1
|
Phan-Canh T, Kuchler K. Do morphogenetic switching and intraspecies variation enhance virulence of Candida auris? PLoS Pathog 2024; 20:e1012559. [PMID: 39405274 PMCID: PMC11478855 DOI: 10.1371/journal.ppat.1012559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Intraspecies variations that affect pathogenicity and antifungal resistance traits pose a serious obstacle to efficient therapy of Candida auris infections. Recent reports indicate that mutations determine drug susceptibility and virulence. However, mutations alone cannot fully explain a bewildering variety of phenotypes in clinical isolates from known C. auris clades, suggesting an unprecedented complexity underlying virulence traits and antifungal resistance. Hence, we wish to discuss how phenotypic plasticity promotes morphogenetic switching and how that contributes to intraspecies variations in the human fungal pathogen C. auris. Further, we will also discuss how intraspecies variations and morphogenetic events can impact the progress in molecular mycology research that aims to find better treatments for C. auris infections. Finally, we will present our opinion as to the most relevant questions to be addressed when trying to better understand the pathophysiology of C. auris.
Collapse
Affiliation(s)
- Trinh Phan-Canh
- Max Perutz Labs Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Deng Y, Xu M, Li S, Bing J, Zheng Q, Huang G, Liao W, Pan W, Tao L. A single gene mutation underpins metabolic adaptation and acquisition of filamentous competence in the emerging fungal pathogen Candida auris. PLoS Pathog 2024; 20:e1012362. [PMID: 38976759 PMCID: PMC11257696 DOI: 10.1371/journal.ppat.1012362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Filamentous cell growth is a vital property of fungal pathogens. The mechanisms of filamentation in the emerging multidrug-resistant fungal pathogen Candida auris are poorly understood. Here, we show that exposure of C. auris to glycerol triggers a rod-like filamentation-competent (RL-FC) phenotype, which forms elongated filamentous cells after a prolonged culture period. Whole-genome sequencing analysis reveals that all RL-FC isolates harbor a mutation in the C2H2 zinc finger transcription factor-encoding gene GFC1 (Gfc1 variants). Deletion of GFC1 leads to an RL-FC phenotype similar to that observed in Gfc1 variants. We further demonstrate that GFC1 mutation causes enhanced fatty acid β-oxidation metabolism and thereby promotes RL-FC/filamentous growth. This regulation is achieved through a Multiple Carbon source Utilizer (Mcu1)-dependent mechanism. Interestingly, both the evolved RL-FC isolates and the gfc1Δ mutant exhibit an enhanced ability to colonize the skin. Our results reveal that glycerol-mediated GFC1 mutations are beneficial during C. auris skin colonization and infection.
Collapse
Affiliation(s)
- Yuchen Deng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ming Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuaihu Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Bing
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiushi Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Soll DR. White-opaque switching in Candida albicans: cell biology, regulation, and function. Microbiol Mol Biol Rev 2024; 88:e0004322. [PMID: 38546228 PMCID: PMC11332339 DOI: 10.1128/mmbr.00043-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
SUMMARYCandida albicans remains a major fungal pathogen colonizing humans and opportunistically invading tissue when conditions are predisposing. Part of the success of C. albicans was attributed to its capacity to form hyphae that facilitate tissue invasion. However, in 1987, a second developmental program was discovered, the "white-opaque transition," a high-frequency reversible switching system that impacted most aspects of the physiology, cell architecture, virulence, and gene expression of C. albicans. For the 15 years following the discovery of white-opaque switching, its role in the biology of C. albicans remained elusive. Then in 2002, it was discovered that in order to mate, C. albicans had to switch from white to opaque, a unique step in a yeast mating program. In 2006, three laboratories simultaneously identified a putative master switch gene, which led to a major quest to elucidate the underlying mechanisms that regulate white-opaque switching. Here, the evolving discoveries related to this complicated phenotypic transition are reviewed in a quasi-chronological order not only to provide a historical perspective but also to highlight several unique characteristics of white-opaque switching, which are fascinating and may be important to the life history and virulence of this persistent pathogen. Many of these characteristics have not been fully investigated, in many cases, leaving intriguing questions unresolved. Some of these include the function of unique channeled pimples on the opaque cell wall, the capacity to form opaque cells in the absence of the master switch gene WOR1, the formation of separate "pathogenic" and "sexual" biofilms, and the possibility that a significant portion of natural strains colonizing the lower gastrointestinal tract may be in the opaque phase. This review addresses many of these characteristics with the intent of engendering interest in resolving questions that remain unanswered.
Collapse
Affiliation(s)
- David R. Soll
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Woodruff AL, Berman J, Anderson M. Strain background of Candida albicans interacts with SIR2 to alter phenotypic switching. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001444. [PMID: 38446018 PMCID: PMC10999749 DOI: 10.1099/mic.0.001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
The genetic background between strains of a single species and within a single strain lineage can significantly impact the expression of biological traits. This genetic variation may also reshape epigenetic mechanisms of cell identity and environmental responses that are controlled by interconnected transcriptional networks and chromatin-modifying enzymes. Histone deacetylases, including sirtuins, are critical regulators of chromatin state and have been directly implicated in governing the phenotypic transition between the 'sterile' white state and the mating-competent opaque state in Candida albicans, a common fungal commensal and pathogen of humans. Here, we found that a previously ambiguous role for the sirtuin SIR2 in C. albicans phenotypic switching is likely linked to the genetic background of mutant strains produced in the RM lineage of SC5314. SIR2 mutants in a specific lineage of BWP17 displayed increased frequencies of switching to the opaque state compared to the wild-type. Loss of SIR2 in other SC5314-derived backgrounds, including newly constructed BWP17 sir2Δ/Δ mutants, failed to recapitulate the increased white-opaque switching frequencies observed in the original BWP17 sir2Δ/Δ mutant background. Whole-genome sequencing revealed the presence of multiple imbalanced chromosomes and large loss of heterozygosity tracts that likely interact with SIR2 to increase phenotypic switching in this BWP17 sir2Δ/Δ mutant lineage. These genomic changes are not found in other SC5314-derived sir2Δ/Δ mutants that do not display increased opaque cell formation. Thus, complex karyotypes can emerge during strain construction that modify mutant phenotypes and highlight the importance of validating strain background when interpreting phenotypes.
Collapse
Affiliation(s)
- Andrew L. Woodruff
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Matthew Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI, 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin – Madison, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Lohse MB, Ziv N, Johnson AD. Variation in transcription regulator expression underlies differences in white-opaque switching between the SC5314 reference strain and the majority of Candida albicans clinical isolates. Genetics 2023; 225:iyad162. [PMID: 37811798 PMCID: PMC10627253 DOI: 10.1093/genetics/iyad162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023] Open
Abstract
Candida albicans, a normal member of the human microbiome and an opportunistic fungal pathogen, undergoes several morphological transitions. One of these transitions is white-opaque switching, where C. albicans alternates between 2 stable cell types with distinct cellular and colony morphologies, metabolic preferences, mating abilities, and interactions with the innate immune system. White-to-opaque switching is regulated by mating type; it is repressed by the a1/α2 heterodimer in a/α cells, but this repression is lifted in a/a and α/α mating type cells (each of which are missing half of the repressor). The widely used C. albicans reference strain, SC5314, is unusual in that white-opaque switching is completely blocked when the cells are a/α; in contrast, most other C. albicans a/α strains can undergo white-opaque switching at an observable level. In this paper, we uncover the reason for this difference. We show that, in addition to repression by the a1/α2 heterodimer, SC5314 contains a second block to white-opaque switching: 4 transcription regulators of filamentous growth are upregulated in this strain and collectively suppress white-opaque switching. This second block is missing in the majority of clinical strains, and, although they still contain the a1/α2 heterodimer repressor, they exhibit a/α white-opaque switching at an observable level. When both blocks are absent, white-opaque switching occurs at very high levels. This work shows that white-opaque switching remains intact across a broad group of clinical strains, but the precise way it is regulated and therefore the frequency at which it occurs varies from strain to strain.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Paulo EA, de Souza CM, Perini HF, de Almeida RSC, Costa IC, Pavanelli WR, Furlaneto-Maia L, Furlaneto MC. Altered phagocytosis and morphogenesis of phenotypic switching-derived strains of the pathogenic Candida tropicalis co-cultured with phagocytic cells. Microb Pathog 2023:106186. [PMID: 37269878 DOI: 10.1016/j.micpath.2023.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Candida tropicalis is among the most prevalent human pathogenic yeast species. Switch states of C. tropicalis differ in virulence traits. Here, we evaluate the effect of phenotypic switching on phagocytosis and yeast-hyphae transition in C. tropicalis. METHODS C. tropicalis morphotypes included clinical strain and two switch strains (rough variant and rough revertant). In vitro phagocytosis assay was performed using peritoneal macrophages and hemocytes. The proportion of hyphal cells was ascertained by scoring morphology using optical microscopy. Expression of the WOR1 (White-opaque regulator 1) and EFG1 (Enhanced filamentous growth protein 1) was determined by quantitative PCR. RESULTS The rough variant was more resistant to in vitro phagocytosis by peritoneal macrophages than that observed for the clinical strain, while hemocytes phagocytosed clinical and rough variant to the same extent. The rough revertant was more phagocytosed than the clinical strain by both phagocytes. During co-incubation with phagocytic cells, the clinical strain of C. tropicalis exists mainly as blastoconidia. The co-culture of the rough variant with macrophages resulted in a higher percentage of hyphae than blastoconidia cells, while in co-culture with hemocytes no differences were observed between the percentage of hyphae and blastoconidia. The expression levels of WOR1 in the rough variant co-cultured with phagocytes were significantly higher than they were in the clinical strain. CONCLUSIONS Differences on phagocytosis and hyphal growth between switch states cells of C. tropicalis co-cultured with phagocytic cells were observed. The pronounced hyphal growth may affect the complex host-pathogen relationship and favor the pathogen to scape phagocytosis. The pleiotropic effects of phenotypic switching suggest that this event may contribute to the success of infection associated with C. tropicalis.
Collapse
Affiliation(s)
- Eloiza A Paulo
- Department of Microbiology, Paraná State University of Londrina, University Campus, C.P. 6001, Paraná, Brazil
| | - Cassia M de Souza
- Department of Microbiology, Paraná State University of Londrina, University Campus, C.P. 6001, Paraná, Brazil
| | - Hugo F Perini
- Department of Microbiology, Paraná State University of Londrina, University Campus, C.P. 6001, Paraná, Brazil
| | - Ricardo S Couto de Almeida
- Department of Microbiology, Paraná State University of Londrina, University Campus, C.P. 6001, Paraná, Brazil
| | - Ivete C Costa
- Department of Pathology, Paraná State University of Londrina, Paraná, Brazil
| | - Wander R Pavanelli
- Department of Pathology, Paraná State University of Londrina, Paraná, Brazil
| | - Luciana Furlaneto-Maia
- Department of Food Technology, Technological Federal University of Paraná, Londrina, Paraná, Brazil
| | - Marcia C Furlaneto
- Department of Microbiology, Paraná State University of Londrina, University Campus, C.P. 6001, Paraná, Brazil.
| |
Collapse
|
7
|
Prasad P, Tippana M. Morphogenic plasticity: the pathogenic attribute of Candida albicans. Curr Genet 2023; 69:77-89. [PMID: 36947241 DOI: 10.1007/s00294-023-01263-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Candida albicans is a commensal organism of the human gastrointestinal tract and a prevalent opportunistic pathogen. It exhibits different morphogenic forms to survive in different host niches with distinct environmental conditions (pH, temperature, oxidative stress, nutrients, serum, chemicals, radiation, etc.) and genetic factors (transcription factors and genes). The different morphogenic forms of C. albicans are yeast, hyphal, pseudohyphal, white, opaque, and transient gray cells, planktonic and biofilm forms of cells. These forms differ in the parameters like cellular phenotype, colony morphology, adhesion to solid surfaces, gene expression profile, and the virulent traits. Each form is functionally distinct and responds discretely to the host immune system and antifungal drugs. Hence, morphogenic plasticity is the key to virulence. In this review, we address the characteristics, the pathogenic potential of the different morphogenic forms and the conditions required for morphogenic transitions.
Collapse
Affiliation(s)
- Priya Prasad
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| | - Meena Tippana
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| |
Collapse
|
8
|
Derkacz D, Krasowska A. Alterations in the Level of Ergosterol in Candida albicans' Plasma Membrane Correspond with Changes in Virulence and Result in Triggering Diversed Inflammatory Response. Int J Mol Sci 2023; 24:ijms24043966. [PMID: 36835379 PMCID: PMC9964392 DOI: 10.3390/ijms24043966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Opportunistic pathogen Candida albicans possesses multiple virulence factors which enable colonization and infection of host tissues. Candida-related infections frequently occur in immunocompromised patients, which is related to an insufficient inflammatory response. Furthermore, immunosuppression and multidrug resistance of C. albicans clinical isolates make the treatment of candidiasis a challenge for modern medicine. The most common resistance mechanism of C. albicans to antifungals includes point mutations in the ERG11 gene, which encodes target protein for azoles. We investigated whether the mutations or deletion of the ERG11 gene influence the pathogen-host interactions. We prove that both C. albicans erg11∆/∆ and ERG11K143R/K143R exhibit increased cell surface hydrophobicity. Additionally, C. albicans KS058 has an impaired ability of biofilm and hyphae formation. Analysis of the inflammatory response of human dermal fibroblasts and vaginal epithelial cell lines revealed that altered morphology of C. albicans erg11∆/∆ results in a significantly weaker immune response. C. albicans ERG11K143R/K143R triggered stronger production of pro-inflammatory response. Analysis of genes encoding adhesins confirmed differences in the expression pattern of key adhesins for both erg11∆/∆ and ERG11K143R/K143R strains. Obtained data indicate that alterations in Erg11p consequence in resistance to azoles and affect the key virulence factors and inflammatory response of host cells.
Collapse
|
9
|
Brenes LR, Johnson AD, Lohse MB. Farnesol and phosphorylation of the transcriptional regulator Efg1 affect Candida albicans white-opaque switching rates. PLoS One 2023; 18:e0280233. [PMID: 36662710 PMCID: PMC9858334 DOI: 10.1371/journal.pone.0280233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/24/2022] [Indexed: 01/21/2023] Open
Abstract
Candida albicans is a normal member of the human microbiome and an opportunistic fungal pathogen. This species undergoes several morphological transitions, and here we consider white-opaque switching. In this switching program, C. albicans reversibly alternates between two cell types, named "white" and "opaque," each of which is normally stable across thousands of cell divisions. Although switching under most conditions is stochastic and rare, certain environmental signals or genetic manipulations can dramatically increase the rate of switching. Here, we report the identification of two new inputs which affect white-to-opaque switching rates. The first, exposure to sub-micromolar concentrations of (E,E)-farnesol, reduces white-to-opaque switching by ten-fold or more. The second input, an inferred PKA phosphorylation of residue T208 on the transcriptional regulator Efg1, increases white-to-opaque switching ten-fold. Combining these and other environmental inputs results in a variety of different switching rates, indicating that a given rate represents the integration of multiple inputs.
Collapse
Affiliation(s)
- Lucas R. Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthew B. Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
10
|
Runyo F, Rotstein CMF. Epidemiology of Invasive Fungal Infections in Solid Organ Transplant Recipients: a North American Perspective. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Palliyil S, Mawer M, Alawfi SA, Fogg L, Tan TH, De Cesare GB, Walker LA, MacCallum DM, Porter AJ, Munro CA. Monoclonal Antibodies Targeting Surface-Exposed Epitopes of Candida albicans Cell Wall Proteins Confer In Vivo Protection in an Infection Model. Antimicrob Agents Chemother 2022; 66:e0195721. [PMID: 35285676 PMCID: PMC9017365 DOI: 10.1128/aac.01957-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Monoclonal antibody (mAb)-based immunotherapies targeting systemic and deep-seated fungal infections are still in their early stages of development, with no licensed antifungal mAbs currently being available for patients at risk. The cell wall glycoproteins of Candida albicans are of particular interest as potential targets for therapeutic antibody generation due to their extracellular location and key involvement in fungal pathogenesis. Here, we describe the generation of recombinant human antibodies specifically targeting two key cell wall proteins (CWPs) in C. albicans: Utr2 and Pga31. These antibodies were isolated from a phage display antibody library using peptide antigens representing the surface-exposed regions of CWPs expressed at elevated levels during in vivo infection. Reformatted human-mouse chimeric mAbs preferentially recognized C. albicans hyphal forms compared to yeast cells, and increased binding was observed when the cells were grown in the presence of the antifungal agent caspofungin. In J774.1 macrophage interaction assays, mAb pretreatment resulted in the faster engulfment of C. albicans cells, suggesting a role of the CWP antibodies as opsonizing agents during phagocyte recruitment. Finally, in a series of clinically predictive mouse models of systemic candidiasis, our lead mAb achieved improved survival (83%) and a several-log reduction of the fungal burden in the kidneys, similar to the levels achieved for the fungicidal drug caspofungin and superior to the therapeutic efficacy of any anti-Candida mAb reported to date.
Collapse
Affiliation(s)
- Soumya Palliyil
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeengrid.7107.1, Aberdeen, United Kingdom
| | - Mark Mawer
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeengrid.7107.1, Aberdeen, United Kingdom
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeengrid.7107.1, Aberdeen, United Kingdom
| | - Sami A. Alawfi
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeengrid.7107.1, Aberdeen, United Kingdom
| | - Lily Fogg
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeengrid.7107.1, Aberdeen, United Kingdom
| | - Tyng H. Tan
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeengrid.7107.1, Aberdeen, United Kingdom
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeengrid.7107.1, Aberdeen, United Kingdom
| | - Giuseppe Buda De Cesare
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeengrid.7107.1, Aberdeen, United Kingdom
| | - Louise A. Walker
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeengrid.7107.1, Aberdeen, United Kingdom
| | - Donna M. MacCallum
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeengrid.7107.1, Aberdeen, United Kingdom
| | - Andrew J. Porter
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeengrid.7107.1, Aberdeen, United Kingdom
| | - Carol A. Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeengrid.7107.1, Aberdeen, United Kingdom
| |
Collapse
|
12
|
Owens RA, Doyle S. Effects of antifungal agents on the fungal proteome: informing on mechanisms of sensitivity and resistance. Expert Rev Proteomics 2021; 18:185-199. [PMID: 33797307 DOI: 10.1080/14789450.2021.1912601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Antifungal agents are essential in the fight against serious fungal disease, however emerging resistance is threatening an already limited collection of therapeutics. Proteomic analyses of effects of antifungal agents can expand our understanding of multifactorial mechanisms of action and have also proven valuable to elucidate proteomic changes associated with antifungal resistance. AREAS COVERED This review covers the application of proteomic techniques to examine sensitivity and resistance to antifungals including commonly used therapeutics, amphotericin B, echinocandins and the azoles, based predominantly on studies involving Aspergillus fumigatus, Candida albicans and Candida glabrata from the last 10 years. In addition, non-clinical antimicrobial agents are also discussed, which highlight the potential of proteomics to identify new antifungal targets. EXPERT COMMENTARY Fungal proteomics has evolved in the last decade with increased genome availability and developments in mass spectrometry. Collectively, these have led to the advancement of proteomic techniques, allowing increased coverage of the proteome. Gel-based proteomics laid the foundation for these types of studies, which has now shifted to the more powerful gel-free proteomics. This has resulted in the identification of key mediators and potential biomarkers of antifungal resistance, as well as elucidating the mechanisms of action of novel and established antifungal agents.
Collapse
Affiliation(s)
- Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
13
|
Selim MS, Mo PJ, Hao Z, Fatthallah NA, Chen X. Blade-like structure of graphene oxide sheets decorated with cuprous oxide and silicon carbide nanocomposites as bactericidal materials. J Colloid Interface Sci 2020; 578:698-709. [DOI: 10.1016/j.jcis.2020.06.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
|
14
|
Lohse MB, Brenes LR, Ziv N, Winter MB, Craik CS, Johnson AD. An Opaque Cell-Specific Expression Program of Secreted Proteases and Transporters Allows Cell-Type Cooperation in Candida albicans. Genetics 2020; 216:409-429. [PMID: 32839241 PMCID: PMC7536846 DOI: 10.1534/genetics.120.303613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
An unusual feature of the opportunistic pathogen Candida albicans is its ability to switch stochastically between two distinct, heritable cell types called white and opaque. Here, we show that only opaque cells, in response to environmental signals, massively upregulate a specific group of secreted proteases and peptide transporters, allowing exceptionally efficient use of proteins as sources of nitrogen. We identify the specific proteases [members of the secreted aspartyl protease (SAP) family] needed for opaque cells to proliferate under these conditions, and we identify four transcriptional regulators of this specialized proteolysis and uptake program. We also show that, in mixed cultures, opaque cells enable white cells to also proliferate efficiently when proteins are the sole nitrogen source. Based on these observations, we suggest that one role of white-opaque switching is to create mixed populations where the different phenotypes derived from a single genome are shared between two distinct cell types.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Lucas R Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Michael B Winter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| |
Collapse
|
15
|
A Set of Diverse Genes Influence the Frequency of White-Opaque Switching in Candida albicans. G3-GENES GENOMES GENETICS 2020; 10:2593-2600. [PMID: 32487674 PMCID: PMC7407467 DOI: 10.1534/g3.120.401249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fungal species Candida albicans is both a member of the human microbiome and a fungal pathogen. C. albicans undergoes several different morphological transitions, including one called white-opaque switching. Here, cells reversibly switch between two states, “white” and “opaque,” and each state is heritable through many cell generations. Each cell type has a distinct cellular and colony morphology and they differ in many other properties including mating, nutritional specialization, and interactions with the innate immune system. Previous genetic screens to gain insight into white-opaque switching have focused on certain classes of genes (for example transcriptional regulators or chromatin modifying enzymes). In this paper, we examined 172 deletion mutants covering a broad range of cell functions. We identified 28 deletion mutants with at least a fivefold effect on switching frequencies; these cover a wide variety of functions ranging from membrane sensors to kinases to proteins of unknown function. In agreement with previous reports, we found that components of the pheromone signaling cascade affect white-to-opaque switching; however, our results suggest that the major effect of Cek1 on white-opaque switching occurs through the cell wall damage response pathway. Most of the genes we identified have not been previously implicated in white-opaque switching and serve as entry points to understand new aspects of this morphological transition.
Collapse
|
16
|
Dauben TJ, Dewald C, Firkowska-Boden I, Helbing C, Peisker H, Roth M, Bossert J, Jandt KD. Quantifying the relationship between surfaces' nano-contact point density and adhesion force of Candida albicans. Colloids Surf B Biointerfaces 2020; 194:111177. [PMID: 32569885 DOI: 10.1016/j.colsurfb.2020.111177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
It has been recently recognized that controlled surface structuring on the nanometer scale is a successful strategy to endow different materials with antimicrobial properties. Despite many studies on bacterial interactions with nanostructured surfaces, a quantitative link between surface topography and bacterial adhesion is still missing. To quantitatively link cell adhesion data with topographical surface parameters, we performed single-cell spectroscopy on chemically identical surfaces with controlled nano-contact point density achieved by immobilization of gold nanoparticles (AuNP) on gold thin films. Such materials surfaces have previously shown antimicrobial (anti-adhesive) efficacy towards Gram-negative Escherichia coli cells. In the current study, the influence of nano-structured surfaces on the surface coverage and adhesion forces of clinically relevant Candida albicans (C. albicans), the fungus primarily associated with implant infections, was investigated to validate their antimicrobial potency against different microbial cells. The adhesion forces of C. albicans cells to nanostructured surfaces showed a decreasing trend with decreasing contact-point density and correlated well with the results of the respective C. albicans cell counts. The surfaces with the lowest contact-point density, 25 AuNP/μm², resulted in an average adhesion force of 5 nN, which was up to 5 times lower compared to control and 61 AuNP/μm² surfaces. Further, detailed analyses of force-distance curves revealed that the work of adhesion, and thus the energy required to remove the C. albicans cell from the surface is up to 10 times lower on 25 AuNP/μm² surfaces compared to unstructured surfaces. These findings show that a controlled tuning of nanostructured surfaces in terms of accessible nano-contact points is crucial to generate surface structures with enhanced antimicrobial properties. The gained knowledge can be further exploited for the design of biomaterials surfaces to prevent adhesion of some most commonly encountered pathogens.
Collapse
Affiliation(s)
- Thomas J Dauben
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Carolin Dewald
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
| | - Izabela Firkowska-Boden
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany.
| | - Christian Helbing
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Henrik Peisker
- Institute for Medical Microbiology and Hygiene, Saarland University Clinic, Kirrberger Straße Building 43, 66421 Homburg, Saar, Germany
| | - Martin Roth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
| | - Jörg Bossert
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany.
| |
Collapse
|
17
|
Liang W, Guan G, Li C, Nobile CJ, Tao L, Huang G. Genetic regulation of the development of mating projections in Candida albicans. Emerg Microbes Infect 2020; 9:413-426. [PMID: 32079510 PMCID: PMC7048184 DOI: 10.1080/22221751.2020.1729067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Candida albicans is a major human fungal pathogen, capable of switching among a range of morphological types, such as the yeast form, including white and opaque cell types and the GUT (gastrointestinally induced transition) cell type, the filamentous form, including hyphal and pseudohyphal cell types, and chlamydospores. This ability is associated with its commensal and pathogenic life styles. In response to pheromone, C. albicans cells are able to form long mating projections resembling filaments. This filamentous morphology is required for efficient sexual mating. In the current study, we report the genetic regulatory mechanisms controlling the development of mating projections in C. albicans. Ectopic expression of MTLα1 in “a” cells induces the secretion of α-pheromone and promotes the development of mating projections. Using this inducible system, we reveal that members of the pheromone-sensing pathway (including the pheromone receptor), the Ste11-Hst7-Cek1/2 mediated MAPK signalling cascade, and the RAM pathway are essential for the development of mating projections. However, the cAMP/PKA signalling pathway and a number of key regulators of filamentous growth such as Hgc1, Efg1, Flo8, Tec1, Ume6, and Rfg1 are not required for mating projection formation. Therefore, despite the phenotypic similarities between filaments and mating projections in C. albicans, distinct mechanisms are involved in the regulation of these two morphologies.
Collapse
Affiliation(s)
- Weihong Liang
- Department of infectious diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA
| | - Li Tao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Guanghua Huang
- Department of infectious diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Perry AM, Hernday AD, Nobile CJ. Unraveling How Candida albicans Forms Sexual Biofilms. J Fungi (Basel) 2020; 6:jof6010014. [PMID: 31952361 PMCID: PMC7151012 DOI: 10.3390/jof6010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Biofilms, structured and densely packed communities of microbial cells attached to surfaces, are considered to be the natural growth state for a vast majority of microorganisms. The ability to form biofilms is an important virulence factor for most pathogens, including the opportunistic human fungal pathogen Candida albicans. C. albicans is one of the most prevalent fungal species of the human microbiota that asymptomatically colonizes healthy individuals. However, C. albicans can also cause severe and life-threatening infections when host conditions permit (e.g., through alterations in the host immune system, pH, and resident microbiota). Like many other pathogens, this ability to cause infections depends, in part, on the ability to form biofilms. Once formed, C. albicans biofilms are often resistant to antifungal agents and the host immune response, and can act as reservoirs to maintain persistent infections as well as to seed new infections in a host. The majority of C. albicans clinical isolates are heterozygous (a/α) at the mating type-like (MTL) locus, which defines Candida mating types, and are capable of forming robust biofilms when cultured in vitro. These “conventional” biofilms, formed by MTL-heterozygous (a/α) cells, have been the primary focus of C. albicans biofilm research to date. Recent work in the field, however, has uncovered novel mechanisms through which biofilms are generated by C. albicans cells that are homozygous or hemizygous (a/a, a/Δ, α/α, or α/Δ) at the MTL locus. In these studies, the addition of pheromones of the opposite mating type can induce the formation of specialized “sexual” biofilms, either through the addition of synthetic peptide pheromones to the culture, or in response to co-culturing of cells of the opposite mating types. Although sexual biofilms are generally less robust than conventional biofilms, they could serve as a protective niche to support genetic exchange between mating-competent cells, and thus may represent an adaptive mechanism to increase population diversity in dynamic environments. Although conventional and sexual biofilms appear functionally distinct, both types of biofilms are structurally similar, containing yeast, pseudohyphal, and hyphal cells surrounded by an extracellular matrix. Despite their structural similarities, conventional and sexual biofilms appear to be governed by distinct transcriptional networks and signaling pathways, suggesting that they may be adapted for, and responsive to, distinct environmental conditions. Here we review sexual biofilms and compare and contrast them to conventional biofilms of C. albicans.
Collapse
Affiliation(s)
- Austin M. Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
19
|
Feng J, Shan A, Hu J, Cao Z, Lv R, Feng J. Genetic interaction between Ptc2 and protein phosphatase 4 (PP4) in the regulation of DNA damage response and virulence in Candida albicans. FEMS Yeast Res 2019; 19:5603746. [PMID: 31644792 DOI: 10.1093/femsyr/foz075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
In the pathogenic fungus Candida albicans, phosphoregulation of the checkpoint kinase Rad53 plays a crucial role in the filamentous growth response to genotoxic stresses. The protein phosphatase 4 (PP4) complex, containing Pph3 and either Psy2 or Psy4, is proved to play a critical role in Rad53 dephosphorylation. In previous studies, we characterized CaPtc2 (the ortholog of both Ptc2 and Ptc3 in Saccharomyces cerevisiae) as a potential DNA-damage-related protein phosphatase. In this study, we checked the genetic interaction of PTC2 with the PP4 complex in the DNA damage response pathway. The results suggest that Ptc2 shows a negative genetic interaction with Pph3, but positive genetic interaction with either Psy2 or Psy4 in response to genotoxic stress. Deletion of PTC2 alone resulted in no significant change in cell virulence, but double deletion of PTC2 PPH3 significantly decreased virulence, while double deletions of either PTC2 PSY2 or PTC2 PSY4 caused virulence levels similar to that shown by PSY2 or PSY4 single-gene deletion cells. Taken together, we propose that Ptc2 in C. albicans plays a compensatory role for Pph3 but is dependent on Psy2 and Psy4 in regulation of DNA damage and cell virulence.
Collapse
Affiliation(s)
- Jia Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, No.19 Qixiu Road, Nantong City, Jiangsu Province, Nantong 226001, China
| | - Aidi Shan
- Department of Pathogen Biology, School of Medicine, Nantong University, No.19 Qixiu Road, Nantong City, Jiangsu Province, Nantong 226001, China
| | - Jing Hu
- Department of Pathogen Biology, School of Medicine, Nantong University, No.19 Qixiu Road, Nantong City, Jiangsu Province, Nantong 226001, China
| | - Zhenyu Cao
- Department of Pathogen Biology, School of Medicine, Nantong University, No.19 Qixiu Road, Nantong City, Jiangsu Province, Nantong 226001, China
| | - Rui Lv
- Department of Pathogen Biology, School of Medicine, Nantong University, No.19 Qixiu Road, Nantong City, Jiangsu Province, Nantong 226001, China
| | - Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, No.19 Qixiu Road, Nantong City, Jiangsu Province, Nantong 226001, China
| |
Collapse
|
20
|
Rodriguez L, Voorhies M, Gilmore S, Beyhan S, Myint A, Sil A. Opposing signaling pathways regulate morphology in response to temperature in the fungal pathogen Histoplasma capsulatum. PLoS Biol 2019; 17:e3000168. [PMID: 31568523 PMCID: PMC6786654 DOI: 10.1371/journal.pbio.3000168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/10/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Phenotypic switching between 2 opposing cellular states is a fundamental aspect of biology, and fungi provide facile systems to analyze the interactions between regulons that control this type of switch. A long-standing mystery in fungal pathogens of humans is how thermally dimorphic fungi switch their developmental form in response to temperature. These fungi, including the subject of this study, Histoplasma capsulatum, are temperature-responsive organisms that utilize unknown regulatory pathways to couple their cell shape and associated attributes to the temperature of their environment. H. capsulatum grows as a multicellular hypha in the soil that switches to a pathogenic yeast form in response to the temperature of a mammalian host. These states can be triggered in the laboratory simply by growing the fungus either at room temperature (RT; which promotes hyphal growth) or at 37 °C (which promotes yeast-phase growth). Prior worked revealed that 15% to 20% of transcripts are differentially expressed in response to temperature, but it is unclear which transcripts are linked to specific phenotypic changes, such as cell morphology or virulence. To elucidate temperature-responsive regulons, we previously identified 4 transcription factors (required for yeast-phase growth [Ryp]1-4) that are required for yeast-phase growth at 37 °C; in each ryp mutant, the fungus grows constitutively as hyphae regardless of temperature, and the cells fail to express genes that are normally induced in response to growth at 37 °C. Here, we perform the first genetic screen to identify genes required for hyphal growth of H. capsulatum at RT and find that disruption of the signaling mucin MSB2 results in a yeast-locked phenotype. RNA sequencing (RNAseq) experiments reveal that MSB2 is not required for the majority of gene expression changes that occur when cells are shifted to RT. However, a small subset of temperature-responsive genes is dependent on MSB2 for its expression, thereby implicating these genes in the process of filamentation. Disruption or knockdown of an Msb2-dependent mitogen-activated protein (MAP) kinase (HOG2) and an APSES transcription factor (STU1) prevents hyphal growth at RT, validating that the Msb2 regulon contains genes that control filamentation. Notably, the Msb2 regulon shows conserved hyphal-specific expression in other dimorphic fungi, suggesting that this work defines a small set of genes that are likely to be conserved regulators and effectors of filamentation in multiple fungi. In contrast, a few yeast-specific transcripts, including virulence factors that are normally expressed only at 37 °C, are inappropriately expressed at RT in the msb2 mutant, suggesting that expression of these genes is coupled to growth in the yeast form rather than to temperature. Finally, we find that the yeast-promoting transcription factor Ryp3 associates with the MSB2 promoter and inhibits MSB2 transcript expression at 37 °C, whereas Msb2 inhibits accumulation of Ryp transcripts and proteins at RT. These findings indicate that the Ryp and Msb2 circuits antagonize each other in a temperature-dependent manner, thereby allowing temperature to govern cell shape and gene expression in this ubiquitous fungal pathogen of humans.
Collapse
Affiliation(s)
- Lauren Rodriguez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Mark Voorhies
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Sarah Gilmore
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Sinem Beyhan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Anthony Myint
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Anita Sil
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Arita GS, Meneguello JE, Sakita KM, Faria DR, Pilau EJ, Ghiraldi-Lopes LD, Campanerut-Sá PAZ, Kioshima ÉS, Bonfim-Mendonça PDS, Svidzinski TIE. Serial Systemic Candida albicans Infection Highlighted by Proteomics. Front Cell Infect Microbiol 2019; 9:230. [PMID: 31293987 PMCID: PMC6606696 DOI: 10.3389/fcimb.2019.00230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is the major pathogen isolated from nosocomial bloodstream infections, leading to higher mortality rates. Thus, due to its clinical relevance, studies aiming to understand host–pathogen interactions in C. albicans infection are necessary. Therefore, we performed proteomic analysis using a murine model of serial systemic infection by C. albicans to evaluate possible changes in the protein profile of the pathogen over time. Firstly, we observed a reduction in the median survival time of infected animals with increasing passage number, suggesting a higher pathogenicity acquired during repeated infections. By LC-MS/MS, it was possible to obtain protein profiles from the wild-type strain (WT) and compare them to proteins extracted from Candida cells recovered from infected tissues during passages one, three, and four (P1, P3, and P4). We obtained 56, 29, and 97 proteins in P1, P3, P4, respectively, all varying in abundance. Regarding biological processes, the majority of proteins were related to carbohydrate metabolism, stress responses and amino acid metabolism. The proteins were also categorized according to their potential role in virulence traits, such as biofilm production, yeast-to-hyphae transition, phenotypic switching, proteins related to stress responses, and uncharacterized proteins. Therefore, serial infection in combination with proteomic approach enabled us to deepen the existing knowledge about host-pathogen interactions.
Collapse
Affiliation(s)
- Glaucia Sayuri Arita
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - Jean Eduardo Meneguello
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - Karina Mayumi Sakita
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - Daniella Renata Faria
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | | | | | | | - Érika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | | | | |
Collapse
|
22
|
Aslam S, Rotstein C. Candida infections in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13623. [PMID: 31155770 DOI: 10.1111/ctr.13623] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
These updated guidelines from the American Society of Transplantation Infectious Diseases Community of Practice provide recommendations for the diagnosis and management of Candida infections in solid organ transplant recipients. Candida infections manifest primarily as candidemia and invasive candidiasis and cause considerable morbidity and mortality. Early diagnosis and initiation of treatment are necessary to reduce mortality. For both candidemia and invasive candidiasis, an echinocandin is recommended for initial therapy. However, early transition to oral therapy is encouraged when patients are stable and the organism is susceptible. Candida prophylaxis should be targeted for high-risk patients in liver, small bowel, and pancreas transplant recipients. Future research should address which patient groups may benefit most from preventative antifungal therapy strategies.
Collapse
Affiliation(s)
- Saima Aslam
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, California
| | - Coleman Rotstein
- Multi-organ Transplant Program, Division of Infectious Diseases, Department of Medicine, University of Toronto, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
23
|
|
24
|
Guan G, Tao L, Yue H, Liang W, Gong J, Bing J, Zheng Q, Veri AO, Fan S, Robbins N, Cowen LE, Huang G. Environment-induced same-sex mating in the yeast Candida albicans through the Hsf1-Hsp90 pathway. PLoS Biol 2019; 17:e2006966. [PMID: 30865631 PMCID: PMC6415874 DOI: 10.1371/journal.pbio.2006966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
While sexual reproduction is pervasive in eukaryotic cells, the strategies employed by fungal species to achieve and complete sexual cycles is highly diverse and complex. Many fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, are homothallic (able to mate with their own mitotic descendants) because of homothallic switching (HO) endonuclease-mediated mating-type switching. Under laboratory conditions, the human fungal pathogen Candida albicans can undergo both heterothallic and homothallic (opposite- and same-sex) mating. However, both mating modes require the presence of cells with two opposite mating types (MTLa/a and α/α) in close proximity. Given the predominant clonal feature of this yeast in the human host, both opposite- and same-sex mating would be rare in nature. In this study, we report that glucose starvation and oxidative stress, common environmental stresses encountered by the pathogen, induce the development of mating projections and efficiently permit same-sex mating in C. albicans with an "a" mating type (MTLa/a). This induction bypasses the requirement for the presence of cells with an opposite mating type and allows efficient sexual mating between cells derived from a single progenitor. Glucose starvation causes an increase in intracellular oxidative species, overwhelming the Heat Shock transcription Factor 1 (Hsf1)- and Heat shock protein (Hsp)90-mediated stress-response pathway. We further demonstrate that Candida TransActivating protein 4 (Cta4) and Cell Wall Transcription factor 1 (Cwt1), downstream effectors of the Hsf1-Hsp90 pathway, regulate same-sex mating in C. albicans through the transcriptional control of the master regulator of a-type mating, MTLa2, and the pheromone precursor-encoding gene Mating α factor precursor (MFα). Our results suggest that mating could occur much more frequently in nature than was originally appreciated and that same-sex mating could be an important mode of sexual reproduction in C. albicans.
Collapse
Affiliation(s)
- Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Huizhen Yue
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weihong Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Gong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Bing
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shuru Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Deng FS, Lin CH. Cpp1 phosphatase mediated signaling crosstalk between Hog1 and Cek1 mitogen-activated protein kinases is involved in the phenotypic transition in Candida albicans. Med Mycol 2018; 56:242-252. [PMID: 28431022 DOI: 10.1093/mmy/myx027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/23/2017] [Indexed: 12/29/2022] Open
Abstract
Cellular signaling pathways involved in cell growth and differentiation mediated by mitogen-activated protein kinase (MAPK) cascades have been well characterized in fungi. However, the mechanisms of signaling crosstalk between MAPKs to ensure signaling specificity are largely unknown. Previous work showed that activation of the Candida albicans Cek1 MAPK pathway resulted in opaque cell formation and filamentation, which mirrored the phenotypes to hog1Δ. Additionally, deleting the HOG1 gene stimulated Cek1p. Thus, we hypothesized that an unknown factor could act as a bridge between these two MAPKs. In Saccharomyces cerevisiae, the dual-specificity phosphatase (DSP) Msg5 specifically dephosphorylates Fus3p/Kss1p. C. albicans Cpp1, an ortholog of Msg5, has been shown to be important in regulating Cek1p. Compared with the wild-type strain, hog1Δ shows a ∼40% reduction in CPP1 expression. Consistent with previous reports, CPP1 deletion also resulted in Cek1 hyperphosphorylation, implicating Cpp1 as a regulator of the Hog1 and Cek1 cascades. Interestingly, both cpp1Δ and hog1Δ induced 100% opaque colony formation in MTL-homozygous strains grown on N-acetylglucosamine (NAG) plates, whereas the wild-type and complemented strains exhibited 80.9% and 77.1% white-to-opaque switching rates, respectively. CPP1 gene deletion also caused hyperfilamentous phenotypes in both white and opaque cells. These phenomena may be due to highly phosphorylated Cek1p, as deleting CEK1 in the cpp1Δ background generated nonfilamentous strains and reduced opaque colony formation. Taken together, we conclude that cpp1Δ and hog1Δ exhibited comparable phenotypes, and both are involved in regulating Cek1 phosphorylation, implicating Cpp1 phosphatase as a key intermediary between the Hog1 and Cek1 signal transduction pathways.
Collapse
Affiliation(s)
- Fu-Sheng Deng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Deng FS, Lin CH. Identification and characterization of ORF19.1725, a novel gene contributing to the white cell pheromone response and virulence-associated functions in Candida albicans. Virulence 2018; 9:866-878. [PMID: 29726301 PMCID: PMC5955465 DOI: 10.1080/21505594.2018.1456228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An epigenetic transition between white cells and opaque cells influences several properties of Candida albicans biology, including cellular morphology, biofilm formation, virulence, and sexual mating. In particular, these two cell types exhibit marked differences in their ability to undergo sex. A previous study identified the transcriptional regulator of pheromone response in both the white and opaque states as Cph1 because deletion of this gene abolished both pheromone-induced cell adhesion in white cells and sexual mating in opaque cells. To further explore how these cell types exhibit distinct biological outputs upon pheromone stimulation, we selected five Cph1-regulated genes with significant expression during the pheromone response in the white state but not the opaque state. These phase-specific pheromone-induced genes are ORF19.1539, ORF19.1725, ORF19.2430, ORF19.2691 and ORF19.5557. Deletion of each gene revealed that orf19.1539Δ, orf19.1725Δ, orf19.2430Δ and orf19.5557Δ showed significant decreases in pheromone-stimulated cell adhesion in the white state but retained normal mating competency in the opaque state, indicating that a particular role in white cell pheromone response is mediated by these four genes. Interestingly, the defects of orf19.1725Δ in pheromone-stimulated cell adhesion also abolished conventional biofilms and hyphal growth. Zebrafish egg infection assays further demonstrated that ORF19.1725 is involved in cell adhesion, penetration and virulence. Overall, four Cph1-regulated downstream targets were identified in the regulation of white cell pheromone response. We also clarified the roles of C. albicans ORF19.1725 in cell adhesion, hyphal growth, biofilm formation and virulence.
Collapse
Affiliation(s)
- Fu-Sheng Deng
- a Department of Biochemical Science and Technology , College of Life Science, National Taiwan University , Taipei , Taiwan
| | - Ching-Hsuan Lin
- a Department of Biochemical Science and Technology , College of Life Science, National Taiwan University , Taipei , Taiwan
| |
Collapse
|
27
|
Lin CJ, Chen YL. Conserved and Divergent Functions of the cAMP/PKA Signaling Pathway in Candida albicans and Candida tropicalis. J Fungi (Basel) 2018; 4:E68. [PMID: 29890663 PMCID: PMC6023519 DOI: 10.3390/jof4020068] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 01/03/2023] Open
Abstract
Fungal species undergo many morphological transitions to adapt to changing environments, an important quality especially in fungal pathogens. For decades, Candida albicans has been one of the most prevalent human fungal pathogens, and recently, the prevalence of Candida tropicalis as a causative agent of candidiasis has increased. In C. albicans, the ability to switch between yeast and hyphal forms is thought to be a key virulence factor and is regulated by multiple signaling cascades—including the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), calcineurin, high-osmolarity glycerol (HOG), and mitogen-activated protein kinases (MAPK) signaling pathways—upon receiving environmental cues. The cAMP/PKA signaling pathway also triggers white-opaque switching in C. albicans. However, studies on C. tropicalis morphogenesis are limited. In this minireview, we discuss the regulation of the yeast-hypha transition, virulence, and white-opaque switching through the cAMP/PKA pathway in the closely related species C. albicans and C. tropicalis.
Collapse
Affiliation(s)
- Chi-Jan Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan.
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan.
| |
Collapse
|
28
|
Candida albicans White-Opaque Switching Influences Virulence but Not Mating during Oropharyngeal Candidiasis. Infect Immun 2018; 86:IAI.00774-17. [PMID: 29581190 DOI: 10.1128/iai.00774-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/17/2018] [Indexed: 12/13/2022] Open
Abstract
The capacity of Candida albicans to switch reversibly between the white phenotype and the opaque phenotype is required for the fungus to mate. It also influences virulence during hematogenously disseminated candidiasis. We investigated the roles of the mating type loci (MTL) and white-opaque switching in the capacity of C. albicans to mate in the oropharynx and cause oropharyngeal candidiasis (OPC). When immunosuppressed mice were orally infected with mating-competent opaque a/a and α/α cells either alone or mixed with white cells, no detectable mating occurred, indicating that the mating frequency was less than 1.6 × 10-6 Opaque cells were also highly attenuated in virulence; they either were cleared from the oropharynx or switched to the white phenotype during OPC. Although there were strain-to-strain differences in the virulence of white cells, they were consistently more virulent than opaque cells. In vitro studies indicated that relative to white cells, opaque cells had decreased capacity to invade and damage oral epithelial cells. The reduced invasion of at least one opaque strain was due to reduced surface expression of the Als3 invasin and inability to activate the epidermal growth factor receptor, which is required to stimulate the epithelial cell endocytic machinery. These results suggest that mating is a rare event during OPC because opaque cells have reduced capacity to invade and damage the epithelial cells of the oral mucosa.
Collapse
|
29
|
Tso GHW, Reales-Calderon JA, Pavelka N. The Elusive Anti- Candida Vaccine: Lessons From the Past and Opportunities for the Future. Front Immunol 2018; 9:897. [PMID: 29755472 PMCID: PMC5934487 DOI: 10.3389/fimmu.2018.00897] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Candidemia is a bloodstream fungal infection caused by Candida species and is most commonly observed in hospitalized patients. Even with proper antifungal drug treatment, mortality rates remain high at 40–50%. Therefore, prophylactic or preemptive antifungal medications are currently recommended in order to prevent infections in high-risk patients. Moreover, the majority of women experience at least one episode of vulvovaginal candidiasis (VVC) throughout their lifetime and many of them suffer from recurrent VVC (RVVC) with frequent relapses for the rest of their lives. While there currently exists no definitive cure, the only available treatment for RVVC is again represented by antifungal drug therapy. However, due to the limited number of existing antifungal drugs, their associated side effects and the increasing occurrence of drug resistance, other approaches are greatly needed. An obvious prevention measure for candidemia or RVVC relapse would be to immunize at-risk patients with a vaccine effective against Candida infections. In spite of the advanced and proven techniques successfully applied to the development of antibacterial or antiviral vaccines, however, no antifungal vaccine is still available on the market. In this review, we first summarize various efforts to date in the development of anti-Candida vaccines, highlighting advantages and disadvantages of each strategy. We next unfold and discuss general hurdles encountered along these efforts, such as the existence of large genomic variation and phenotypic plasticity across Candida strains and species, and the difficulty in mounting protective immune responses in immunocompromised or immunosuppressed patients. Lastly, we review the concept of “trained immunity” and discuss how induction of this rapid and nonspecific immune response may potentially open new and alternative preventive strategies against opportunistic infections by Candida species and potentially other pathogens.
Collapse
Affiliation(s)
- Gloria Hoi Wan Tso
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (ASTAR), Singapore, Singapore
| | | | - Norman Pavelka
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
30
|
Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C. albicans. Pathogens 2018; 7:pathogens7010011. [PMID: 29342100 PMCID: PMC5874737 DOI: 10.3390/pathogens7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023] Open
Abstract
The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well recognized and host protective mechanisms widely investigated. Only recently, it was recognized that the natural diversity in the fungal species could also influence the outcome of the interaction between the fungus and the host. C. albicans strain-specific differences are complex and their regulation at the genomic, genetic, and epigenetic level and by environmental factors is only partially understood. In this review, we provide an overview of the natural diversity of C. albicans and discuss how it impacts host-fungal interactions and thereby affects the balance between commensalism versus disease.
Collapse
|
31
|
Boral H, Metin B, Döğen A, Seyedmousavi S, Ilkit M. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genet Biol 2017; 111:92-107. [PMID: 29102684 DOI: 10.1016/j.fgb.2017.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
The incidence of fungal diseases has been increasing since 1980, and is associated with excessive morbidity and mortality, particularly among immunosuppressed patients. Of the known 625 pathogenic fungal species, infections caused by the genera Aspergillus, Candida, Cryptococcus, and Trichophyton are responsible for more than 300 million estimated episodes of acute or chronic infections worldwide. In addition, a rather neglected group of opportunistic fungi known as black yeasts and their filamentous relatives cause a wide variety of recalcitrant infections in both immunocompetent and immunosuppressed hosts. This article provides an overview of selected virulence factors that are known to suppress host immunity and enhance the infectivity of these fungi.
Collapse
Affiliation(s)
- Hazal Boral
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Seyedmojtaba Seyedmousavi
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Center of Excellence for Infection Biology and Antimicrobial Pharmacology, Tehran, Iran
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey.
| |
Collapse
|
32
|
Regan H, Scaduto CM, Hirakawa MP, Gunsalus K, Correia-Mesquita TO, Sun Y, Chen Y, Kumamoto CA, Bennett RJ, Whiteway M. Negative regulation of filamentous growth in Candida albicans by Dig1p. Mol Microbiol 2017; 105:810-824. [PMID: 28657681 PMCID: PMC5724037 DOI: 10.1111/mmi.13738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 11/30/2022]
Abstract
Transcriptional regulation involves both positive and negative regulatory elements. The Dig1 negative regulators are part of a fungal-specific module that includes a transcription factor (a Ste12 family member) and a Dig1 family member. In Saccharomyces cerevisiae, the post-genome-duplication Dig1/Dig2 proteins regulate MAP kinase controlled signalling pathways involved in mating and filamentous growth. We have identified the single Dig1 orthologue in the fungal pathogen Candida albicans. Genetic studies and transcriptional profiling experiments show that this single protein is implicated in the regulation of MAP kinase-controlled processes involved in mating, filamentous growth and biofilm formation, and also influences cAMP-regulated processes. This suggests that the multiple cellular roles of the Dig1 protein are ancestral and predate the sub-functionalization apparent in S. cerevisiae after the genome duplication. Intriguingly, even though loss of Dig1 function in C. albicans enhances filamentous growth and biofilm formation, colonization of the murine gastrointestinal tract is reduced in the mutant. The complexity of the processes influenced by Dig1 in C. albicans, and the observation that Dig1 is one of the few regulatory proteins that were retained in the duplicated state after the whole genome duplication event in yeast, emphasizes the important role of these negative regulators in fungal transcriptional control.
Collapse
Affiliation(s)
- Hannah Regan
- Department of Biology, Concordia University, Montreal, Quebec,
Canada
- Department of Biology, McGill University, Montreal, Quebec,
Canada
| | - Christine M. Scaduto
- Department of Molecular Microbiology and Immunology, Brown
University, Providence, Rhode Island, USA
| | - Matthew P. Hirakawa
- Department of Molecular Microbiology and Immunology, Brown
University, Providence, Rhode Island, USA
| | - Kearney Gunsalus
- Department of Molecular Biology and Microbiology, Tufts University,
Boston, Massachusetts, USA
| | | | - Yuan Sun
- Department of Biology, Concordia University, Montreal, Quebec,
Canada
| | - Yaolin Chen
- Department of Biology, Concordia University, Montreal, Quebec,
Canada
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University,
Boston, Massachusetts, USA
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown
University, Providence, Rhode Island, USA
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec,
Canada
- Department of Biology, McGill University, Montreal, Quebec,
Canada
| |
Collapse
|
33
|
Abstract
This article provides an overview of sexual reproduction in the ascomycetes, a phylum of fungi that is named after the specialized sacs or "asci" that hold the sexual spores. They have therefore also been referred to as the Sac Fungi due to these characteristic structures that typically contain four to eight ascospores. Ascomycetes are morphologically diverse and include single-celled yeasts, filamentous fungi, and more complex cup fungi. The sexual cycles of many species, including those of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the filamentous saprobes Neurospora crassa, Aspergillus nidulans, and Podospora anserina, have been examined in depth. In addition, sexual or parasexual cycles have been uncovered in important human pathogens such as Candida albicans and Aspergillus fumigatus, as well as in plant pathogens such as Fusarium graminearum and Cochliobolus heterostrophus. We summarize what is known about sexual fecundity in ascomycetes, examine how structural changes at the mating-type locus dictate sexual behavior, and discuss recent studies that reveal that pheromone signaling pathways can be repurposed to serve cellular roles unrelated to sex.
Collapse
|
34
|
Sensitivity of White and Opaque Candida albicans Cells to Antifungal Drugs. Antimicrob Agents Chemother 2017; 61:AAC.00166-17. [PMID: 28507115 DOI: 10.1128/aac.00166-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/10/2017] [Indexed: 01/30/2023] Open
Abstract
White and opaque cells of Candida albicans have the same genome but differ in gene expression patterns, metabolic profiles, and host niche preferences. We tested whether these differences, which include the differential expression of drug transporters, resulted in different sensitivities to 27 antifungal agents. The analysis was performed in two different strain backgrounds; although there was strain-to-strain variation, only terbinafine hydrochloride and caspofungin showed consistent, 2-fold differences between white and opaque cells across both strains.
Collapse
|
35
|
O'Meara TR, Robbins N, Cowen LE. The Hsp90 Chaperone Network Modulates Candida Virulence Traits. Trends Microbiol 2017; 25:809-819. [PMID: 28549824 DOI: 10.1016/j.tim.2017.05.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 11/30/2022]
Abstract
Hsp90 is a conserved molecular chaperone that facilitates the folding and function of client proteins. Hsp90 function is dynamically regulated by interactions with co-chaperones and by post-translational modifications. In the fungal pathogen Candida albicans, Hsp90 enables drug resistance and virulence by stabilizing diverse signal transducers. Here, we review studies that have unveiled regulators of Hsp90 function, as well as downstream effectors that govern the key virulence traits of morphogenesis and drug resistance. We highlight recent work mapping the Hsp90 genetic network in C. albicans under diverse environmental conditions, and how these interactions provide insight into circuitry important for drug resistance, morphogenesis, and virulence. Ultimately, elucidating the Hsp90 chaperone network will aid in the development of therapeutics to treat fungal disease.
Collapse
Affiliation(s)
- Teresa R O'Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
36
|
Abstract
Candida albicans is an important etiological agent of superficial and life-threatening infections in individuals with compromised immune systems. To date, we know of several overlapping genetic networks that govern virulence attributes in this fungal pathogen. Classical use of deletion mutants has led to the discovery of numerous virulence factors over the years, and genome-wide functional analysis has propelled gene discovery at an even faster pace. Indeed, a number of recent studies using large-scale genetic screens followed by genome-wide functional analysis has allowed for the unbiased discovery of many new genes involved in C. albicans biology. Here we share our perspectives on the role of these studies in analyzing fundamental aspects of C. albicans virulence properties.
Collapse
Affiliation(s)
- Thabiso E Motaung
- a Agricultural Research Council - Small Grain Institute , Bethlehem , South Africa
| | - Ruan Ells
- b University of the Free Sate , Bloemfontein , South Africa
| | | | | | - Toi J Tsilo
- a Agricultural Research Council - Small Grain Institute , Bethlehem , South Africa.,c Department of Life and Consumer Sciences , University of South Africa , Pretoria , South Africa
| |
Collapse
|
37
|
Affiliation(s)
- Ilse D. Jacobsen
- Research Group Microbial Immunology, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
38
|
Muthamil S, Pandian SK. Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Woolford CA, Lagree K, Xu W, Aleynikov T, Adhikari H, Sanchez H, Cullen PJ, Lanni F, Andes DR, Mitchell AP. Bypass of Candida albicans Filamentation/Biofilm Regulators through Diminished Expression of Protein Kinase Cak1. PLoS Genet 2016; 12:e1006487. [PMID: 27935965 PMCID: PMC5147786 DOI: 10.1371/journal.pgen.1006487] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Biofilm formation on implanted medical devices is a major source of lethal invasive infection by Candida albicans. Filamentous growth of this fungus is tied to biofilm formation because many filamentation-associated genes are required for surface adherence. Cell cycle or cell growth defects can induce filamentation, but we have limited information about the coupling between filamentation and filamentation-associated gene expression after cell cycle/cell growth inhibition. Here we identified the CDK activating protein kinase Cak1 as a determinant of filamentation and filamentation-associated gene expression through a screen of mutations that diminish expression of protein kinase-related genes implicated in cell cycle/cell growth control. A cak1diminished expression (DX) strain displays filamentous growth and expresses filamentation-associated genes in the absence of typical inducing signals. In a wild-type background, expression of filamentation-associated genes depends upon the transcription factors Bcr1, Brg1, Efg1, Tec1, and Ume6. In the cak1 DX background, the dependence of filamentation-associated gene expression on each transcription factor is substantially relieved. The unexpected bypass of filamentation-associated gene expression activators has the functional consequence of enabling biofilm formation in the absence of Bcr1, Brg1, Tec1, Ume6, or in the absence of both Brg1 and Ume6. It also enables filamentous cell morphogenesis, though not biofilm formation, in the absence of Efg1. Because these transcription factors are known to have shared target genes, we suggest that cell cycle/cell growth limitation leads to activation of several transcription factors, thus relieving dependence on any one. The ability of the pathogen Candida albicans to grow on surfaces as biofilms is a determinant of infection ability, because biofilms on implanted medical devices seed infections. Biofilm formation by this organism requires growth in the form of filamentous cells and the expression of filamentation-associated genes. Inhibition of cell proliferation can induce filamentous cell formation, as we find here for strains that express greatly reduced levels of the cell cycle regulator Cak1. Surprisingly, biofilm formation occurs independently of many central biofilm regulatory genes when Cak1 levels are reduced. This response to proliferation inhibition may reflect the activation of numerous biofilm regulators, thus relieving the dependence on any one regulator. The stimulation of biofilm formation by proliferation inhibition, a property of many bacterial pathogens as well, may contribute to the limited effectiveness of antimicrobials against biofilms.
Collapse
Affiliation(s)
- Carol A. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Katherine Lagree
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Wenjie Xu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Tatyana Aleynikov
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Hema Adhikari
- Department of Biological Sciences at the University at Buffalo, Buffalo, New York, United States of America
| | - Hiram Sanchez
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences at the University at Buffalo, Buffalo, New York, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - David R. Andes
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Phenotypic Profiling Reveals that Candida albicans Opaque Cells Represent a Metabolically Specialized Cell State Compared to Default White Cells. mBio 2016; 7:mBio.01269-16. [PMID: 27879329 PMCID: PMC5120136 DOI: 10.1128/mbio.01269-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The white-opaque switch is a bistable, epigenetic transition affecting multiple traits in Candida albicans including mating, immunogenicity, and niche specificity. To compare how the two cell states respond to external cues, we examined the fitness, phenotypic switching, and filamentation properties of white cells and opaque cells under 1,440 different conditions at 25°C and 37°C. We demonstrate that white and opaque cells display striking differences in their integration of metabolic and thermal cues, so that the two states exhibit optimal fitness under distinct conditions. White cells were fitter than opaque cells under a wide range of environmental conditions, including growth at various pHs and in the presence of chemical stresses or antifungal drugs. This difference was exacerbated at 37°C, consistent with white cells being the default state of C. albicans in the mammalian host. In contrast, opaque cells showed greater fitness than white cells under select nutritional conditions, including growth on diverse peptides at 25°C. We further demonstrate that filamentation is significantly rewired between the two states, with white and opaque cells undergoing filamentous growth in response to distinct external cues. Genetic analysis was used to identify signaling pathways impacting the white-opaque transition both in vitro and in a murine model of commensal colonization, and three sugar sensing pathways are revealed as regulators of the switch. Together, these findings establish that white and opaque cells are programmed for differential integration of metabolic and thermal cues and that opaque cells represent a more metabolically specialized cell state than the default white state. IMPORTANCE Epigenetic transitions are an important mechanism by which microbes adapt to external stimuli. For Candida albicans, such transitions are crucial for adaptation to complex, fluctuating environments, and therefore contribute to its success as a human pathogen. The white-opaque switch modulates multiple C. albicans attributes, from sexual competency to niche specificity. Here, we demonstrate that metabolic circuits are extensively rewired between white and opaque states, so that the two cell types exhibit optimal fitness under different nutritional conditions and at different temperatures. We thereby establish that epigenetic events can profoundly alter the metabolism of fungal cells. We also demonstrate that epigenetic switching regulates filamentation and biofilm formation, two phenotypes closely associated with pathogenesis. These experiments reveal that white cells, considered the most clinically relevant form of C. albicans, are a "general-purpose" state suited to many environments, whereas opaque cells appear to represent a more metabolically specialized form of the species.
Collapse
|
41
|
Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol 2016; 15:96-108. [PMID: 27867199 DOI: 10.1038/nrmicro.2016.157] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida albicans is a ubiquitous commensal of the mammalian microbiome and the most prevalent fungal pathogen of humans. A cell-type transition between yeast and hyphal morphologies in C. albicans was thought to underlie much of the variation in virulence observed in different host tissues. However, novel yeast-like cell morphotypes, including opaque(a/α), grey and gastrointestinally induced transition (GUT) cell types, were recently reported that exhibit marked differences in vitro and in animal models of commensalism and disease. In this Review, we explore the characteristics of the classic cell types - yeast, hyphae, pseudohyphae and chlamydospores - as well as the newly identified yeast-like morphotypes. We highlight emerging knowledge about the associations of these different morphotypes with different host niches and virulence potential, as well as the environmental cues and signalling pathways that are involved in the morphological transitions.
Collapse
Affiliation(s)
- Suzanne M Noble
- Department of Microbiology and Immunology, University of California San Francisco (UCSF) School of Medicine.,Infectious Diseases Division, Department of Medicine, University of California San Francisco (UCSF) School of Medicine, San Francisco, California 94143, USA
| | - Brittany A Gianetti
- Department of Microbiology and Immunology, University of California San Francisco (UCSF) School of Medicine
| | - Jessica N Witchley
- Department of Microbiology and Immunology, University of California San Francisco (UCSF) School of Medicine
| |
Collapse
|
42
|
Anderson MZ, Porman AM, Wang N, Mancera E, Huang D, Cuomo CA, Bennett RJ. A Multistate Toggle Switch Defines Fungal Cell Fates and Is Regulated by Synergistic Genetic Cues. PLoS Genet 2016; 12:e1006353. [PMID: 27711197 PMCID: PMC5053522 DOI: 10.1371/journal.pgen.1006353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022] Open
Abstract
Heritable epigenetic changes underlie the ability of cells to differentiate into distinct cell types. Here, we demonstrate that the fungal pathogen Candida tropicalis exhibits multipotency, undergoing stochastic and reversible switching between three cellular states. The three cell states exhibit unique cellular morphologies, growth rates, and global gene expression profiles. Genetic analysis identified six transcription factors that play key roles in regulating cell differentiation. In particular, we show that forced expression of Wor1 or Efg1 transcription factors can be used to manipulate transitions between all three cell states. A model for tristability is proposed in which Wor1 and Efg1 are self-activating but mutually antagonistic transcription factors, thereby forming a symmetrical self-activating toggle switch. We explicitly test this model and show that ectopic expression of WOR1 can induce white-to-hybrid-to-opaque switching, whereas ectopic expression of EFG1 drives switching in the opposite direction, from opaque-to-hybrid-to-white cell states. We also address the stability of induced cell states and demonstrate that stable differentiation events require ectopic gene expression in combination with chromatin-based cues. These studies therefore experimentally test a model of multistate stability and demonstrate that transcriptional circuits act synergistically with chromatin-based changes to drive cell state transitions. We also establish close mechanistic parallels between phenotypic switching in unicellular fungi and cell fate decisions during stem cell reprogramming.
Collapse
Affiliation(s)
- Matthew Z. Anderson
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Allison M. Porman
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Na Wang
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Eugenio Mancera
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Denis Huang
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Richard J. Bennett
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
43
|
Liang W, Guan G, Dai Y, Cao C, Tao L, Du H, Nobile CJ, Zhong J, Huang G. Lactic acid bacteria differentially regulate filamentation in two heritable cell types of the human fungal pathogen Candida albicans. Mol Microbiol 2016; 102:506-519. [PMID: 27479705 DOI: 10.1111/mmi.13475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 01/17/2023]
Abstract
Microorganisms rarely exist as single species in natural environments. The opportunistic fungal pathogen Candida albicans and lactic acid bacteria (LAB) are common members of the microbiota of several human niches such as the mouth, gut and vagina. Lactic acid bacteria are known to suppress filamentation, a key virulence feature of C. albicans, through the production of lactic acid and other metabolites. Here we report that C. albicans cells switch between two heritable cell types, white and opaque, to undergo filamentation to adapt to diversified environments. We show that acidic pH conditions caused by LAB and low temperatures support opaque cell filamentation, while neutral pH conditions and high temperatures promote white cell filamentation. The cAMP signalling pathway and the Rfg1 transcription factor play major roles in regulating the responses to these conditions. This cell type-specific response of C. albicans to different environmental conditions reflects its elaborate regulatory control of phenotypic plasticity.
Collapse
Affiliation(s)
- Weihong Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chengjun Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Tao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Han Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 N. Lake Road, Merced, California, United States of America
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch. Genetics 2016; 203:1679-92. [PMID: 27280690 DOI: 10.1534/genetics.116.190645] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/23/2016] [Indexed: 02/04/2023] Open
Abstract
The human fungal pathogen Candida albicans can reversibly switch between two cell types named "white" and "opaque," each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white-opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white-opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white-opaque switching to cellular physiology.
Collapse
|
45
|
Mallick EM, Bergeron AC, Jones SK, Newman ZR, Brothers KM, Creton R, Wheeler RT, Bennett RJ. Phenotypic Plasticity Regulates Candida albicans Interactions and Virulence in the Vertebrate Host. Front Microbiol 2016; 7:780. [PMID: 27303374 PMCID: PMC4880793 DOI: 10.3389/fmicb.2016.00780] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
Phenotypic diversity is critical to the lifestyles of many microbial species, enabling rapid responses to changes in environmental conditions. In the human fungal pathogen Candida albicans, cells exhibit heritable switching between two phenotypic states, white and opaque, which yield differences in mating, filamentous growth, and interactions with immune cells in vitro. Here, we address the in vivo virulence properties of the two cell states in a zebrafish model of infection. Multiple attributes were compared including the stability of phenotypic states, filamentation, virulence, dissemination, and phagocytosis by immune cells, and phenotypes equated across three different host temperatures. Importantly, we found that both white and opaque cells could establish a lethal systemic infection. The relative virulence of the two cell types was temperature dependent; virulence was similar at 25°C, but at higher temperatures (30 and 33°C) white cells were significantly more virulent than opaque cells. Despite the difference in virulence, fungal burden, and dissemination were similar between cells in the two states. Additionally, both white and opaque cells exhibited robust filamentation during infection and blocking filamentation resulted in decreased virulence, establishing that this program is critical for pathogenesis in both cell states. Interactions between C. albicans cells and immune cells differed between white and opaque states. Macrophages and neutrophils preferentially phagocytosed white cells over opaque cells in vitro, and neutrophils showed preferential phagocytosis of white cells in vivo. Together, these studies distinguish the properties of white and opaque cells in a vertebrate host, and establish that the two cell types demonstrate both important similarities and key differences during infection.
Collapse
Affiliation(s)
- Emily M Mallick
- Department of Molecular Microbiology and Immunology, Brown University Providence, RI, USA
| | - Audrey C Bergeron
- Department of Molecular and Biomedical Sciences, University of Maine Orono, ME, USA
| | - Stephen K Jones
- Department of Molecular Microbiology and Immunology, Brown University Providence, RI, USA
| | - Zachary R Newman
- Department of Molecular and Biomedical Sciences, University of Maine Orono, ME, USA
| | - Kimberly M Brothers
- Department of Molecular and Biomedical Sciences, University of Maine Orono, ME, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University Providence, RI, USA
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine Orono, ME, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University Providence, RI, USA
| |
Collapse
|
46
|
Xu N, Dong YJ, Yu QL, Zhang B, Zhang M, Jia C, Chen YL, Zhang B, Xing LJ, Li MC. Convergent Regulation of Candida albicans Aft2 and Czf1 in Invasive and Opaque Filamentation. J Cell Biochem 2016; 116:1908-18. [PMID: 25716417 DOI: 10.1002/jcb.25146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/20/2015] [Indexed: 12/18/2022]
Abstract
Candida albicans is the most common fungal pathogen of mucosal infections and invasive diseases in immuno-compromised humans. The abilities of yeast-hyphal growth and white-opaque switching affect C. albicans physiology and virulence. Here, we showed that C. albicans Aft2 regulator was required for embedded filamentous growth and opaque cell-type formation. Under low-temperature matrix embedded conditions, Aft2 functioned downstream of Czf1-mediated pathway and was required for invasive filamentation. Moreover, deletion of AFT2 significantly reduced opaque cell-type formation under N-acetylglucosamine (GlcNAc) inducing conditions. Ectopic expression of CZF1 slightly increased the white-opaque switching frequency in the aft2Δ/Δ mutant, but did not completely restore to wild-type levels, suggesting that Czf1 at least partially bypassed the essential requirement for Aft2 in response to opaque-inducing cues. In addition, multiple environmental cues altered AFT2 mRNA and protein levels, such as low temperature, physical environment and GlcNAc. Although the absence of Czf1 or Efg1 also increased the expression level of AFT2 gene, deletion of CZF1 remarkably reduced the stability of Aft2 protein. Furthermore, C. albicans Aft2 physically interacted with Czf1 under all tested conditions, whereas the interaction between Aft2 and Efg1 was barely detectable under embedded conditions, supporting the hypothesis that Aft2, together with Czf1, contributed to activate filamentous growth by antagonizing Efg1-mediated repression under matrix-embedded conditions.
Collapse
Affiliation(s)
- Ning Xu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yi-Jie Dong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qi-Lin Yu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Meng Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chang Jia
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu-Lu Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Biao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lai-Jun Xing
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ming-Chun Li
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
47
|
Wang Y. Hgc1-Cdc28-how much does a single protein kinase do in the regulation of hyphal development in Candida albicans? J Microbiol 2016; 54:170-7. [PMID: 26920877 DOI: 10.1007/s12275-016-5550-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/06/2023]
Abstract
The fungal human pathogen Candida albicans can cause invasive infection with high mortality rates. A key virulence factor is its ability to switch between three morphologies: yeast, pseudohyphae and hyphae. In contrast to the ovalshaped unicellular yeast cells, hyphae are highly elongated, tube-like, and multicellular. A long-standing question is what coordinates all the cellular machines to construct cells with distinct shapes. Hyphal-specific genes (HSGs) are thought to hold the answer. Among the numerous HSGs found, only UME6 and HGC1 are required for hyphal development. UME6 encodes a transcription factor that regulates many HSGs including HGC1. HGC1 encodes a G1 cyclin which partners with the Cdc28 cyclin-dependent kinase. Hgc1-Cdc28 simultaneously phosphorylates and regulates multiple substrates, thus controlling multiple cellular apparatuses for morphogenesis. This review is focused on major progresses made in the past decade on Hgc1's roles and regulation in C. albicans hyphal development and other traits important for infection.
Collapse
Affiliation(s)
- Yue Wang
- Candida albicans Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
48
|
Lohse MB, Johnson AD. Identification and Characterization of Wor4, a New Transcriptional Regulator of White-Opaque Switching. G3 (BETHESDA, MD.) 2016; 6:721-9. [PMID: 26772749 PMCID: PMC4777133 DOI: 10.1534/g3.115.024885] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022]
Abstract
The human fungal pathogen Candida albicans can switch between two cell types, "white" and "opaque," each of which is heritable through many cell divisions. Switching between these two cell types is regulated by six transcriptional regulators that form a highly interconnected circuit with multiple feedback loops. Here, we identify a seventh regulator of white-opaque switching, which we have named Wor4. We show that ectopic expression of Wor4 is sufficient to drive switching from the white to the opaque cell type, and that deletion of Wor4 blocks switching from the white to the opaque cell type. A combination of ectopic expression and deletion experiments indicates that Wor4 is positioned upstream of Wor1, and that it is formally an activator of the opaque cell type. The combination of ectopic expression and deletion phenotypes for Wor4 is unique; none of the other six white-opaque regulators show this pattern. We determined the pattern of Wor4 binding across the genome by ChIP-seq and found it is highly correlated with that of Wor1 and Wor2, indicating that Wor4 is tightly integrated into the existing white-opaque regulatory circuit. We previously proposed that white-to-opaque switching relies on the activation of a complex circuit of feedback loops that remains excited through many cell divisions. The identification of a new, central regulator of white-opaque switching supports this idea by indicating that the white-opaque switching mechanism is considerably more complex than those controlling conventional, nonheritable patterns of gene expression.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158 Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
49
|
Evolutionary Selection on Barrier Activity: Bar1 Is an Aspartyl Protease with Novel Substrate Specificity. mBio 2015; 6:e01604-15. [PMID: 26604258 PMCID: PMC4669382 DOI: 10.1128/mbio.01604-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Peptide-based pheromones are used throughout the fungal kingdom for coordinating sexual responses between mating partners. Here, we address the properties and function of Bar1, an aspartyl protease that acts as a “barrier” and antagonist to pheromone signaling in multiple species. Candida albicans Bar1 was purified and shown to exhibit preferential cleavage of native α pheromone over pheromones from related fungal species. This result establishes that protease substrate specificity coevolved along with changes in its pheromone target. Pheromone cleavage by Bar1 occurred between residues Thr-5 and Asn-6 in the middle of the tridecapeptide sequence. Surprisingly, proteolytic activity was independent of the amino acid residues present at the scissile bond and instead relied on residues at the C terminus of α pheromone. Unlike most aspartyl proteases, Bar1 also exhibited a near-neutral pH optimum and was resistant to the class-wide inhibitor pepstatin A. In addition, genetic analysis was performed on C. albicansBAR1 and demonstrated that the protease not only regulates endogenous pheromone signaling but also can limit interspecies pheromone signaling. We discuss these findings and propose that the unusual substrate specificity of Bar1 is a consequence of its coevolution with the α pheromone receptor Ste2 for their shared peptide target. Pheromones are important for intraspecies communication across the tree of life. In the fungal kingdom, extracellular proteases play a key role in antagonizing pheromone signaling in multiple species. This study examines the properties and function of Candida albicans Bar1, an aspartyl protease that cleaves and thereby inactivates α pheromone. We demonstrate that Bar1 plays important roles in regulating both intra- and interspecies pheromone signaling. The fungal protease shows preferential activity on the endogenous pheromone, but, surprisingly, cleavage activity is dependent on amino acid residues distal to the scissile bond. We propose that the unusual substrate specificity of Bar1 is a direct result of coevolution with Ste2, the receptor for α pheromone, for recognition of the same peptide target. The novel specificity of Bar1 reveals the complex forces shaping the evolution of mating pathways in fungi and uncovers a protease with potentially important applications in the biotechnology industry.
Collapse
|
50
|
Zhang Q, Tao L, Guan G, Yue H, Liang W, Cao C, Dai Y, Huang G. Regulation of filamentation in the human fungal pathogenCandida tropicalis. Mol Microbiol 2015; 99:528-45. [DOI: 10.1111/mmi.13247] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Qiuyu Zhang
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Li Tao
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Guobo Guan
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Huizhen Yue
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Weihong Liang
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Chengjun Cao
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Yu Dai
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Guanghua Huang
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|