN PLANT SCIENCE 2019; 10:892. [PMID: 31333714 PMCID: PMC6620828 DOI: 10.3389/fpls.2019.00892] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/21/2019] [Indexed: 05/19/2023]
Abstract
Cross-kingdom small RNA (sRNA) silencing has recently emerged as a mechanism facilitating fungal colonization and disease development. Here we characterized RNAi pathways in Zymoseptoria tritici, a major fungal pathogen of wheat, and assessed their contribution to pathogenesis. Computational analysis of fungal sRNA and host mRNA sequencing datasets was used to define the global sRNA populations in Z. tritici and predict their mRNA targets in wheat. 389 in planta-induced sRNA loci were identified. sRNAs generated from some of these loci were predicted to target wheat mRNAs including those potentially involved in pathogen defense. However, molecular approaches failed to validate targeting of selected wheat mRNAs by fungal sRNAs. Mutant strains of Z. tritici carrying deletions of genes encoding key components of RNAi such as Dicer-like (DCL) and Argonaute (AGO) proteins were generated, and virulence bioassays suggested that these are dispensable for full infection of wheat. Nonetheless, our results did suggest the existence of non-canonical DCL-independent pathway(s) for sRNA biogenesis in Z. tritici. dsRNA targeting essential fungal genes applied in vitro or generated from an RNA virus vector in planta in a procedure known as HIGS (Host-Induced Gene Silencing) was ineffective in preventing Z. tritici growth or disease. We also demonstrated that Z. tritici is incapable of dsRNA uptake. Collectively, our data suggest that RNAi approaches for gene function analyses in this fungal species and potentially also as a control measure may not be as effective as has been demonstrated for some other plant pathogenic fungi.
Collapse
Affiliation(s)
- Graeme J. Kettles
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Bernhard J. Hofinger
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Pingsha Hu
- Syngenta Biotechnology, Inc., Research Triangle Park, NC, United States
| | - Carlos Bayon
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Jason J. Rudd
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Dirk Balmer
- Syngenta Crop Protection AG, Stein, Switzerland
| | | | | | | | - Kostya Kanyuka
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
24
|
Song X, Gu K, Duan X, Xiao X, Hou Y, Duan Y, Wang J, Yu N, Zhou M. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing. MOLECULAR PLANT PATHOLOGY 2018; 19:2543-2560. [PMID: 30027625 PMCID: PMC6638038 DOI: 10.1111/mpp.12728] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Spray-induced gene silencing (SIGS) is an innovative strategy for crop protection. However, the mechanism of SIGS is not known. Here, we first demonstrate that secondary small interfering RNA (siRNA) amplification limits the application of SIGS. A myosin5 gene (Myo5) was chosen as the target of SIGS in an agronomically important pathogen-Fusarium asiaticum. Five segments corresponding to the different regions of the Myo5 gene were found to efficiently silence Myo5, resulting in cell wall defects, life cycle disruption and virulence reduction. Myo5-8 (one of the Myo5 segments) induced sequence-specific RNA interference (RNAi) activity in F. asiaticum, F. graminearum, F. tricinctum and F. oxysporum, but not in other fungi, in vitro. Remarkably, the silencing of Myo5 lasted for only 9 h unless the double-stranded RNA (dsRNA) was continuously supplied, because F. asiaticum is unable to maintain siRNA amplification. After spraying on plants, dsRNAs were more efficiently taken up via the wounded surface. The antifungal activity of dsRNAs taken up by plant cells was higher and longer lasting than that dried onto the plant surface. In contrast with dsRNAs in fungi, dsRNAs in plant cells could efficiently turn into substantial siRNAs via secondary amplification machinery. Our findings provide new implications to develop SIGS as a mainstream disease control strategy against Fusarium and other fungi.
Collapse
Affiliation(s)
- Xiu‐Shi Song
- Key Laboratory of Pesticide, College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsu Province210095China
| | - Kai‐Xin Gu
- Key Laboratory of Pesticide, College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsu Province210095China
| | - Xiao‐Xin Duan
- Key Laboratory of Pesticide, College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsu Province210095China
| | - Xue‐Mei Xiao
- Key Laboratory of Pesticide, College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsu Province210095China
| | - Yi‐Ping Hou
- Key Laboratory of Pesticide, College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsu Province210095China
| | - Ya‐Bing Duan
- Key Laboratory of Pesticide, College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsu Province210095China
| | - Jian‐Xin Wang
- Key Laboratory of Pesticide, College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsu Province210095China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsu Province210095China
| | - Ming‐Guo Zhou
- Key Laboratory of Pesticide, College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsu Province210095China
| |
Collapse
|
25
|
Yu J, Lee KM, Cho WK, Park JY, Kim KH. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections. J Virol 2018; 92:e01756-17. [PMID: 29437977 PMCID: PMC5899199 DOI: 10.1128/jvi.01756-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/02/2018] [Indexed: 01/14/2023] Open
Abstract
The mechanisms of RNA interference (RNAi) as a defense response against viruses remain unclear in many plant-pathogenic fungi. In this study, we used reverse genetics and virus-derived small RNA profiling to investigate the contributions of RNAi components to the antiviral response against Fusarium graminearum viruses 1 to 3 (FgV1, -2, and -3). Real-time reverse transcription-quantitative PCR (qRT-PCR) indicated that infection of Fusarium graminearum by FgV1, -2, or -3 differentially induces the gene expression of RNAi components in F. graminearum Transcripts of the DICER-2 and AGO-1 genes of F. graminearum (FgDICER-2 and FgAGO-1) accumulated at lower levels following FgV1 infection than following FgV2 or FgV3 infection. We constructed gene disruption and overexpression mutants for each of the Argonaute and dicer genes and for two RNA-dependent RNA polymerase (RdRP) genes and generated virus-infected strains of each mutant. Interestingly, mycelial growth was significantly faster for the FgV1-infected FgAGO-1 overexpression mutant than for the FgV1-infected wild type, while neither FgV2 nor FgV3 infection altered the colony morphology of the gene deletion and overexpression mutants. FgV1 RNA accumulation was significantly decreased in the FgAGO-1 overexpression mutant. Furthermore, the levels of induction of FgAGO-1, FgDICER-2, and some of the FgRdRP genes caused by FgV2 and FgV3 infection were similar to those caused by hairpin RNA-induced gene silencing. Using small RNA sequencing analysis, we documented different patterns of virus-derived small interfering RNA (vsiRNA) production in strains infected with FgV1, -2, and -3. Our results suggest that the Argonaute protein encoded by FgAGO-1 is required for RNAi in F. graminearum, that FgAGO-1 induction differs in response to FgV1, -2, and -3, and that FgAGO-1 might contribute to the accumulation of vsiRNAs in FgV1-infected F. graminearumIMPORTANCE To increase our understanding of how RNAi components in Fusarium graminearum react to mycovirus infections, we characterized the role(s) of RNAi components involved in the antiviral defense response against Fusarium graminearum viruses (FgVs). We observed differences in the levels of induction of RNA silencing-related genes, including FgDICER-2 and FgAGO-1, in response to infection by three different FgVs. FgAGO-1 can efficiently induce a robust RNAi response against FgV1 infection, but FgDICER genes might be relatively redundant to FgAGO-1 with respect to antiviral defense. However, the contribution of this gene in the response to the other FgV infections might be small. Compared to previous studies of Cryphonectria parasitica, which showed dicer-like protein 2 and Argonaute-like protein 2 to be important in antiviral RNA silencing, our results showed that F. graminearum developed a more complex and robust RNA silencing system against mycoviruses and that FgDICER-1 and FgDICER-2 and FgAGO-1 and FgAGO-2 had redundant roles in antiviral RNA silencing.
Collapse
Affiliation(s)
- Jisuk Yu
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Mi Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Ju Yeon Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Abstract
The “centromere paradox” refers to rapidly evolving and highly diverse centromere DNA sequences even in closely related eukaryotes. However, factors contributing to this rapid divergence are largely unknown. Here, we identified large regional, LTR retrotransposon-rich centromeres in a group of human fungal pathogens belonging to the Cryptococcus species complex. We provide evidence that loss-of-functional RNAi machinery and possibly cytosine DNA methylation trigger instability of the genome by activation of centromeric retrotransposons presumably suppressed by RNAi. We propose that RNAi, together with cytosine DNA methylation, serves as a critical determinant that maintains repetitive transposon-rich centromere structures. This study explores the direct link between RNAi and centromere structure evolution. The centromere DNA locus on a eukaryotic chromosome facilitates faithful chromosome segregation. Despite performing such a conserved function, centromere DNA sequence as well as the organization of sequence elements is rapidly evolving in all forms of eukaryotes. The driving force that facilitates centromere evolution remains an enigma. Here, we studied the evolution of centromeres in closely related species in the fungal phylum of Basidiomycota. Using ChIP-seq analysis of conserved inner kinetochore proteins, we identified centromeres in three closely related Cryptococcus species: two of which are RNAi-proficient, while the other lost functional RNAi. We find that the centromeres in the RNAi-deficient species are significantly shorter than those of the two RNAi-proficient species. While centromeres are LTR retrotransposon-rich in all cases, the RNAi-deficient species lost all full-length retroelements from its centromeres. In addition, centromeres in RNAi-proficient species are associated with a significantly higher level of cytosine DNA modifications compared with those of RNAi-deficient species. Furthermore, when an RNAi-proficient Cryptococcus species and its RNAi-deficient mutants were passaged under similar conditions, the centromere length was found to be occasionally shortened in RNAi mutants. In silico analysis of predicted centromeres in a group of closely related Ustilago species, also belonging to the Basidiomycota, were found to have undergone a similar transition in the centromere length in an RNAi-dependent fashion. Based on the correlation found in two independent basidiomycetous species complexes, we present evidence suggesting that the loss of RNAi and cytosine DNA methylation triggered transposon attrition, which resulted in shortening of centromere length during evolution.
Collapse
|
27
|
Dubey A, Jeon J. Epigenetic regulation of development and pathogenesis in fungal plant pathogens. MOLECULAR PLANT PATHOLOGY 2017; 18:887-898. [PMID: 27749982 PMCID: PMC6638268 DOI: 10.1111/mpp.12499] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 05/08/2023]
Abstract
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis.
Collapse
Affiliation(s)
- Akanksha Dubey
- Department of BiotechnologyCollege of Life and Applied Sciences, Yeungnam UniversityGyeongsanGyeongbuk38541South Korea
| | - Junhyun Jeon
- Department of BiotechnologyCollege of Life and Applied Sciences, Yeungnam UniversityGyeongsanGyeongbuk38541South Korea
| |
Collapse
|
28
|
Torres-Martínez S, Ruiz-Vázquez RM. The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions. Annu Rev Microbiol 2017; 71:371-391. [PMID: 28657888 DOI: 10.1146/annurev-micro-090816-093352] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) is a conserved eukaryotic mechanism that uses small RNA molecules to suppress gene expression through sequence-specific messenger RNA degradation, translational repression, or transcriptional inhibition. In filamentous fungi, the protective function of RNAi in the maintenance of genome integrity is well known. However, knowledge of the regulatory role of RNAi in fungi has had to wait until the recent identification of different endogenous small RNA classes, which are generated by distinct RNAi pathways. In addition, RNAi research on new fungal models has uncovered the role of small RNAs and RNAi pathways in the regulation of diverse biological functions. In this review, we give an up-to-date overview of the different classes of small RNAs and RNAi pathways in fungi and their roles in the defense of genome integrity and regulation of fungal physiology and development, as well as in the interaction of fungi with biotic and abiotic environments.
Collapse
|
29
|
Feng H, Xu M, Liu Y, Dong R, Gao X, Huang L. Dicer-Like Genes Are Required for H 2O 2 and KCl Stress Responses, Pathogenicity and Small RNA Generation in Valsa mali. Front Microbiol 2017; 8:1166. [PMID: 28690605 PMCID: PMC5481355 DOI: 10.3389/fmicb.2017.01166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022] Open
Abstract
Valsa mali (V. mali) is the causative agent of apple tree Valsa canker, which heavily damages the production of apples in China. However, the biological roles of the RNA interfering (RNAi) pathway in the pathogenicity of V. mali remain unknown. Dicer-like proteins (DCLs) are important components that control the initiation of the RNAi pathway. In this study, VmDCL1 and VmDCL2 were isolated and functionally characterized in V. mali. VmDCL1 and VmDCL2 are orthologous in evolution to the DCLs in Cryphonectria parasitica. The deletion of VmDCL1 and VmDCL2 did not affect vegetative growth when the mutants (ΔVmDCL1, ΔVmDCL2 and ΔVmDCL1DCL2) and wild type strain 03–8 were grown on a PDA medium at 25°C in the dark. However, the colony of ΔVmDCL1 increased by 37.1% compared to the 03–8 colony in a medium containing 0.05% H2O2 3 days after inoculation, and the growth of ΔVmDCL1 was significantly inhibited in a medium containing 0.5 M KCl at a ratio of 25.7%. Meanwhile, in the presence of 0.05% H2O2, the growth of ΔVmDCL2 decreased by 34.5% compared with the growth of 03–8, but ΔVmDCL2 grew normally in the presence of 0.5 M KCl. More importantly, the expression of VmDCL2 was up-regulated 125-fold during the pathogen infection. In the infection assays using apple twigs, the pathogenicity of ΔVmDCL2 and ΔVmDCL1DCL2 was significantly reduced compared with that of 03–8 at a ratio of 24.7 and 41.3%, respectively. All defective phenotypes could be nearly rescued by re-introducing the wild type VmDCL1 and VmDCL2 alleles. Furthermore, the number and length distribution of unique small RNAs (unisRNAs) in the mutants and 03–8 were analyzed using deep sequencing. The number of unisRNAs was obviously lower in ΔVmDCL1, ΔVmDCL2 and ΔVmDCL1DCL2 than that in 03–8, and the length distribution of the sRNAs also markedly changed after the VmDCLs were deleted. These results indicated that VmDCLs function in the H2O2 and KCl stress response, pathogenicity and generation of sRNAs.
Collapse
Affiliation(s)
- Hao Feng
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Ming Xu
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Yangyang Liu
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Ruqing Dong
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Xiaoning Gao
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Lili Huang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| |
Collapse
|
30
|
Ghosh S, Kaushik A, Khurana S, Varshney A, Singh AK, Dahiya P, Thakur JK, Sarin SK, Gupta D, Malhotra P, Mukherjee SK, Bhatnagar RK. An RNAi-based high-throughput screening assay to identify small molecule inhibitors of hepatitis B virus replication. J Biol Chem 2017; 292:12577-12588. [PMID: 28584057 DOI: 10.1074/jbc.m117.775155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/04/2017] [Indexed: 01/28/2023] Open
Abstract
Persistent or chronic infection with the hepatitis B virus (HBV) represents one of the most common viral diseases in humans. The hepatitis B virus deploys the hepatitis B virus X protein (HBx) as a suppressor of host defenses consisting of RNAi-based silencing of viral genes. Because of its critical role in countering host defenses, HBx represents an attractive target for antiviral drugs. Here, we developed and optimized a loss-of-function screening procedure, which identified a potential pharmacophore that abrogated HBx RNAi suppression activity. In a survey of 14,400 compounds in the Maybridge Screening Collection, we prioritized candidate compounds via high-throughput screening based on reversal of green fluorescent protein (GFP)-reported, RNAi-mediated silencing in a HepG2/GFP-shRNA RNAi sensor line. The screening yielded a pharmacologically active compound, N-(2,4-difluorophenyl)-N'-[3-(1H-imidazol-1-yl) propyl] thiourea (IR415), which blocked HBx-mediated RNAi suppression indicated by the GFP reporter assay. We also found that IR415 reversed the inhibitory effect of HBx protein on activity of the Dicer endoribonuclease. We further confirmed the results of the primary screen in IR415-treated, HBV-infected HepG2 cells, which exhibited a marked depletion of HBV core protein synthesis and down-regulation of pre-genomic HBV RNA. Using a molecular interaction analysis system, we confirmed that IR415 selectively targets HBx in a concentration-dependent manner. The screening assay presented here allows rapid and improved detection of small-molecule inhibitors of HBx and related viral proteins. The assay may therefore potentiate the development of next-generation RNAi pathway-based therapeutics and promises to accelerate our search for novel and effective drugs in antiviral research.
Collapse
Affiliation(s)
- Subhanita Ghosh
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Abhinav Kaushik
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Sachin Khurana
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Aditi Varshney
- Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110070 New Delhi, India
| | - Avishek Kumar Singh
- Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110070 New Delhi, India
| | - Pradeep Dahiya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Shiv Kumar Sarin
- Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110070 New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India,.
| | - Sunil K Mukherjee
- Division of Plant Pathology, Indian Agriculture Research Institute, 110012 New Delhi, India.
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India.
| |
Collapse
|
31
|
Özkan S, Mohorianu I, Xu P, Dalmay T, Coutts RHA. Profile and functional analysis of small RNAs derived from Aspergillus fumigatus infected with double-stranded RNA mycoviruses. BMC Genomics 2017; 18:416. [PMID: 28558690 PMCID: PMC5450132 DOI: 10.1186/s12864-017-3773-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Background Mycoviruses are viruses that naturally infect and replicate in fungi. Aspergillus fumigatus, an opportunistic pathogen causing fungal lung diseases in humans and animals, was recently shown to harbour several different types of mycoviruses. A well-characterised defence against virus infection is RNA silencing. The A. fumigatus genome encodes essential components of the RNA silencing machinery, including Dicer, Argonaute and RNA-dependent RNA polymerase (RdRP) homologues. Active silencing of double-stranded (ds)RNA and the generation of small RNAs (sRNAs) has been shown for several mycoviruses and it is anticipated that a similar mechanism will be activated in A. fumigatus isolates infected with mycoviruses. Results To investigate the existence and nature of A. fumigatus sRNAs, sRNA-seq libraries of virus-free and virus-infected isolates were created using Scriptminer adapters and compared. Three dsRNA viruses were investigated: Aspergillus fumigatus partitivirus-1 (AfuPV-1, PV), Aspergillus fumigatus chrysovirus (AfuCV, CV) and Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1, NK) which were selected because they induce phenotypic changes such as coloration and sectoring. The dsRNAs of all three viruses, which included two conventionally encapsidated ones PV and CV and one unencapsidated example NK, were silenced and yielded characteristic vsiRNAs together with co-incidental silencing of host fungal genes which shared sequence homology with the viral genomes. Conclusions Virus-derived sRNAs were detected and characterised in the presence of virus infection. Differentially expressed A. fumigatus microRNA-like (miRNA-like) sRNAs and small interfering RNAs (siRNAs) were detected and validated. Host sRNA loci which were differentially expressed as a result of virus infection were also identified. To our knowledge, this is the first study reporting the sRNA profiles of A. fumigatus isolates. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3773-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Selin Özkan
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK. .,Current Address: Vocational School of Health Services, Ahi Evran University, Kırşehir, Turkey.
| | - Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich, UK.,School of Computing Sciences, University of East Anglia, Norwich, UK
| | - Ping Xu
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Robert H A Coutts
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.,Current Address: Geography, Environment and Agriculture Division, Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
32
|
Rayner S, Bruhn S, Vallhov H, Andersson A, Billmyre RB, Scheynius A. Identification of small RNAs in extracellular vesicles from the commensal yeast Malassezia sympodialis. Sci Rep 2017; 7:39742. [PMID: 28051166 PMCID: PMC5209728 DOI: 10.1038/srep39742] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022] Open
Abstract
Malassezia is the dominant fungus in the human skin mycobiome and is associated with common skin disorders including atopic eczema (AE)/dermatitis. Recently, it was found that Malassezia sympodialis secretes nanosized exosome-like vesicles, designated MalaEx, that carry allergens and can induce inflammatory cytokine responses. Extracellular vesicles from different cell-types including fungi have been found to deliver functional RNAs to recipient cells. In this study we assessed the presence of small RNAs in MalaEx and addressed if the levels of these RNAs differ when M. sympodialis is cultured at normal human skin pH versus the elevated pH present on the skin of patients with AE. The total number and the protein concentration of the released MalaEx harvested after 48 h culture did not differ significantly between the two pH conditions nor did the size of the vesicles. From small RNA sequence data, we identified a set of reads with well-defined start and stop positions, in a length range of 16 to 22 nucleotides consistently present in the MalaEx. The levels of small RNAs were not significantly differentially expressed between the two different pH conditions indicating that they are not influenced by the elevated pH level observed on the AE skin.
Collapse
Affiliation(s)
- Simon Rayner
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Sören Bruhn
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital Stockholm, Sweden
| | - Helen Vallhov
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden
| | - Anna Andersson
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital Stockholm, Sweden
| | - R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden
| |
Collapse
|
33
|
Liu T, Li H, Ding Y, Qi Y, Gao Y, Song A, Shen J, Qiu L. Genome-wide gene expression patterns in dikaryon of the basidiomycete fungus Pleurotus ostreatus. Braz J Microbiol 2017; 48:380-390. [PMID: 28089161 PMCID: PMC5470450 DOI: 10.1016/j.bjm.2016.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/20/2016] [Indexed: 01/10/2023] Open
Abstract
Dikarya is a subkingdom of fungi that includes Ascomycota and Basidiomycota. The gene expression patterns of dikaryon are poorly understood. In this study, we bred a dikaryon DK13×3 by mating monokaryons MK13 and MK3, which were from the basidiospores of Pleurotus ostreatus TD300. Using RNA-Seq, we obtained the transcriptomes of the three strains. We found that the total transcript numbers in the transcriptomes of the three strains were all more than ten thousand, and the expression profile in DK13×3 was more similar to MK13 than MK3. However, the genes involved in macromolecule utilization, cellular material synthesis, stress-resistance and signal transduction were much more up-regulated in the dikaryon than its constituent monokaryons. All possible modes of differential gene expression, when compared to constituent monokaryons, including the presence/absence variation, and additivity/nonadditivity gene expression in the dikaryon may contribute to heterosis. By sequencing the urease gene poure sequences and mRNA sequences, we identified the monoallelic expression of the poure gene in the dikaryon, and its transcript was from the parental monokaryon MK13. Furthermore, we discovered RNA editing in the poure gene mRNA of the three strains. These results suggest that the gene expression patterns in dikaryons should be similar to that of diploids during vegetative growth.
Collapse
Affiliation(s)
- Tianxiang Liu
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Huiru Li
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Yatong Ding
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Yuancheng Qi
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Yuqian Gao
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Andong Song
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Jinwen Shen
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Liyou Qiu
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China.
| |
Collapse
|
34
|
Sesma A. RNA metabolism and regulation of virulence programs in fungi. Semin Cell Dev Biol 2016; 57:120-127. [DOI: 10.1016/j.semcdb.2016.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/16/2023]
|
35
|
Timoshevskiy VA, Herdy JR, Keinath MC, Smith JJ. Cellular and Molecular Features of Developmentally Programmed Genome Rearrangement in a Vertebrate (Sea Lamprey: Petromyzon marinus). PLoS Genet 2016; 12:e1006103. [PMID: 27341395 PMCID: PMC4920378 DOI: 10.1371/journal.pgen.1006103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/13/2016] [Indexed: 11/21/2022] Open
Abstract
The sea lamprey (Petromyzon marinus) represents one of the few vertebrate species known to undergo large-scale programmatic elimination of genomic DNA over the course of its normal development. Programmed genome rearrangements (PGRs) result in the reproducible loss of ~20% of the genome from somatic cell lineages during early embryogenesis. Studies of PGR hold the potential to provide novel insights related to the maintenance of genome stability during the cell cycle and coordination between mechanisms responsible for the accurate distribution of chromosomes into daughter cells, yet little is known regarding the mechanistic basis or cellular context of PGR in this or any other vertebrate lineage. Here we identify epigenetic silencing events that are associated with the programmed elimination of DNA and describe the spatiotemporal dynamics of PGR during lamprey embryogenesis. In situ analyses reveal that the earliest DNA methylation (and to some extent H3K9 trimethylation) events are limited to specific extranuclear structures (micronuclei) containing eliminated DNA. During early embryogenesis a majority of micronuclei (~60%) show strong enrichment for repressive chromatin modifications (H3K9me3 and 5meC). These analyses also led to the discovery that eliminated DNA is packaged into chromatin that does not migrate with somatically retained chromosomes during anaphase, a condition that is superficially similar to lagging chromosomes observed in some cancer subtypes. Closer examination of “lagging” chromatin revealed distributions of repetitive elements, cytoskeletal contacts and chromatin contacts that provide new insights into the cellular mechanisms underlying the programmed loss of these segments. Our analyses provide additional perspective on the cellular and molecular context of PGR, identify new structures associated with elimination of DNA and reveal that PGR is completed over the course of several successive cell divisions. Lampreys possess a fascinating genome biology wherein large portions of the genome, including large numbers of genes, are programmatically deleted during development. The lamprey therefore represents a uniquely informative system with respect to several broad areas of biology, including genome stability/rearrangement, epigenetic silencing, and the establishment and maintenance of pluripotency. However, little is known regarding the cellular context or mechanism of deletion, partly due to the challenges of observing rearrangements in situ. Here we present analyses and new techniques that significantly advance our understanding of the subcellular context of programmed rearrangements and interactions between programmed deletion and canonical DNA silencing mechanisms. These analyses demonstrate that DNA elimination occurs earlier in embryogenesis than was previously recognized and reveal several new cellular and molecular aspects of programmed DNA loss. Specifically we show that eliminated DNA exhibits a unique migration pattern during cell division, is packaged into discreet subcellular structures later in the cell cycle, and undergoes epigenetic silencing through DNA and histone methylation. These observations provide new insight into the mechanisms underlying programmed DNA loss and suggest a functional link between programmed DNA loss and other, more conserved gene silencing pathways.
Collapse
Affiliation(s)
| | - Joseph R. Herdy
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Laboratory of Genetics, The Salk Institute, La Jolla, California, United States of America
| | - Melissa C. Keinath
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jeramiah J. Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
36
|
Small RNA-Based Antiviral Defense in the Phytopathogenic Fungus Colletotrichum higginsianum. PLoS Pathog 2016; 12:e1005640. [PMID: 27253323 PMCID: PMC4890784 DOI: 10.1371/journal.ppat.1005640] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022] Open
Abstract
Even though the fungal kingdom contains more than 3 million species, little is known about the biological roles of RNA silencing in fungi. The Colletotrichum genus comprises fungal species that are pathogenic for a wide range of crop species worldwide. To investigate the role of RNA silencing in the ascomycete fungus Colletotrichum higginsianum, knock-out mutants affecting genes for three RNA-dependent RNA polymerase (RDR), two Dicer-like (DCL), and two Argonaute (AGO) proteins were generated by targeted gene replacement. No effects were observed on vegetative growth for any mutant strain when grown on complex or minimal media. However, Δdcl1, Δdcl1Δdcl2 double mutant, and Δago1 strains showed severe defects in conidiation and conidia morphology. Total RNA transcripts and small RNA populations were analyzed in parental and mutant strains. The greatest effects on both RNA populations was observed in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains, in which a previously uncharacterized dsRNA mycovirus [termed Colletotrichum higginsianum non-segmented dsRNA virus 1 (ChNRV1)] was derepressed. Phylogenetic analyses clearly showed a close relationship between ChNRV1 and members of the segmented Partitiviridae family, despite the non-segmented nature of the genome. Immunoprecipitation of small RNAs associated with AGO1 showed abundant loading of 5’U-containing viral siRNA. C. higginsianum parental and Δdcl1 mutant strains cured of ChNRV1 revealed that the conidiation and spore morphology defects were primarily caused by ChNRV1. Based on these results, RNA silencing involving ChDCL1 and ChAGO1 in C. higginsianum is proposed to function as an antiviral mechanism. Colletotrichum sp. comprises a diverse group of fungal pathogens that attack over 3000 plant species worldwide. Understanding the underlying mechanisms that govern fungal development and pathogenicity may enable more effective and sustainable approaches to crop disease management and control. In most organisms, RNA silencing is an important mechanism to control endogenous and exogenous RNA. RNA silencing utilizes small regulatory molecules (small RNAs) produced by proteins called Dicer (DCL), and exercise their function though effector proteins named Argonaute (AGO). Here, we investigated the role of RNA silencing machinery in the fungus Colletotrichum higginsianum, by generating deletions in genes encoding RNA silencing components. Severe defects were observed in both conidiation and conidia morphology in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains. Analysis of transcripts and small RNAs revealed an uncharacterized dsRNA virus persistently infecting C. higginsianum. The virus was shown (1) to be de-repressed in the Δdcl1, Δdcl1Δdcl2 and Δago1 strains, and (2) to cause the conidiation and spore mutant phenotypes. Our results indicate that C. higginsianum employs RNA silencing as an antiviral mechanism to suppress viruses and their debilitating effects.
Collapse
|
37
|
Rubio M, Bassat Q, Estivill X, Mayor A. Tying malaria and microRNAs: from the biology to future diagnostic perspectives. Malar J 2016; 15:167. [PMID: 26979504 PMCID: PMC4793504 DOI: 10.1186/s12936-016-1222-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/09/2016] [Indexed: 12/21/2022] Open
Abstract
Symptoms caused by bacterial, viral and malarial infections usually overlap and aetiologic diagnosis is difficult. Patient management in low-resource countries with limited laboratory services has been based predominantly on clinical evaluation and syndromic approaches. However, such clinical assessment has limited accuracy both for identifying the likely aetiological cause and for the early recognition of patients who will progress to serious or fatal disease. Plasma-detectable biomarkers that rapidly and accurately diagnose severe infectious diseases could reduce morbidity and decrease the unnecessary use of usually scarce therapeutic drugs. The discovery of microRNAs (miRNAs) has opened exciting new avenues to identify blood biomarkers of organ-specific injury. This review assesses current knowledge on the relationship between malaria disease and miRNAs, and evaluates how future research might lead to the use of these small molecules for identifying patients with severe malaria disease and facilitate treatment decisions.
Collapse
Affiliation(s)
- Mercedes Rubio
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK building), 08036, Barcelona, Spain
| | - Quique Bassat
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK building), 08036, Barcelona, Spain.,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Xavier Estivill
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology; CIBER in Epidemiology and Public Health (CIBERESP), Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Experimental Genetics, Sidra Medical and Research Centre, Doha, Qatar
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK building), 08036, Barcelona, Spain. .,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique.
| |
Collapse
|
38
|
Feretzaki M, Billmyre RB, Clancey SA, Wang X, Heitman J. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex. PLoS Genet 2016; 12:e1005868. [PMID: 26943821 PMCID: PMC4778953 DOI: 10.1371/journal.pgen.1005868] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory. Genome instability and mutations provoked by transposon movement are counteracted by novel defense mechanisms in organisms as diverse as fungi, plants, and mammals. In the human fungal pathogen Cryptococcus neoformans, an RNAi silencing pathway operates to defend the genome against mobile elements and transgene repeats. RNAi silencing pathways are conserved in the Cryptococcus pathogenic species complex and are mediated by canonical RNAi components. Surprisingly, several of these components are missing from all analyzed C. deuterogattii VGII strains, the molecular type responsible for the North American Pacific Northwest outbreak. To identify novel components of the RNAi pathways, we surveyed the reference genomes of C. deuterogattii, C. gattii, C. neoformans, and C. deneoformans. We identified 14 otherwise conserved genes missing in R265, including the RDP1, AGO1, and DCR1 canonical RNAi components, and focused on four potentially novel RNAi components: ZNF3, QIP1, CPR2, and FZC28. We found that Znf3 and Qip1 are both required for mitotic- and sex-induced silencing, while Cpr2 and Fzc28 contribute to sex-induced but not mitosis-induced silencing. Our studies reveal elements of RNAi pathways that operate to defend the genome during sexual development and vegetative growth and illustrate the power of network polymorphisms to illuminate novel components of biological pathways.
Collapse
Affiliation(s)
- Marianna Feretzaki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xuying Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
39
|
Design, simplified cloning, and in-silico analysis of multisite small interfering RNA-targeting cassettes. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2016; 5:31-43. [PMID: 27844018 PMCID: PMC5019331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple gene silencing is being required to target and tangle metabolic pathways in eukaryotes and researchers have to develop a subtle method for construction of RNA interference (RNAi) cassettes. Although, several vectors have been developed due to different screening and cloning strategies but still some potential limitations remain to be dissolved. Here, we worked out a simple cloning strategy to develop multisite small interfering RNA (siRNA) cassette from different genes by two cloning steps. In this method, effective siRNA sites in the target messenger RNAs (mRNAs) were determined using in silico analysis and consecutively arranged to reduce length of inverted repeats. Here, we used one-step (polymerase chain reaction) PCR by designed long primer sets covering the selected siRNA sites. Rapid screening, cost-effective and shorten procedure are advantages of this method compare to PCR classic cloning. Validity of constructs was confirmed by optimal centroid secondary structures with high stability in plants.
Collapse
|
40
|
Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res 2015; 16:fov106. [PMID: 26614308 DOI: 10.1093/femsyr/fov106] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2015] [Indexed: 02/06/2023] Open
Abstract
Cryptococcosis is an invasive fungal infection of humans and other animals, typically caused by the species Cryptococcus neoformans in patients with impaired immunity. However, there is growing recognition of the importance of the related species C. gattii in causing infections in apparently immunocompetent individuals. In particular, an ongoing outbreak of cryptococcal disease in the Pacific Northwest region, which started in 1999, has driven an intense research effort into this previously neglected pathogen. Here, we discuss some of the recent discoveries in this organism from the Pacific Northwest region and highlight areas for future investigation.
Collapse
Affiliation(s)
- Ewa Bielska
- Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Robin C May
- Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
41
|
Chen Y, Gao Q, Huang M, Liu Y, Liu Z, Liu X, Ma Z. Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum. Sci Rep 2015; 5:12500. [PMID: 26212591 PMCID: PMC4515635 DOI: 10.1038/srep12500] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 06/26/2015] [Indexed: 02/06/2023] Open
Abstract
The RNA interference (RNAi) plays a critical role in gene regulation in a variety of eukaryotic organisms. However, the role of RNAi remains largely unclear in plant pathogenic fungi. In this study, we explored the roles of core components of the RNAi pathway in Fusarium graminearum, the major causal agent of wheat head blight. Our results demonstrated that the hairpin RNA (hpRNA) can efficiently silence the expression level of target gene, and the argonaute protein FgAgo1 and dicer protein FgDicer2 are important in this silencing process. RNAi machinery was not involved in growth, abiotic stress and pathogenesis in F. graminearum under tested conditions. We firstly applied high-throughput sequencing technology to elucidate small RNA (17-40 nucleotides) (sRNA) transcriptome in F. graminearum, and found that a total of forty-nine micro-like-RNA (milRNA) candidates were identified in the wild-type and ∆FgDICER2, and twenty-four of them were FgDicer2-dependent. Fg-milRNA-4 negatively regulated expression of its target gene. Taken together, our results indicated that the hpRNA-induced gene silencing was a valuable genetic tool for exploring gene function in F. graminearum. FgAgo1 and FgDicer2 proteins played a critical role in the hpRNA mediated gene silencing process. In addition, FgDicer2 was involved in sRNA transcription and milRNA generation in this fungus.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qixun Gao
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mengmeng Huang
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ye Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zunyong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
42
|
Ayllón N, Naranjo V, Hajdušek O, Villar M, Galindo RC, Kocan KM, Alberdi P, Šíma R, Cabezas-Cruz A, Rückert C, Bell-Sakyi L, Kazimírová M, Havlíková S, Klempa B, Kopáček P, de la Fuente J. Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection. PLoS One 2015; 10:e0133038. [PMID: 26186700 PMCID: PMC4506139 DOI: 10.1371/journal.pone.0133038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/23/2015] [Indexed: 11/18/2022] Open
Abstract
Tudor staphylococcal nuclease (Tudor-SN) and Argonaute (Ago) are conserved components of the basic RNA interference (RNAi) machinery with a variety of functions including immune response and gene regulation. The RNAi machinery has been characterized in tick vectors of human and animal diseases but information is not available on the role of Tudor-SN in tick RNAi and other cellular processes. Our hypothesis is that tick Tudor-SN is part of the RNAi machinery and may be involved in innate immune response and other cellular processes. To address this hypothesis, Ixodes scapularis and I. ricinus ticks and/or cell lines were used to annotate and characterize the role of Tudor-SN in dsRNA-mediated RNAi, immune response to infection with the rickettsia Anaplasma phagocytophilum and the flaviviruses TBEV or LGTV and tick feeding. The results showed that Tudor-SN is conserved in ticks and involved in dsRNA-mediated RNAi and tick feeding but not in defense against infection with the examined viral and rickettsial pathogens. The effect of Tudor-SN gene knockdown on tick feeding could be due to down-regulation of genes that are required for protein processing and blood digestion through a mechanism that may involve selective degradation of dsRNAs enriched in G:U pairs that form as a result of adenosine-to-inosine RNA editing. These results demonstrated that Tudor-SN plays a role in tick RNAi pathway and feeding but no strong evidence for a role in innate immune responses to pathogen infection was found.
Collapse
Affiliation(s)
- Nieves Ayllón
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Victoria Naranjo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Ondrej Hajdušek
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 37005, České Budějovice, The Czech Republic
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Ruth C. Galindo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Katherine M. Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Radek Šíma
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 37005, České Budějovice, The Czech Republic
| | - Alejandro Cabezas-Cruz
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 –CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Claudia Rückert
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Lesley Bell-Sakyi
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506, Bratislava, Slovakia
| | - Sabína Havlíková
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia
| | - Boris Klempa
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 37005, České Budějovice, The Czech Republic
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
43
|
Perlin MH, Amselem J, Fontanillas E, Toh SS, Chen Z, Goldberg J, Duplessis S, Henrissat B, Young S, Zeng Q, Aguileta G, Petit E, Badouin H, Andrews J, Razeeq D, Gabaldón T, Quesneville H, Giraud T, Hood ME, Schultz DJ, Cuomo CA. Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus. BMC Genomics 2015; 16:461. [PMID: 26076695 PMCID: PMC4469406 DOI: 10.1186/s12864-015-1660-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
Background The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development. Results We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14 % of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions. Conclusions The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1660-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Joelle Amselem
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France. .,Institut National de la Recherche Agronomique (INRA), Biologie et gestion des risques en agriculture (BIOGER), Thiverval-Grignon, France.
| | - Eric Fontanillas
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - Sebastien Duplessis
- INRA, UMR 1136, Interactions Arbres-Microorganismes, Champenoux, France. .,UMR 1136, Université de Lorraine, Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France.
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France. .,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - Elsa Petit
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France. .,Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France.
| | - Helene Badouin
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Jared Andrews
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Dominique Razeeq
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana d'Estudis Avançats (ICREA), Barcelona, Spain.
| | - Hadi Quesneville
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France.
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA, 01002, USA.
| | - David J Schultz
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | | |
Collapse
|
44
|
When Competing Viruses Unify: Evolution, Conservation, and Plasticity of Genetic Identities. J Mol Evol 2015; 80:305-18. [PMID: 26014757 DOI: 10.1007/s00239-015-9683-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023]
Abstract
In the early 1970s, Manfred Eigen and colleagues developed the quasispecies model (qs) for the population-based origin of RNAs representing the early genetic code. The Eigen idea is basically that a halo of mutants is generated by error-prone replication around the master fittest type which will behave similarly as a biological population. But almost from the start, very interesting and unexpected observations were made regarding competition versus co-operation which suggested more complex interactions. It thus became increasingly clear that although viruses functioned similar to biological species, their behavior was much more complex than the original theory could explain, especially adaptation without changing the consensus involving minority populations. With respect to the origin of natural codes, meaning, and code-use in interactions (communication), it also became clear that individual fittest type-based mechanisms were likewise unable to explain the origin of natural codes such as the genetic code with their context- and consortia-dependence (pragmatic nature). This, instead, required the participation of groups of agents competent in the code and able to edit code because natural codes do not code themselves. Three lines of inquiry, experimental virology, quasispecies theory, and the study of natural codes converged to indicate that consortia of co-operative RNA agents such as viruses must be involved in the fitness of RNA and its involvement in communication, i.e., code-competent interactions. We called this co-operative form quasispecies consortia (qs-c). They are the essential agents that constitute the possibility of evolution of biological group identity. Finally, the basic interactional motifs for the emergence of group identity, communication, and co-operation-together with its opposing functions-are explained by the "Gangen" hypothesis.
Collapse
|
45
|
Kurzynska-Kokorniak A, Koralewska N, Pokornowska M, Urbanowicz A, Tworak A, Mickiewicz A, Figlerowicz M. The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Nucleic Acids Res 2015; 43:4365-80. [PMID: 25883138 PMCID: PMC4482082 DOI: 10.1093/nar/gkv328] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/31/2015] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence indicating that the production of small regulatory RNAs is not the only process in which ribonuclease Dicer can participate. For example, it has been demonstrated that this enzyme is also involved in chromatin structure remodelling, inflammation and apoptotic DNA degradation. Moreover, it has become increasingly clear that cellular transcript and protein levels of Dicer must be strictly controlled because even small changes in their accumulation can initiate various pathological processes, including carcinogenesis. Accordingly, in recent years, a number of studies have been performed to identify the factors regulating Dicer gene expression and protein activity. As a result, a large amount of complex and often contradictory data has been generated. None of these data have been subjected to an exhaustive review or critical discussion. This review attempts to fill this gap by summarizing the current knowledge of factors that regulate Dicer gene transcription, primary transcript processing, mRNA translation and enzyme activity. Because of the high complexity of this topic, this review mainly concentrates on human Dicer. This review also focuses on an additional regulatory layer of Dicer activity involving the interactions of protein and RNA factors with Dicer substrates.
Collapse
Affiliation(s)
| | - Natalia Koralewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Maria Pokornowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Aleksander Tworak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Agnieszka Mickiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland Institute of Computing Science, Poznan University of Technology, Poznan 60-965, Poland
| |
Collapse
|
46
|
Carradec Q, Götz U, Arnaiz O, Pouch J, Simon M, Meyer E, Marker S. Primary and secondary siRNA synthesis triggered by RNAs from food bacteria in the ciliate Paramecium tetraurelia. Nucleic Acids Res 2015; 43:1818-33. [PMID: 25593325 PMCID: PMC4330347 DOI: 10.1093/nar/gku1331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In various organisms, an efficient RNAi response can be triggered by feeding cells with bacteria producing double-stranded RNA (dsRNA) against an endogenous gene. However, the detailed mechanisms and natural functions of this pathway are not well understood in most cases. Here, we studied siRNA biogenesis from exogenous RNA and its genetic overlap with endogenous RNAi in the ciliate Paramecium tetraurelia by high-throughput sequencing. Using wild-type and mutant strains deficient for dsRNA feeding we found that high levels of primary siRNAs of both strands are processed from the ingested dsRNA trigger by the Dicer Dcr1, the RNA-dependent RNA polymerases Rdr1 and Rdr2 and other factors. We further show that this induces the synthesis of secondary siRNAs spreading along the entire endogenous mRNA, demonstrating the occurrence of both 3′-to-5′ and 5′-to-3′ transitivity for the first time in the SAR clade of eukaryotes (Stramenopiles, Alveolates, Rhizaria). Secondary siRNAs depend on Rdr2 and show a strong antisense bias; they are produced at much lower levels than primary siRNAs and hardly contribute to RNAi efficiency. We further provide evidence that the Paramecium RNAi machinery also processes single-stranded RNAs from its bacterial food, broadening the possible natural functions of exogenously induced RNAi in this organism.
Collapse
Affiliation(s)
- Quentin Carradec
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France UPMC, IFD, Sorbonne Universités, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Ulrike Götz
- Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| | - Olivier Arnaiz
- Centre de Génétique Moléculaire, CNRS UPR3404, 91198 Gif-sur-Yvette cedex, France
| | - Juliette Pouch
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France
| | - Martin Simon
- Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| | - Eric Meyer
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France
| | - Simone Marker
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| |
Collapse
|
47
|
Ghosh S, Kakumani PK, Kumar A, Malhotra P, Mukherjee SK, Bhatnagar RK. Genome wide screening of RNAi factors of Sf21 cells reveal several novel pathway associated proteins. BMC Genomics 2014; 15:775. [PMID: 25199785 PMCID: PMC4247154 DOI: 10.1186/1471-2164-15-775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/29/2014] [Indexed: 12/18/2022] Open
Abstract
Background RNA interference (RNAi) leads to sequence specific knock-down of gene expression and has emerged as an important tool to analyse gene functions, pathway analysis and gene therapy. Although RNAi is a conserved cellular process involving common elements and factors, species-specific differences have been observed among different eukaryotes. Identification of components for RNAi pathway is pursued intensively and successful genome-wide screens have been performed for components of RNAi pathways in various organisms. Functional comparative genomics analysis offers evolutionary insight that forms basis of discoveries of novel RNAi-factors within related organisms. Keeping in view the academic and commercial utility of insect derived cell-line from Spodoptera frugiperda, we pursued the identification and functional analysis of components of RNAi-machinery of Sf21 cell-line using genome-wide application. Results The genome and transcriptome of Sf21 was assembled and annotated. In silico application of comparative genome analysis among insects allowed us to identify several RNAi factors in Sf21 line. The candidate RNAi factors from assembled genome were validated by knockdown analysis of candidate factors using the siRNA screens on the Sf21-gfp reporter cell-line. Forty two (42) potential factors were identified using the cell based assay. These include core RNAi elements including Dicer-2, Argonaute-1, Drosha, Aubergine and auxiliary modules like chromatin factors, RNA helicases, RNA processing module, signalling allied proteins and others. Phylogenetic analyses and domain architecture revealed that Spodoptera frugiperda homologs retained identity with Lepidoptera (Bombyx mori) or Coleoptera (Tribolium castaneum) sustaining an evolutionary conserved scaffold in post-transcriptional gene silencing paradigm within insects. Conclusion The database of RNAi-factors generated by whole genome association survey offers comprehensive outlook about conservation as well as specific differences of the proteins of RNAi machinery. Understanding the interior involved in different phases of gene silencing also offers impending tool for RNAi-based applications. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-775) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Pawan Malhotra
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | |
Collapse
|
48
|
Inhibition of porcine reproductive and respiratory syndrome virus by specific siRNA targeting Nsp9 gene. INFECTION GENETICS AND EVOLUTION 2014; 28:64-70. [PMID: 25149224 DOI: 10.1016/j.meegid.2014.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/24/2022]
Abstract
To screen siRNAs for effectively inhibiting the replication of porcine reproductive and respiratory syndrome virus (PRRSV). Four pairs of siRNA targeting Nsp9 gene of PRRSV and one non-efficient pair used as control were designed, synthesized and cloned into pSilencer4.1-CMV neo, designated as pSi-294, pSi-367, pSi-409, pSi-1488, pSi-Ctr. The recombinant plasmids were transfected into Marc-145 cells and infected with PRRSV 24h post transfection. Subsequently, IFA, real-time PCR, TCID50 and western blot were used for evaluating the inhibitory effect of the siRNA. IFA and western-blot results showed that pSi-294, pSi-1488 can effectively inhibit the expression of Nsp9 and M protein of PRRSV, real-time PCR result showed that the expression of Nsp9 gene were decreased from 86.56% to 93.66% compared to the negative control. siRNAs can be used as candidates for basic research of PRRSV.
Collapse
|
49
|
Cissé OH, Pagni M, Hauser PM. Comparative genomics suggests that the human pathogenic fungus Pneumocystis jirovecii acquired obligate biotrophy through gene loss. Genome Biol Evol 2014; 6:1938-48. [PMID: 25062922 PMCID: PMC4159005 DOI: 10.1093/gbe/evu155] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pneumocystis jirovecii is a fungal parasite that colonizes specifically humans and turns into an opportunistic pathogen in immunodeficient individuals. The fungus is able to reproduce extracellularly in host lungs without eliciting massive cellular death. The molecular mechanisms that govern this process are poorly understood, in part because of the lack of an in vitro culture system for Pneumocystis spp. In this study, we explored the origin and evolution of the putative biotrophy of P. jirovecii through comparative genomics and reconstruction of ancestral gene repertoires. We used the maximum parsimony method and genomes of related fungi of the Taphrinomycotina subphylum. Our results suggest that the last common ancestor of Pneumocystis spp. lost 2,324 genes in relation to the acquisition of obligate biotrophy. These losses may result from neutral drift and affect the biosyntheses of amino acids and thiamine, the assimilation of inorganic nitrogen and sulfur, and the catabolism of purines. In addition, P. jirovecii shows a reduced panel of lytic proteases and has lost the RNA interference machinery, which might contribute to its genome plasticity. Together with other characteristics, that is, a sex life cycle within the host, the absence of massive destruction of host cells, difficult culturing, and the lack of virulence factors, these gene losses constitute a unique combination of characteristics which are hallmarks of both obligate biotrophs and animal parasites. These findings suggest that Pneumocystis spp. should be considered as the first described obligate biotrophs of animals, whose evolution has been marked by gene losses.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, SwitzerlandVital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, SwitzerlandPresent address: Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, CA
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Philippe M Hauser
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| |
Collapse
|
50
|
van Mierlo JT, Overheul GJ, Obadia B, van Cleef KWR, Webster CL, Saleh MC, Obbard DJ, van Rij RP. Novel Drosophila viruses encode host-specific suppressors of RNAi. PLoS Pathog 2014; 10:e1004256. [PMID: 25032815 PMCID: PMC4102588 DOI: 10.1371/journal.ppat.1004256] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/03/2014] [Indexed: 12/24/2022] Open
Abstract
The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors. Viruses and their hosts can engage in an evolutionary arms race. Viruses may select for hosts with more effective immune responses, whereas the immune response of the host may select for viruses that evade the immune system. These viral counter-defenses may in turn drive adaptations in host immune genes. A potential outcome of this perpetual cycle is that the interaction between virus and host becomes more specific. In insects, the host antiviral RNAi machinery exerts strong evolutionary pressure that has led to the evolution of viral proteins that can antagonize the RNAi response. We have identified novel viruses that infect different fruit fly species and we show that the RNAi suppressor proteins of these viruses can be specific to their host. Furthermore, we show that these proteins can enhance virus replication in a host-specific manner. These results are in line with the hypothesis that virus-host co-evolution shapes the genomes of both virus and host. Moreover, our results suggest that RNAi suppressor proteins have the potential to determine host specificity of viruses.
Collapse
Affiliation(s)
- Joël T. van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Benjamin Obadia
- Institut Pasteur, Viruses and RNA interference Unit and Centre National de la Recherche Scientifique, UMR 3569, Paris, France
| | - Koen W. R. van Cleef
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Claire L. Webster
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA interference Unit and Centre National de la Recherche Scientifique, UMR 3569, Paris, France
| | - Darren J. Obbard
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DJO); (RPvR)
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- * E-mail: (DJO); (RPvR)
| |
Collapse
|