1
|
Mbewe W, Mukasa S, Ochwo-Ssemakula M, Sseruwagi P, Tairo F, Ndunguru J, Duffy S. Cassava brown streak virus evolves with a nucleotide-substitution rate that is typical for the family Potyviridae. Virus Res 2024; 346:199397. [PMID: 38750679 PMCID: PMC11145536 DOI: 10.1016/j.virusres.2024.199397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
The ipomoviruses (family Potyviridae) that cause cassava brown streak disease (cassava brown streak virus [CBSV] and Uganda cassava brown streak virus [UCBSV]) are damaging plant pathogens that affect the sustainability of cassava production in East and Central Africa. However, little is known about the rate at which the viruses evolve and when they emerged in Africa - which inform how easily these viruses can host shift and resist RNAi approaches for control. We present here the rates of evolution determined from the coat protein gene (CP) of CBSV (Temporal signal in a UCBSV dataset was not sufficient for comparable analysis). Our BEAST analysis estimated the CBSV CP evolves at a mean rate of 1.43 × 10-3 nucleotide substitutions per site per year, with the most recent common ancestor of sampled CBSV isolates existing in 1944 (95% HPD, between years 1922 - 1963). We compared the published measured and estimated rates of evolution of CPs from ten families of plant viruses and showed that CBSV is an average-evolving potyvirid, but that members of Potyviridae evolve more quickly than members of Virgaviridae and the single representatives of Betaflexiviridae, Bunyaviridae, Caulimoviridae and Closteroviridae.
Collapse
Affiliation(s)
- Willard Mbewe
- Department of Biological Sciences, Malawi University of Science and Technology, P. O. Box 5196, Limbe, Malawi.
| | - Settumba Mukasa
- School of Agriculture and Environmental Science, Department of Agricultural Production, P. O. Box 7062, Makerere University, Kampala, Uganda
| | - Mildred Ochwo-Ssemakula
- School of Agriculture and Environmental Science, Department of Agricultural Production, P. O. Box 7062, Makerere University, Kampala, Uganda
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Slaam, Tanzania
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Slaam, Tanzania
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Slaam, Tanzania
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, United States.
| |
Collapse
|
2
|
Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022; 11:pathogens11091039. [PMID: 36145471 PMCID: PMC9501407 DOI: 10.3390/pathogens11091039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species. However, some viruses are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and selection pressures by host and vector factors, and random variants or those with a competitive advantage are fixed in the population and mediate the emergence of new viral strains or species with novel biological properties. This process creates a footprint in the virus genome evident as the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that function as determinants of host adaptation. Here, with respect to plant viruses, we review the current understanding of the sources of variation, the effect of selection, and its role in virus evolution and host adaptation.
Collapse
|
3
|
Kim G, Shin HM, Kim HR, Kim Y. Effects of Host and Pathogenicity on Mutation Rates in Avian Influenza A Viruses. Virus Evol 2022; 8:veac013. [PMID: 35295747 PMCID: PMC8922178 DOI: 10.1093/ve/veac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Mutation is the primary determinant of genetic diversity in influenza viruses. The rate of mutation, measured in an absolute time-scale, is likely to be dependent on the rate of errors in copying RNA sequences per replication and the number of replications per unit time. Conditions for viral replication are probably different among host taxa, potentially generating the host-specificity of the viral mutation rate, and possibly between highly and low pathogenic viruses. This study investigated whether mutation rates per year in avian influenza A viruses depend on host taxa and pathogenicity. We inferred mutation rates from the rates of synonymous substitutions, which are assumed to be neutral and thus equal to mutation rates, at four segments that code internal viral proteins (PB2, PB1, PA, NP). On the phylogeny of all avian viral sequences for each segment, multiple distinct subtrees (clades) were identified that represent viral subpopulations, which are likely to have evolved within particular host taxa. Using simple regression analysis, we found that mutation rates were significantly higher in viruses infecting chickens than domestic ducks, and in those infecting wild shorebirds than wild ducks. Host-dependency of the substitution rate was also confirmed by Bayesian phylogenetic analysis. However, we did not find evidence that the mutation rate is higher in highly pathogenic than in low pathogenic viruses. We discuss these results considering viral replication rate as the major determinant of mutation rate per unit time.
Collapse
Affiliation(s)
- Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Republic of Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Republic of Korea
| | - Yuseob Kim
- Division of EcoScience and Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
4
|
Evolutionary Shift from Purifying Selection towards Divergent Selection of SARS-CoV2 Favors its Invasion into Multiple Human Organs. Virus Res 2022; 313:198712. [PMID: 35176330 PMCID: PMC8843322 DOI: 10.1016/j.virusres.2022.198712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 01/07/2023]
Abstract
SARS-CoV2 virus is believed to be originated from a closely related bat Coronavirus RaTG13 lineage and uses its key entry-point residues in S1 protein to attach with human ACE2 receptor. SARS-CoV2 could enter human from bat with its poorly developed entry-point residues much before its known appearance with slower mutation rate or recently with efficiently developed entry-point residues with higher mutation rate or through an intermediate host. Temporal analysis of SARS-CoV2 genome shows that its nucleotide substitution rate is as low as 27nt/year with an evolutionary rate of 9×10−4/site/year, which is well within the range of other RNA virus (10−4 to 10−6/site/year). TMRCA of SARS-CoV2 from bat RaTG13 lineage appears to be in between 9 and 14 years. Evolution of a critical entry-point residue Y493Q needs two substitutions with an intermediate virus carrying Y493H (Y>H>Q) but has not been identified in known twenty-nine bat CoV virus. Genetic codon analysis indicates that SARS-CoV2 evolution during propagation in human disobeys neutral evolution as nonsynonymous mutations surpass synonymous mutations with the increase of ω (dn/ds). Taken together, genetic data suggests that SARS-CoV2 is originated long time back before its appearance in human in 2019. Increase of ω signifies that SARs-CoV2 evolution is approaching towards diversifying selection from purifying selection predictably for its infection power to evade multiple human organs.
Collapse
|
5
|
Aimone CD, Hoyer JS, Dye AE, Deppong DO, Duffy S, Carbone I, Hanley-Bowdoin L. An experimental strategy for preparing circular ssDNA virus genomes for next-generation sequencing. J Virol Methods 2021; 300:114405. [PMID: 34896458 DOI: 10.1016/j.jviromet.2021.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 08/26/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
The ability of begomoviruses to evolve rapidly threatens many crops and underscores the importance of detecting these viruses quickly and to understand their genome diversity. This study presents an improved protocol for the enhanced amplification and enrichment of begomovirus DNA for use in next generation sequencing of the viral genomes. An enhanced rolling circle amplification (RCA) method using EquiPhi29 polymerase was combined with size selection to generate a cost-effective, short-read sequencing method. This improved short-read sequencing produced at least 50 % of the reads mapping to the target viral reference genomes, African cassava mosaic virus and East African cassava mosaic virus. This study provided other insights into common misconceptions about RCA and lessons that could be learned from the sequencing of single-stranded DNA virus genomes. This protocol can be used to examine the viral DNA as it moves from host to vector, thus producing valuable information for viral DNA population studies, and would likely work well with other circular Rep-encoding ssDNA viruses (CRESS) DNA viruses.
Collapse
Affiliation(s)
- Catherine D Aimone
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - J Steen Hoyer
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Anna E Dye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - David O Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
6
|
Ortega-Del Campo S, Grigoras I, Timchenko T, Gronenborn B, Grande-Pérez A. Twenty years of evolution and diversification of digitaria streak virus in Digitaria setigera. Virus Evol 2021; 7:veab083. [PMID: 34659796 PMCID: PMC8516820 DOI: 10.1093/ve/veab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Within the family Geminiviridae, the emergence of new species results from their high mutation and recombination rates. In this study, we report the variability and evolution of digitaria streak virus (DSV), a mastrevirus isolated in 1986 from the grass Digitaria setigera in an island of the Vanuatu archipelago. Viral DNA of DSV samples was amplified from D. setigera specimens, derived from the naturally infected original plant, which were propagated in different laboratories in France and Italy for more than 20 years. From the consensus sequences, the nucleotide substitution rate was estimated for the period between a sample and the original sequence published in 1987, as well as for the period between samples. In addition, the intra-host genetic complexity and diversity of 8 DSV populations with a total of 165 sequenced haplotypes was characterized. The evolutionary rate of DSV was estimated to be between 1.13 × 10−4 and 9.87 × 10−4 substitutions/site/year, within the ranges observed in other single-stranded DNA viruses and RNA viruses. Bioinformatic analyses revealed high variability and heterogeneity in DSV populations, which confirmed that mutant spectra are continuously generated and are organized as quasispecies. The analysis of polymorphisms revealed nucleotide substitution biases in viral genomes towards deamination and oxidation of single-stranded DNA. The differences in variability in each of the genomic regions reflected a dynamic and modular evolution in the mutant spectra that was not reflected in the consensus sequences. Strikingly, the most variable region of the DSV genome, encoding the movement protein, showed rapid fixation of the mutations in the consensus sequence and a concomitant dN/dS ratio of 6.130, which suggests strong positive selection in this region. Phylogenetic analyses revealed a possible divergence in three genetic lineages from the original Vanuatu DSV isolate.
Collapse
Affiliation(s)
| | - Ioana Grigoras
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Tatiana Timchenko
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Bruno Gronenborn
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga 29071, Spain
| |
Collapse
|
7
|
Glud HA, George S, Skovgaard K, Larsen LE. Zoonotic and reverse zoonotic transmission of viruses between humans and pigs. APMIS 2021; 129:675-693. [PMID: 34586648 PMCID: PMC9297979 DOI: 10.1111/apm.13178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Humans and pigs share a close contact relationship, similar biological traits, and one of the highest estimated number of viruses compared to other mammalian species. The contribution and directionality of viral exchange between humans and pigs remain unclear for some of these viruses, but their transmission routes are important to characterize in order to prevent outbreaks of disease in both host species. This review collects and assesses the evidence to determine the likely transmission route of 27 viruses between humans and pigs.
Collapse
Affiliation(s)
- Helena Aagaard Glud
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sophie George
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Aimone CD, Lavington E, Hoyer JS, Deppong DO, Mickelson-Young L, Jacobson A, Kennedy GG, Carbone I, Hanley-Bowdoin L, Duffy S. Population diversity of cassava mosaic begomoviruses increases over the course of serial vegetative propagation. J Gen Virol 2021; 102:001622. [PMID: 34310272 PMCID: PMC8491896 DOI: 10.1099/jgv.0.001622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/05/2021] [Indexed: 01/06/2023] Open
Abstract
Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.
Collapse
Affiliation(s)
- Catherine D. Aimone
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Erik Lavington
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - David O. Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Leigh Mickelson-Young
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - George G. Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC 27695, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
9
|
Many human RNA viruses show extraordinarily stringent selective constraints on protein evolution. Proc Natl Acad Sci U S A 2019; 116:19009-19018. [PMID: 31484772 DOI: 10.1073/pnas.1907626116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
How negative selection, positive selection, and population size contribute to the large variation in nucleotide substitution rates among RNA viruses remains unclear. Here, we studied the ratios of nonsynonymous-to-synonymous substitution rates (d N/d S) in protein-coding genes of human RNA and DNA viruses and mammals. Among the 21 RNA viruses studied, 18 showed a genome-average d N/d S from 0.01 to 0.10, indicating that over 90% of nonsynonymous mutations are eliminated by negative selection. Only HIV-1 showed a d N/d S (0.31) higher than that (0.22) in mammalian genes. By comparing the d N/d S values among genes in the same genome and among species or strains, we found that both positive selection and population size play significant roles in the d N/d S variation among genes and species. Indeed, even in flaviviruses and picornaviruses, which showed the lowest ratios among the 21 species studied, positive selection appears to have contributed significantly to d N/d S We found the view that positive selection occurs much more frequently in influenza A subtype H3N2 than subtype H1N1 holds only for the hemagglutinin and neuraminidase genes, but not for other genes. Moreover, we found no support for the view that vector-borne RNA viruses have lower d N/d S ratios than non-vector-borne viruses. In addition, we found a correlation between d N and d S, implying a correlation between d N and the mutation rate. Interestingly, only 2 of the 8 DNA viruses studied showed a d N/d S < 0.10, while 4 showed a d N/d S > 0.22. These observations increase our understanding of the mechanisms of RNA virus evolution.
Collapse
|
10
|
Slingenbergh J. Animal Virus Ecology and Evolution Are Shaped by the Virus Host-Body Infiltration and Colonization Pattern. Pathogens 2019; 8:pathogens8020072. [PMID: 31130619 PMCID: PMC6631033 DOI: 10.3390/pathogens8020072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 05/20/2019] [Indexed: 12/24/2022] Open
Abstract
The current classification of animal viruses is largely based on the virus molecular world. Less attention is given to why and how virus fitness results from the success of virus transmission. Virus transmission reflects the infection-shedding-transmission dynamics, and with it, the organ system involvement and other, macroscopic dimensions of the host environment. This study describes the transmission ecology of the world main livestock viruses, 36 in total, a mix of RNA, DNA and retroviruses. Following an iterative process, the viruses are virtually ranked in an outer- to inner-body fashion, by organ system, on ecological grounds. Also portrayed are the shifts in virus host tropism and virus genome. The synthesis of the findings reveals a predictive virus evolution framework, based on the outer- to inner-body changes in the interplay of host environment-transmission modes-organ system involvement-host cell infection cycle-virus genome. Outer-body viruses opportunistically respond to the variation in the external environment. For example, respiratory and enteric viruses tend to be associated with poultry and pig mass rearing. Ruminant and equine viruses tend to be more deep-rooted and host-specific, and also establish themselves in the vital inner-body systems. It is concluded that the framework may assist the study of new emerging viruses and pandemic risks.
Collapse
Affiliation(s)
- Jan Slingenbergh
- Formerly Food and Agriculture Organization of the United Nations, 00153 Rome, Italy.
| |
Collapse
|
11
|
Domingo-Calap P, Schubert B, Joly M, Solis M, Untrau M, Carapito R, Georgel P, Caillard S, Fafi-Kremer S, Paul N, Kohlbacher O, González-Candelas F, Bahram S. An unusually high substitution rate in transplant-associated BK polyomavirus in vivo is further concentrated in HLA-C-bound viral peptides. PLoS Pathog 2018; 14:e1007368. [PMID: 30335851 PMCID: PMC6207329 DOI: 10.1371/journal.ppat.1007368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/30/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022] Open
Abstract
Infection with human BK polyomavirus, a small double-stranded DNA virus, potentially results in severe complications in immunocompromised patients. Here, we describe the in vivo variability and evolution of the BK polyomavirus by deep sequencing. Our data reveal the highest genomic evolutionary rate described in double-stranded DNA viruses, i.e., 10−3–10−5 substitutions per nucleotide site per year. High mutation rates in viruses allow their escape from immune surveillance and adaptation to new hosts. By combining mutational landscapes across viral genomes with in silico prediction of viral peptides, we demonstrate the presence of significantly more coding substitutions within predicted cognate HLA-C-bound viral peptides than outside. This finding suggests a role for HLA-C in antiviral immunity, perhaps through the action of killer cell immunoglobulin-like receptors. The present study provides a comprehensive view of viral evolution and immune escape in a DNA virus. Little is known about the mechanisms of evolution and viral immune escape in double-stranded DNA (dsDNA) viruses. Here, we study the evolution of BK polyomavirus and observe the highest genomic evolutionary rate described so far for a dsDNA virus, in the range of RNA viruses, which usually evolve rapidly. Furthermore, the prediction of viral peptides to determine immune escape suggests a specific role of HLA-C in antiviral immunity. These findings are helpful for future advances in antiviral therapies and provide a step forward in our understanding of in vivo viral evolution in humans.
Collapse
Affiliation(s)
- Pilar Domingo-Calap
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- * E-mail: (PDC); (SB)
| | - Benjamin Schubert
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, Tübingen, Germany
| | - Mélanie Joly
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Service de Néphrologie et Transplantation Rénale, Hôpitaux Universitaires de Strasbourg, France
| | - Morgane Solis
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Laboratoire de Virologie, Plateau Technique de Microbiologie, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, France
| | - Meiggie Untrau
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
| | - Raphael Carapito
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Laboratoire Central d’Immunologie, Plateau Technique de Biologie, Nouvel Hôpital Civil, France
| | - Philippe Georgel
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
| | - Sophie Caillard
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Service de Néphrologie et Transplantation Rénale, Hôpitaux Universitaires de Strasbourg, France
| | - Samira Fafi-Kremer
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Laboratoire de Virologie, Plateau Technique de Microbiologie, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, France
| | - Nicodème Paul
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
| | - Oliver Kohlbacher
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, Tübingen, Germany
- Quantitative Biology Center, Tübingen, Germany
- Faculty of Medicine, University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO/Universitat de València, Institute for Integrative Systems Biology I2SysBio (CSIC-UV) and CIBER en Epidemiología y Salud Pública, Valencia, Spain
| | - Seiamak Bahram
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Laboratoire Central d’Immunologie, Plateau Technique de Biologie, Nouvel Hôpital Civil, France
- * E-mail: (PDC); (SB)
| |
Collapse
|
12
|
Abstract
The high mutation rate of RNA viruses is credited with their evolvability and virulence. This Primer, however, discusses recent evidence that this is, in part, a byproduct of selection for faster genomic replication.
Collapse
Affiliation(s)
- Siobain Duffy
- School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
13
|
Viljakainen L, Holmberg I, Abril S, Jurvansuu J. Viruses of invasive Argentine ants from the European Main supercolony: characterization, interactions and evolution. J Gen Virol 2018; 99:1129-1140. [DOI: 10.1099/jgv.0.001104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lumi Viljakainen
- 1Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Ida Holmberg
- 1Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Sílvia Abril
- 2Department of Environmental Sciences, University of Girona, Girona, Spain
| | - Jaana Jurvansuu
- 1Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| |
Collapse
|
14
|
Abstract
Many viruses evolve rapidly. This is due, in part, to their high mutation rates. Mutation rate estimates for over 25 viruses are currently available. Here, we review the population genetics of virus mutation rates. We specifically cover the topics of mutation rate estimation, the forces that drive the evolution of mutation rates, and how the optimal mutation rate can be context-dependent.
Collapse
|
15
|
Cai C, Zhou J, Sun X, Sun T, Xie W, Cui J. Integrated modeling and analysis of intracellular and intercellular mechanisms in shaping the interferon response to viral infection. PLoS One 2017; 12:e0186105. [PMID: 29020068 PMCID: PMC5636135 DOI: 10.1371/journal.pone.0186105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
Abstract
The interferons (IFNs) responses to viral infection are heterogeneous, while the underlying mechanisms for variability among cells are still not clear. In this study, we developed a hybrid model to systematically identify the sources of IFN induction heterogeneity. The experiment-integrated simulation demonstrated that the viral dose/type, the diversity in transcriptional factors activation and the intercellular paracrine signaling could strikingly shape the heterogeneity of IFN expression. We further determined that the IFNβ and IFNλ1 induced diverse dynamics of IFN-stimulated genes (ISGs) production. Collectively, our findings revealed the intracellular and intercellular mechanisms contributing to cell-to-cell variation in IFN induction, and further demonstrated the significant effects of IFN heterogeneity on antagonizing viruses.
Collapse
Affiliation(s)
- Chunmei Cai
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jie Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoqiang Sun
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | | | - Weihong Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
16
|
Abstract
Multipartite viruses have one of the most puzzling genetic organizations found in living organisms. These viruses have several genome segments, each containing only a part of the genetic information, and each individually encapsidated into a separate virus particle. While countless studies on molecular and cellular mechanisms of the infection cycle of multipartite viruses are available, just as for other virus types, very seldom is their lifestyle questioned at the viral system level. Moreover, the rare available “system” studies are purely theoretical, and their predictions on the putative benefit/cost balance of this peculiar genetic organization have not received experimental support. In light of ongoing progresses in general virology, we here challenge the current hypotheses explaining the evolutionary success of multipartite viruses and emphasize their shortcomings. We also discuss alternative ideas and research avenues to be explored in the future in order to solve the long-standing mystery of how viral systems composed of interdependent but physically separated information units can actually be functional.
Collapse
|
17
|
Baele G, Suchard MA, Bielejec F, Lemey P. Bayesian codon substitution modelling to identify sources of pathogen evolutionary rate variation. Microb Genom 2016; 2:e000057. [PMID: 28348854 PMCID: PMC5320644 DOI: 10.1099/mgen.0.000057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/24/2016] [Indexed: 11/29/2022] Open
Abstract
Phylodynamic reconstructions rely on a measurable molecular footprint of epidemic processes in pathogen genomes. Identifying the factors that govern the tempo and mode by which these processes leave a footprint in pathogen genomes represents an important goal towards understanding infectious disease evolution. Discriminating between synonymous and non-synonymous substitution rates is crucial for testing hypotheses about the sources of evolutionary rate variation. Here, we implement a codon substitution model in a Bayesian statistical framework to estimate absolute rates of synonymous and non-synonymous substitution in unknown evolutionary histories. To demonstrate how this model can provide critical insights into pathogen evolutionary dynamics, we adopt hierarchical phylogenetic modelling with fixed effects and apply it to two viral examples. Using within-host HIV-1 data from patients with different host genetic background and different disease progression rates, we show that viral populations undergo faster absolute synonymous substitution rates in patients with faster disease progression, probably reflecting faster replication rates. We also re-analyse rabies data from different bat species in the Americas to demonstrate that climate predicts absolute synonymous substitution rates, which can be attributed to climate-associated bat activity and viral transmission dynamics. In conclusion, our model to estimate absolute rates of synonymous and non-synonymous substitution can provide a powerful approach to investigate how host ecology can shape the tempo of pathogen evolution.
Collapse
Affiliation(s)
- Guy Baele
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Marc A Suchard
- 2Departments of Biomathematics, Human Genetics and Biostatistics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Filip Bielejec
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philippe Lemey
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Abstract
Despite having very limited coding capacity, RNA viruses are able to withstand challenge of antiviral drugs, cause epidemics in previously exposed human populations, and, in some cases, infect multiple host species. They are able to achieve this by virtue of their ability to multiply very rapidly, coupled with their extraordinary degree of genetic heterogeneity. RNA viruses exist not as single genotypes, but as a swarm of related variants, and this genomic diversity is an essential feature of their biology. RNA viruses have a variety of mechanisms that act in combination to determine their genetic heterogeneity. These include polymerase fidelity, error-mitigation mechanisms, genomic recombination, and different modes of genome replication. RNA viruses can vary in their ability to tolerate mutations, or “genetic robustness,” and several factors contribute to this. Finally, there is evidence that some RNA viruses exist close to a threshold where polymerase error rate has evolved to maximize the possible sequence space available, while avoiding the accumulation of a lethal load of deleterious mutations. We speculate that different viruses have evolved different error rates to complement the different “life-styles” they possess.
Collapse
Affiliation(s)
- J.N. Barr
- University of Leeds, Leeds, United Kingdom
| | - R. Fearns
- Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
19
|
Peck KM, Chan CHS, Tanaka MM. Connecting within-host dynamics to the rate of viral molecular evolution. Virus Evol 2015; 1:vev013. [PMID: 27774285 PMCID: PMC5014490 DOI: 10.1093/ve/vev013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Viruses evolve rapidly, providing a unique system for understanding the processes that influence rates of molecular evolution. Neutral theory posits that the evolutionary rate increases linearly with the mutation rate. The occurrence of deleterious mutations causes this relationship to break down at high mutation rates. Previous studies have identified this as an important phenomenon, particularly for RNA viruses which can mutate at rates near the extinction threshold. We propose that in addition to mutation dynamics, viral within-host dynamics can also affect the between-host evolutionary rate. We present an analytical model that predicts the neutral evolution rate for viruses as a function of both within-host parameters and deleterious mutations. To examine the effect of more detailed aspects of the virus life cycle, we also present a computational model that simulates acute virus evolution using target cell-limited dynamics. Using influenza A virus as a case study, we find that our simulation model can predict empirical rates of evolution better than a model lacking within-host details. The analytical model does not perform as well as the simulation model but shows how the within-host basic reproductive number influences evolutionary rates. These findings lend support to the idea that the mutation rate alone is not sufficient to predict the evolutionary rate in viruses, instead calling for improved models that account for viral within-host dynamics.
Collapse
Affiliation(s)
- Kayla M Peck
- Department of Biology, University of North Carolina - Chapel Hill
| | - Carmen H S Chan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia and; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia and; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Simmonds P. Methods for virus classification and the challenge of incorporating metagenomic sequence data. J Gen Virol 2015; 96:1193-1206. [PMID: 26068186 DOI: 10.1099/jgv.0.000016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The division of viruses into orders, families, genera and species provides a classification framework that seeks to organize and make sense of the diversity of viruses infecting animals, plants and bacteria. Classifications are based on similarities in genome structure and organization, the presence of homologous genes and sequence motifs and at lower levels such as species, host range, nucleotide and antigenic relatedness and epidemiology. Classification below the level of family must also be consistent with phylogeny and virus evolutionary histories. Recently developed methods such as PASC, DEMaRC and NVR offer alternative strategies for genus and species assignments that are based purely on degrees of divergence between genome sequences. They offer the possibility of automating classification of the vast number of novel virus sequences being generated by next-generation metagenomic sequencing. However, distance-based methods struggle to deal with the complex evolutionary history of virus genomes that are shuffled by recombination and reassortment, and where taxonomic lineages evolve at different rates. In biological terms, classifications based on sequence distances alone are also arbitrary whereas the current system of virus taxonomy is of utility precisely because it is primarily based upon phenotypic characteristics. However, a separate system is clearly needed by which virus variants that lack biological information might be incorporated into the ICTV classification even if based solely on sequence relationships to existing taxa. For these, simplified taxonomic proposals and naming conventions represent a practical way to expand the existing virus classification and catalogue our rapidly increasing knowledge of virus diversity.
Collapse
Affiliation(s)
- Peter Simmonds
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| |
Collapse
|
21
|
Simmonds P. Methods for virus classification and the challenge of incorporating metagenomic sequence data. J Gen Virol 2015. [DOI: 10.1099/vir.0.000016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
22
|
Rima BK. Nucleotide sequence conservation in paramyxoviruses; the concept of codon constellation. J Gen Virol 2015; 96:939-955. [DOI: 10.1099/vir.0.070789-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Bert K. Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
23
|
Duchêne S, Holmes EC, Ho SYW. Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc Biol Sci 2015; 281:rspb.2014.0732. [PMID: 24850916 DOI: 10.1098/rspb.2014.0732] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Time-scales of viral evolution and emergence have been studied widely, but are often poorly understood. Molecular analyses of viral evolutionary time-scales generally rely on estimates of rates of nucleotide substitution, which vary by several orders of magnitude depending on the timeframe of measurement. We analysed data from all major groups of viruses and found a strong negative relationship between estimates of nucleotide substitution rate and evolutionary timescale. Strikingly, this relationship was upheld both within and among diverse groups of viruses. A detailed case study of primate lentiviruses revealed that the combined effects of sequence saturation and purifying selection can explain this time-dependent pattern of rate variation. Therefore, our analyses show that studies of evolutionary time-scales in viruses require a reconsideration of substitution rates as a dynamic, rather than as a static, feature of molecular evolution. Improved modelling of viral evolutionary rates has the potential to change our understanding of virus origins.
Collapse
Affiliation(s)
- Sebastián Duchêne
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Edward C Holmes
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
24
|
Taylor DJ, Ballinger MJ, Zhan JJ, Hanzly LE, Bruenn JA. Evidence that ebolaviruses and cuevaviruses have been diverging from marburgviruses since the Miocene. PeerJ 2014; 2:e556. [PMID: 25237605 PMCID: PMC4157239 DOI: 10.7717/peerj.556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/12/2014] [Indexed: 01/10/2023] Open
Abstract
An understanding of the timescale of evolution is critical for comparative virology but remains elusive for many RNA viruses. Age estimates based on mutation rates can severely underestimate divergences for ancient viral genes that are evolving under strong purifying selection. Paleoviral dating, however, can provide minimum age estimates for ancient divergence, but few orthologous paleoviruses are known within clades of extant viruses. For example, ebolaviruses and marburgviruses are well-studied mammalian pathogens, but their comparative biology is difficult to interpret because the existing estimates of divergence are controversial. Here we provide evidence that paleoviral elements of two genes (ebolavirus-like VP35 and NP) in cricetid rodent genomes originated after the divergence of ebolaviruses and cuevaviruses from marburgviruses. We provide evidence of orthology by identifying common paleoviral insertion sites among the rodent genomes. Our findings indicate that ebolaviruses and cuevaviruses have been diverging from marburgviruses since the early Miocene.
Collapse
Affiliation(s)
- Derek J. Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Matthew J. Ballinger
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jack J. Zhan
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Laura E. Hanzly
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jeremy A. Bruenn
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
25
|
Abstract
ABSTRACT: It is well established that RNA viruses show extremely high mutation rates, but less attention has been paid to the fact that their mutation rates also vary strongly, from 10-6 to 10-4 substitutions per nucleotide per cell infection. The causes explaining this variability are still poorly understood, but candidate factors are the viral genome size and polarity, host-specific gene expression patterns, or the intracellular environment. Differences between animal and plant viruses, or between arthropod-borne and directly transmitted viruses have also been postulated. Finally, RNA viruses may be able to regulate the rate at which new mutations spread in the population by modifying features of the viral infection cycle, such as lysis time.
Collapse
Affiliation(s)
- Marine Combe
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Valencia, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Valencia, Spain
- Departament de Genetica, Universitat de Valencia, Valencia, Spain
| |
Collapse
|