1
|
Yue D, Li R, Zhang J, Chen Y, Palmer-Young EC, Huang S, Huang WF. A DNA Plasmid-Based Approach for Efficient Synthesis of Sacbrood Virus Infectious Clones within Host Cells. Viruses 2023; 15:1866. [PMID: 37766273 PMCID: PMC10537335 DOI: 10.3390/v15091866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
RNA viruses are often cited as a significant factor affecting the populations of both domestic honey bees and wild pollinators. To expedite the development of effective countermeasures against these viruses, a more comprehensive understanding of virus biology necessitates extensive collaboration among scientists from diverse research fields. While the infectious virus clone is a robust tool for studying virus diseases, the current methods for synthesizing infectious clones of bee-infecting RNA viruses entail the in vitro transcription of the viral genome RNA in 8-10 kb, presenting challenges in reproducibility and distribution. This article reports on the synthesis of an infectious clone of the Chinese variant sacbrood virus (SBV) using a DNA plasmid containing an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) immediate-early protein (IE1) promoter to trigger transcription of the downstream viral genome within hosts. The results demonstrate that the IE1-SBV plasmid can synthesize SBV clones in a widely used lepidopteran immortal cell line (Sf9) and honey bee pupae. Furthermore, the negative strand of the clone was detected in both Sf9 cells and honey bee pupae, indicating active infection and replication. However, the transfection of Sf9 cells was observed in only a limited proportion (less than 10%) of the cells, and the infection did not appear to spread to adjacent cells or form infective virions. The injection of honey bee pupae with 2500 ng of the IE1-SBV plasmid resulted in high infection rates in Apis cerana pupae but low rates in A. mellifera pupae, although the dosage was comparatively high compared with other studies using in vitro transcribed viral RNA. Our findings suggest that the synthesis of bee-infecting RNA viruses using DNA plasmids is feasible, albeit requiring additional optimization. However, this method holds substantial potential for facilitating the production of clones with various sequence modifications, enabling the exploration of viral gene functions and biology. The ease of distributing infectious clones in DNA plasmid form may foster collaboration among scientists in applying the clone to bee biology, ecology, and behavior, ultimately offering a comprehensive approach to managing virus diseases in the future.
Collapse
Affiliation(s)
- Dandan Yue
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
| | - Runlin Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
| | - Jikailang Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
| | - Yanping Chen
- Bee Research Laboratory, Agriculture Research Service, USDA, Beltsville, MD 20705, USA
| | - Evan C. Palmer-Young
- Bee Research Laboratory, Agriculture Research Service, USDA, Beltsville, MD 20705, USA
| | - Shaokang Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
- Honeybee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Wei-Fone Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
- Bee Research Laboratory, Agriculture Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Hassan Z, Kumar ND, Reggiori F, Khan G. How Viruses Hijack and Modify the Secretory Transport Pathway. Cells 2021; 10:2535. [PMID: 34685515 PMCID: PMC8534161 DOI: 10.3390/cells10102535] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae,Poxviridae, Parvoviridae and Herpesviridae families.
Collapse
Affiliation(s)
- Zubaida Hassan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
- Department of Microbiology, School of Life Sciences, Modibbo Adama University, Yola PMB 2076, Nigeria
| | - Nilima Dinesh Kumar
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| |
Collapse
|
3
|
Viral infections alter antennal epithelium ultrastructure in honey bees. J Invertebr Pathol 2019; 168:107252. [PMID: 31585118 DOI: 10.1016/j.jip.2019.107252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/02/2019] [Accepted: 09/29/2019] [Indexed: 11/22/2022]
Abstract
Varroa destructor and its associated viruses, in particular deformed wing virus (DWV), have been identified as probable causes of honey bee (Apis mellif era L.) colony losses. Evidence suggests that elevated DWV titres in bees could compromise sensory and communication abilities resulting in negative consequences for hygienic behaviour. As antennae play a central role in this behaviour, we compared antennal ultrastructure in DWV-symptomatic and asymptomatic bees. The results show that virus capsids accumulate in the basal regions of the antennal epithelium, close to the haemolymph. No virus particles were detected at the level of sensory sensilla, such as pore plates, nor within the sensory cell dendrites associated with these sensilla. However, membranous structures appeared to be more prevalent in supporting cells surrounding the dendrites of DWV-symptomatic bees. Para-crystalline arrays containing large numbers of virus particles were detected in the antennae of DWV-symptomatic bees but not in asymptomatic bees.
Collapse
|
4
|
Warner SM, Wiehler S, Michi AN, Proud D. Rhinovirus replication and innate immunity in highly differentiated human airway epithelial cells. Respir Res 2019; 20:150. [PMID: 31299975 PMCID: PMC6626354 DOI: 10.1186/s12931-019-1120-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/01/2019] [Indexed: 12/23/2022] Open
Abstract
Background Human rhinovirus (HRV) infections are the primary cause of the common cold and are a major trigger for exacerbations of lower airway diseases, such as asthma and chronic obstructive pulmonary diseases. Although human bronchial epithelial cells (HBE) are the natural host for HRV infections, much of our understanding of how HRV replicates and induces host antiviral responses is based on studies using non-airway cell lines (e.g. HeLa cells). The current study examines the replication cycle of HRV, and host cell responses, in highly differentiated cultures of HBE. Methods Highly differentiated cultures of HBE were exposed to initial infectious doses ranging from 104 to 101 50% tissue culture-infective dose (TCID50) of purified HRV-16, and responses were monitored up to 144 h after infection. Viral genomic RNA and negative strand RNA template levels were monitored, along with levels of type I and II interferons and selected antivirals. Results Regardless of initial infectious dose, relatively constant levels of both genomic and negative strand RNA are generated during replication, with negative strand copy numbers being10,000-fold lower than those of genomic strands. Infections were limited to a small percentage of ciliated cells and did not result in any overt signs of epithelial death. Importantly, regardless of infectious dose, HRV-16 infections were cleared by HBE in the absence of immune cells. Levels of type I and type III interferons (IFNs) varied with initial infectious dose, implying that factors other than levels of double-stranded RNA regulate IFN induction, but the time-course of HRV-16 clearance HBE was the same regardless of levels of IFNs produced. Patterns of antiviral viperin and ISG15 expression suggest they may be generated in an IFN-independent manner during HRV-16 infections. Conclusions These data challenge a number of aspects of dogma generated from studies in HeLa cells and emphasize the importance of appropriate cell context when studying HRV infections.
Collapse
Affiliation(s)
- Stephanie M Warner
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Shahina Wiehler
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Aubrey N Michi
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - David Proud
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
5
|
Han S, Mao L, Liao Y, Sun S, Zhang Z, Mo Y, Liu H, Zhi X, Lin S, Seo HS, Guo H. Sec62 Suppresses Foot-and-Mouth Disease Virus Proliferation by Promotion of IRE1α-RIG-I Antiviral Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 203:429-440. [PMID: 31167774 DOI: 10.4049/jimmunol.1801546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/06/2019] [Indexed: 01/01/2023]
Abstract
Foot-and-mouth disease virus (FMDV) is highly infectious and causes a major plague in animal farming. Unfolded protein response is one of the major cellular responses to pathogenic infections, which performs a crucial role in cell survival, apoptosis, and antiviral innate immune response. In this study, we showed that FMDV infection activated two unfolded protein response branches (PERK-eIF2α and ATF6 signaling) in both baby hamster kidney cells (BHK-21) and porcine kidney (PK-15) cells, whereas it suppressed the IRE1α-XBP1 signaling by decreasing IRE1α level. Further study revealed IRE1α signaling as an important antiviral innate immune mechanism against FMDV. Sec62, the transport protein, was greatly decreased at the late stages of FMDV infection. By overexpression and knockdown study, we also found that the expression of Sec62 was positively involved in the levels of IRE1α and RIG-I and subsequent activation of downstream antiviral signaling pathways in FMDV-infected PK-15 cells. Taken together, our study demonstrates that Sec62 is an important antiviral factor that upregulates IRE1α-RIG-I-dependent antiviral innate immune responses, and FMDV evades antiviral host defense mechanism by downregulating Sec62-IRE1α/RIG-I.
Collapse
Affiliation(s)
- Shichong Han
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Lejiao Mao
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, People's Republic of China; and
| | - Shiqi Sun
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Zhihui Zhang
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Yaxia Mo
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Haiyun Liu
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Xiaoying Zhi
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Shunmei Lin
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Ho Seong Seo
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Huichen Guo
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China;
| |
Collapse
|
6
|
Lulla V, Dinan AM, Hosmillo M, Chaudhry Y, Sherry L, Irigoyen N, Nayak KM, Stonehouse NJ, Zilbauer M, Goodfellow I, Firth AE. An upstream protein-coding region in enteroviruses modulates virus infection in gut epithelial cells. Nat Microbiol 2018; 4:280-292. [PMID: 30478287 DOI: 10.1038/s41564-018-0297-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/19/2018] [Indexed: 11/09/2022]
Abstract
Enteroviruses comprise a large group of mammalian pathogens that includes poliovirus. Pathology in humans ranges from sub-clinical to acute flaccid paralysis, myocarditis and meningitis. Until now, all of the enteroviral proteins were thought to derive from the proteolytic processing of a polyprotein encoded in a single open reading frame. Here we report that many enterovirus genomes also harbour an upstream open reading frame (uORF) that is subject to strong purifying selection. Using echovirus 7 and poliovirus 1, we confirmed the expression of uORF protein in infected cells. Through ribosome profiling (a technique for the global footprinting of translating ribosomes), we also demonstrated translation of the uORF in representative members of the predominant human enterovirus species, namely Enterovirus A, B and C. In differentiated human intestinal organoids, uORF protein-knockout echoviruses are attenuated compared to the wild-type at late stages of infection where membrane-associated uORF protein facilitates virus release. Thus, we have identified a previously unknown enterovirus protein that facilitates virus growth in gut epithelial cells-the site of initial viral invasion into susceptible hosts. These findings overturn the 50-year-old dogma that enteroviruses use a single-polyprotein gene expression strategy and have important implications for the understanding of enterovirus pathogenesis.
Collapse
Affiliation(s)
- Valeria Lulla
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Adam M Dinan
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Lee Sherry
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Komal M Nayak
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Matthias Zilbauer
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Identification of Host Factors Involved in Human Cytomegalovirus Replication, Assembly, and Egress Using a Two-Step Small Interfering RNA Screen. mBio 2018; 9:mBio.00716-18. [PMID: 29946045 PMCID: PMC6020295 DOI: 10.1128/mbio.00716-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As obligate intracellular parasites, viruses are completely dependent on host factors for replication. Assembly and egress of complex virus particles, such as human cytomegalovirus (HCMV), are likely to require many host factors. Despite this, relatively few have been identified and characterized. This study describes a novel high-throughput, two-step small interfering RNA (siRNA) screen, which independently measures virus replication and virus production. By combining data from replication and virus production, multiple candidate genes were identified in which knockdown resulted in substantial loss of virus production with limited effect on primary replication, suggesting roles in later stages such as virus assembly and egress. Knockdown of the top candidates, ERC1, RAB4B, COPA, and COPB2, caused profound loss of virus production. Despite COPA and COPB2 being reported to function in the same complex, knockdown of these genes produced distinct phenotypes. Furthermore, knockdown of COPA caused increased expression of viral late genes despite substantial inhibition of viral DNA replication. This suggests that efficient viral genome replication is not required for late gene expression. Finally, we show that RAB4B relocates to the viral assembly compartment following infection with HCMV and knockdown of RAB4B reduces the release of intact virion particles, suggesting that it plays a role in virion assembly and egress. This study demonstrates a powerful high-throughput screen for identification of host-virus interactions, identifies multiple host genes associated with HCMV assembly and egress, and uncovers potentially independent functions for coatomer components COPA and COPB2 during infection. Human cytomegalovirus infection is a significant cause of disease in immunocompromised populations, individuals with heart disease, and recipients of solid organ and bone marrow transplants. HCMV is also the leading cause of infectious congenital birth defects. The majority of antivirals in clinical use target components of the virus to specifically inhibit replication. However, a major drawback of this approach is the emergence of resistance. An alternative approach is to target host factors that the virus requires for successful infection. In this study, multiple host factors were identified that were found to be essential for the production of newly infectious human cytomegalovirus. Identifying which host genes are necessary for virus replication extends our understanding of how viruses replicate and how cells function and provides potential targets for novel antivirals.
Collapse
|
8
|
Gu Y, Zhou Y, Shi X, Xin Y, Shan Y, Chen C, Cao T, Fang W, Li X. Porcine teschovirus 2 induces an incomplete autophagic response in PK-15 cells. Arch Virol 2017; 163:623-632. [PMID: 29177545 DOI: 10.1007/s00705-017-3652-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023]
Abstract
Autophagy is a homeostatic process that has been shown to be vital in the innate immune defense against pathogens. However, little is known about the regulatory role of autophagy in porcine teschovirus 2 (PTV-2) replication. In this study, we found that PTV-2 infection induces a strong increase in GFP-LC3 punctae and endogenous LC3 lipidation. However, PTV-2 infection did not enhance autophagic protein degradation. When cellular autophagy was pharmacologically inhibited by wortmannin or 3-methyladenine, PTV-2 replication increased. The increase in virus yield via autophagy inhibition was further confirmed by silencing atg5, which is required for autophagy. Furthermore, PTV-2 replication was suppressed when autophagy was activated by rapamycin. Together, the results suggest that PTV-2 infection activates incomplete autophagy and that autophagy then inhibits further PTV-2 replication.
Collapse
Affiliation(s)
- Yuanxing Gu
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.,Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingshan Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.,College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Lin'an, 311300, China
| | - Xinfeng Shi
- Animal Products Quality Testing Center of Zhejiang Province, Hangzhou, 310020, China
| | - Yongping Xin
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ying Shan
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Cong Chen
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Tong Cao
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoliang Li
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Dheilly NM, Maure F, Ravallec M, Galinier R, Doyon J, Duval D, Leger L, Volkoff AN, Missé D, Nidelet S, Demolombe V, Brodeur J, Gourbal B, Thomas F, Mitta G. Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proc Biol Sci 2015; 282:20142773. [PMID: 25673681 DOI: 10.1098/rspb.2014.2773] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many parasites modify their host behaviour to improve their own transmission and survival, but the proximate mechanisms remain poorly understood. An original model consists of the parasitoid Dinocampus coccinellae and its coccinellid host, Coleomegilla maculata; during the behaviour manipulation, the parasitoid is not in contact with its host anymore. We report herein the discovery and characterization of a new RNA virus of the parasitoid (D. coccinellae paralysis virus, DcPV). Using a combination of RT-qPCR and transmission electron microscopy, we demonstrate that DcPV is stored in the oviduct of parasitoid females, replicates in parasitoid larvae and is transmitted to the host during larval development. Next, DcPV replication in the host's nervous tissue induces a severe neuropathy and antiviral immune response that correlate with the paralytic symptoms characterizing the behaviour manipulation. Remarkably, virus clearance correlates with recovery of normal coccinellid behaviour. These results provide evidence that changes in ladybeetle behaviour most likely result from DcPV replication in the cerebral ganglia rather than by manipulation by the parasitoid. This offers stimulating prospects for research on parasitic manipulation by suggesting for the first time that behaviour manipulation could be symbiont-mediated.
Collapse
Affiliation(s)
- Nolwenn M Dheilly
- UMR 5244, Ecologie et Evolution des Interactions (2EI), CNRS, Université de Perpignan, Perpignan 66860, France MIVEGEC (UMR CNRS/IRD/UM1/UM2 5290), 911 Avenue Agropolis, BP 64501, Montpellier Cedex 5 34394, France
| | - Fanny Maure
- MIVEGEC (UMR CNRS/IRD/UM1/UM2 5290), 911 Avenue Agropolis, BP 64501, Montpellier Cedex 5 34394, France Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, Canada H1X 2B2
| | - Marc Ravallec
- INRA (UMR 1333), 'Insect-Microorganisms Diversity, Genomes and Interactions', Université de Montpellier 2, Place Eugène Bataillon, CC101, Montpellier Cedex 34095, France
| | - Richard Galinier
- UMR 5244, Ecologie et Evolution des Interactions (2EI), CNRS, Université de Perpignan, Perpignan 66860, France
| | - Josée Doyon
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, Canada H1X 2B2
| | - David Duval
- UMR 5244, Ecologie et Evolution des Interactions (2EI), CNRS, Université de Perpignan, Perpignan 66860, France
| | - Lucas Leger
- MIVEGEC (UMR CNRS/IRD/UM1/UM2 5290), 911 Avenue Agropolis, BP 64501, Montpellier Cedex 5 34394, France
| | - Anne-Nathalie Volkoff
- INRA (UMR 1333), 'Insect-Microorganisms Diversity, Genomes and Interactions', Université de Montpellier 2, Place Eugène Bataillon, CC101, Montpellier Cedex 34095, France
| | - Dorothée Missé
- MIVEGEC (UMR CNRS/IRD/UM1/UM2 5290), 911 Avenue Agropolis, BP 64501, Montpellier Cedex 5 34394, France
| | - Sabine Nidelet
- Montpellier Genomics and Bioinformatics Facility, MGX-Montpellier GenomiX, Montpellier 34396, France
| | - Vincent Demolombe
- Montpellier Genomics and Bioinformatics Facility, MGX-Montpellier GenomiX, Montpellier 34396, France
| | - Jacques Brodeur
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, Canada H1X 2B2
| | - Benjamin Gourbal
- UMR 5244, Ecologie et Evolution des Interactions (2EI), CNRS, Université de Perpignan, Perpignan 66860, France
| | - Frédéric Thomas
- MIVEGEC (UMR CNRS/IRD/UM1/UM2 5290), 911 Avenue Agropolis, BP 64501, Montpellier Cedex 5 34394, France
| | - Guillaume Mitta
- UMR 5244, Ecologie et Evolution des Interactions (2EI), CNRS, Université de Perpignan, Perpignan 66860, France
| |
Collapse
|
10
|
Lupberger J, Casanova C, Fischer B, Weiss A, Fofana I, Fontaine N, Fujiwara T, Renaud M, Kopp A, Schuster C, Brino L, Baumert TF, Thoma C. PI4K-beta and MKNK1 are regulators of hepatitis C virus IRES-dependent translation. Sci Rep 2015; 5:13344. [PMID: 26323588 PMCID: PMC4555030 DOI: 10.1038/srep13344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022] Open
Abstract
Cellular translation is down-regulated by host antiviral responses. Picornaviridae and Flaviviridae including hepatitis C virus (HCV) evade this process using internal ribosomal entry sequences (IRESs). Although HCV IRES translation is a prerequisite for HCV replication, only few host factors critical for IRES activity are known and the global regulator network remains largely unknown. Since signal transduction is an import regulator of viral infections and the host antiviral response we combined a functional RNAi screen targeting the human signaling network with a HCV IRES-specific reporter mRNA assay. We demonstrate that the HCV host cell cofactors PI4K and MKNK1 are positive regulators of HCV IRES translation representing a novel pathway with a functional relevance for the HCV life cycle and IRES-mediated translation of viral RNA.
Collapse
Affiliation(s)
- Joachim Lupberger
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques Strasbourg, France.,Université de Strasbourg, France
| | - Claudia Casanova
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | - Benoit Fischer
- High Throughput Screening platform, IGBMC, UMR7104 CNRS UdS, Inserm, U964, Illkirch, France
| | - Amelie Weiss
- High Throughput Screening platform, IGBMC, UMR7104 CNRS UdS, Inserm, U964, Illkirch, France
| | - Isabel Fofana
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques Strasbourg, France.,Université de Strasbourg, France
| | - Nelly Fontaine
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques Strasbourg, France.,Université de Strasbourg, France
| | - Toshinobu Fujiwara
- Laboratory of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Mickael Renaud
- High Throughput Screening platform, IGBMC, UMR7104 CNRS UdS, Inserm, U964, Illkirch, France
| | - Arnaud Kopp
- High Throughput Screening platform, IGBMC, UMR7104 CNRS UdS, Inserm, U964, Illkirch, France
| | - Catherine Schuster
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques Strasbourg, France.,Université de Strasbourg, France
| | - Laurent Brino
- High Throughput Screening platform, IGBMC, UMR7104 CNRS UdS, Inserm, U964, Illkirch, France
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques Strasbourg, France.,Université de Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Christian Thoma
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Wen X, Cheng A, Wang M, Jia R, Zhu D, Chen S, Liu M, Sun K, Yang Q, Wu Y, Chen X. Recent advances from studies on the role of structural proteins in enterovirus infection. Future Microbiol 2015; 10:1529-42. [DOI: 10.2217/fmb.15.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Enteroviruses are a large group of small nonenveloped viruses that cause common and debilitating illnesses affecting humans and animals worldwide. The capsid composed by viral structural proteins packs the RNA genome. It is becoming apparent that structural proteins of enteroviruses play versatile roles in the virus–host interaction in the viral life cycle, more than just a shell. Furthermore, structural proteins to some extent may be associated with viral virulence and pathogenesis. Better understanding the roles of structural proteins in enterovirus infection may lead to the development of potential antiviral strategies. Here, we discuss recent advances from studies on the role of structural proteins in enterovirus infection and antiviral therapeutics targeted structural proteins.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Engineering & Technology Center for Laboratory Animals of Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| |
Collapse
|
12
|
Abstract
The Picornaviridae represent a large family of small plus-strand RNA viruses that cause a bewildering array of important human and animal diseases. Morphogenesis is the least-understood step in the life cycle of these viruses, and this process is difficult to study because encapsidation is tightly coupled to genome translation and RNA replication. Although the basic steps of assembly have been known for some time, very few details are available about the mechanism and factors that regulate this process. Most of the information available has been derived from studies of enteroviruses, in particular poliovirus, where recent evidence has shown that, surprisingly, the specificity of encapsidation is governed by a viral protein-protein interaction that does not involve an RNA packaging signal. In this review, we make an attempt to summarize what is currently known about the following topics: (i) encapsidation intermediates, (ii) the specificity of encapsidation (iii), viral and cellular factors that are required for encapsidation, (iv) inhibitors of encapsidation, and (v) a model of enterovirus encapsidation. Finally, we compare some features of picornavirus morphogenesis with those of other plus-strand RNA viruses.
Collapse
|
13
|
Affiliation(s)
- Jean-François Laliberté
- INRS–Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada;
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada;
| |
Collapse
|
14
|
Human rhinovirus 16 causes Golgi apparatus fragmentation without blocking protein secretion. J Virol 2014; 88:11671-85. [PMID: 25100828 PMCID: PMC4178721 DOI: 10.1128/jvi.01170-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The replication of picornaviruses has been described to cause fragmentation of the Golgi apparatus that blocks the secretory pathway. The inhibition of major histocompatibility complex class I upregulation and cytokine, chemokine and interferon secretion may have important implications for host defense. Previous studies have shown that disruption of the secretory pathway can be replicated by expression of individual nonstructural proteins; however the situation with different serotypes of human rhinovirus (HRV) is unclear. The expression of 3A protein from HRV14 or HRV2 did not cause Golgi apparatus disruption or a block in secretion, whereas other studies showed that infection of cells with HRV1A did cause Golgi apparatus disruption which was replicated by the expression of 3A. HRV16 is the serotype most widely used in clinical HRV challenge studies; consequently, to address the issue of Golgi apparatus disruption for HRV16, we have systematically and quantitatively examined the effect of HRV16 on both Golgi apparatus fragmentation and protein secretion in HeLa cells. First, we expressed each individual nonstructural protein and examined their cellular localization and their disruption of endoplasmic reticulum and Golgi apparatus architecture. We quantified their effects on the secretory pathway by measuring secretion of the reporter protein Gaussia luciferase. Finally, we examined the same outcomes following infection of cells with live virus. We demonstrate that expression of HRV16 3A and 3AB and, to a lesser extent, 2B caused dispersal of the Golgi structure, and these three nonstructural proteins also inhibited protein secretion. The infection of cells with HRV16 also caused significant Golgi apparatus dispersal; however, this did not result in the inhibition of protein secretion. IMPORTANCE The ability of replicating picornaviruses to influence the function of the secretory pathway has important implications for host defense. However, there appear to be differences between different members of the family and inconsistent results when comparing infection with live virus to expression of individual nonstructural proteins. We demonstrate that individual nonstructural HRV16 proteins, when expressed in HeLa cells, can both fragment the Golgi apparatus and block secretion, whereas viral infection fragments the Golgi apparatus without blocking secretion. This has major implications for how we interpret mechanistic evidence derived from the expression of single viral proteins.
Collapse
|