1
|
Amaya Romero JE, Chenal C, Ben Chehida Y, Miles A, Clarkson CS, Pedergnana V, Wertheim B, Fontaine MC. Mitochondrial Variation in Anopheles gambiae and Anopheles coluzzii: Phylogeographic Legacy and Mitonuclear Associations With Metabolic Resistance to Pathogens and Insecticides. Genome Biol Evol 2024; 16:evae172. [PMID: 39226386 PMCID: PMC11370803 DOI: 10.1093/gbe/evae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Mitochondrial DNA has been a popular marker in phylogeography, phylogeny, and molecular ecology, but its complex evolution is increasingly recognized. Here, we investigated mitochondrial DNA variation in Anopheles gambiae and Anopheles coluzzii, in relation to other species in the Anopheles gambiae complex, by assembling the mitogenomes of 1,219 mosquitoes across Africa. The mitochondrial DNA phylogeny of the Anopheles gambiae complex was consistent with previously reported highly reticulated evolutionary history, revealing important discordances with the species tree. The three most widespread species (An. gambiae, An. coluzzii, and Anopheles arabiensis), known for extensive historical introgression, could not be discriminated based on mitogenomes. Furthermore, a monophyletic clustering of the three saltwater-tolerant species (Anopheles merus, Anopheles melas, and Anopheles bwambae) in the Anopheles gambiae complex also suggested that introgression and possibly selection shaped mitochondrial DNA evolution. Mitochondrial DNA variation in An. gambiae and An. coluzzii across Africa revealed significant partitioning among populations and species. A peculiar mitochondrial DNA lineage found predominantly in An. coluzzii and in the hybrid taxon of the African "far-west" exhibited divergence comparable to the interspecies divergence in the Anopheles gambiae complex, with a geographic distribution matching closely An. coluzzii's geographic range. This phylogeographic relict of the An. coluzzii and An. gambiae split was associated with population and species structure, but not with the rare Wolbachia occurrence. The lineage was significantly associated with single nucleotide polymorphisms in the nuclear genome, particularly in genes associated with pathogen and insecticide resistance. These findings underline potential mitonuclear coevolution history and the role played by mitochondria in shaping metabolic responses to pathogens and insecticides in Anopheles.
Collapse
Affiliation(s)
- Jorge E Amaya Romero
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Clothilde Chenal
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
- Institut des Science de l’Évolution de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Yacine Ben Chehida
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
2
|
Tian Z, Guo X, Michaud JP, Zha M, Zhu L, Liu X, Liu X. The gut microbiome of Helicoverpa armigera enhances immune response to baculovirus infection via suppression of Duox-mediated reactive oxygen species. PEST MANAGEMENT SCIENCE 2023; 79:3611-3621. [PMID: 37184157 DOI: 10.1002/ps.7546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Baculoviruses such as Helicoverpa armigera nucleopolyhedrovirus (HearNPV) infect their lepidopteran hosts via the larval midgut where they interact with host immune responses and gut microbiota. Here we demonstrate that gut microbiota proliferating in response to HearNPV infection promote larval immune responses which impede the infection process. RESULTS The microbial load of the larval midgut increased following HearNPV infection, due primarily to increases in Enterococcus spp., whereas most other bacterial genera declined, with Firmicutes replacing Proteobacteria as the dominant phylum. Injection of abdominal prolegs of infected larvae with H2 O2 promoted viral infection, diminished microbial abundance, and accelerated larval death, mimicking the effects of HearNPV infection, which up-regulated dual oxidase (Duox) expression, increasing H2 O2 levels in the midgut. Knockdown of Duox with RNAi reduced H2 O2 production in the guts of infected larvae, increased bacterial loads, decreased viral replication, and improved larval survival. Germ-free larvae were more susceptible to HearNPV than control larvae, exhibiting greater expression of Duox, higher levels of H2 O2 , and lower survival. Replenishment of gut bacteria in germ-free larvae restored the base-line immunity to HearNPV observed in normal larvae. Enterococcus spp., Levilactobacillus brevis, and Lactobacillus sp. bacteria were isolated and implicated in immunity restoration via replenishment in germ-free larvae. CONCLUSION These findings illuminate how gut microbiota play important roles in larval defense against oral baculovirus infection, and suggest novel avenues of investigation to enhance the efficacy of baculoviruses and improve control of lepidopteran pests. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xi Guo
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS, USA
| | - Meng Zha
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Zheng R, Wang Q, Wu R, Paradkar PN, Hoffmann AA, Wang GH. Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens. THE ISME JOURNAL 2023; 17:1143-1152. [PMID: 37231184 PMCID: PMC10356850 DOI: 10.1038/s41396-023-01436-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Mosquito-borne diseases like dengue and malaria cause a significant global health burden. Unfortunately, current insecticides and environmental control strategies aimed at the vectors of these diseases are only moderately effective in decreasing disease burden. Understanding and manipulating the interaction between the mosquito holobiont (i.e., mosquitoes and their resident microbiota) and the pathogens transmitted by these mosquitoes to humans and animals could help in developing new disease control strategies. Different microorganisms found in the mosquito's microbiota affect traits related to mosquito survival, development, and reproduction. Here, we review the physiological effects of essential microbes on their mosquito hosts; the interactions between the mosquito holobiont and mosquito-borne pathogen (MBP) infections, including microbiota-induced host immune activation and Wolbachia-mediated pathogen blocking (PB); and the effects of environmental factors and host regulation on the composition of the microbiota. Finally, we briefly overview future directions in holobiont studies, and how these may lead to new effective control strategies against mosquitoes and their transmitted diseases.
Collapse
Affiliation(s)
- Ronger Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Runbiao Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Foo A, Cerdeira L, Hughes GL, Heinz E. Recovery of metagenomic data from the Aedes aegypti microbiome using a reproducible snakemake pipeline: MINUUR. Wellcome Open Res 2023; 8:131. [PMID: 37577055 PMCID: PMC10412942 DOI: 10.12688/wellcomeopenres.19155.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Ongoing research of the mosquito microbiome aims to uncover novel strategies to reduce pathogen transmission. Sequencing costs, especially for metagenomics, are however still significant. A resource that is increasingly used to gain insights into host-associated microbiomes is the large amount of publicly available genomic data based on whole organisms like mosquitoes, which includes sequencing reads of the host-associated microbes and provides the opportunity to gain additional value from these initially host-focused sequencing projects. Methods: To analyse non-host reads from existing genomic data, we developed a snakemake workflow called MINUUR (Microbial INsights Using Unmapped Reads). Within MINUUR, reads derived from the host-associated microbiome were extracted and characterised using taxonomic classifications and metagenome assembly followed by binning and quality assessment. We applied this pipeline to five publicly available Aedes aegypti genomic datasets, consisting of 62 samples with a broad range of sequencing depths. Results: We demonstrate that MINUUR recovers previously identified phyla and genera and is able to extract bacterial metagenome assembled genomes (MAGs) associated to the microbiome. Of these MAGS, 42 are high-quality representatives with >90% completeness and <5% contamination. These MAGs improve the genomic representation of the mosquito microbiome and can be used to facilitate genomic investigation of key genes of interest. Furthermore, we show that samples with a high number of KRAKEN2 assigned reads produce more MAGs. Conclusions: Our metagenomics workflow, MINUUR, was applied to a range of Aedes aegypti genomic samples to characterise microbiome-associated reads. We confirm the presence of key mosquito-associated symbionts that have previously been identified in other studies and recovered high-quality bacterial MAGs. In addition, MINUUR and its associated documentation are freely available on GitHub and provide researchers with a convenient workflow to investigate microbiome data included in the sequencing data for any applicable host genome of interest.
Collapse
Affiliation(s)
- Aidan Foo
- Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Louise Cerdeira
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Grant L. Hughes
- Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Eva Heinz
- Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
5
|
Li Y, Chang L, Xu K, Zhang S, Gao F, Fan Y. Research Progresses on the Function and Detection Methods of Insect Gut Microbes. Microorganisms 2023; 11:1208. [PMID: 37317182 DOI: 10.3390/microorganisms11051208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The insect gut is home to an extensive array of microbes that play a crucial role in the digestion and absorption of nutrients, as well as in the protection against pathogenic microorganisms. The variety of these gut microbes is impacted by factors such as age, diet, pesticides, antibiotics, sex, and caste. Increasing evidence indicates that disturbances in the gut microbiota can lead to compromised insect health, and that its diversity has a far-reaching impact on the host's health. In recent years, the use of molecular biology techniques to conduct rapid, qualitative, and quantitative research on the host intestinal microbial diversity has become a major focus, thanks to the advancement of metagenomics and bioinformatics technologies. This paper reviews the main functions, influencing factors, and detection methods of insect gut microbes, in order to provide a reference and theoretical basis for better research utilization of gut microbes and management of harmful insects.
Collapse
Affiliation(s)
- Yazi Li
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Liyun Chang
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Ke Xu
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Shuhong Zhang
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Fengju Gao
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Yongshan Fan
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| |
Collapse
|
6
|
Fofana A, Yerbanga RS, Bilgo E, Ouedraogo GA, Gendrin M, Ouedraogo JB. The Strategy of Paratransgenesis for the Control of Malaria Transmission. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.867104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insect-borne diseases are responsible for important burdens on health worldwide particularly in Africa. Malaria alone causes close to half a million deaths every year, mostly in developing, tropical and subtropical countries, with 94% of the global deaths in 2019 occurring in the WHO African region. With several decades, vector control measures have been fundamental to fight against malaria. Considering the spread of resistance to insecticides in mosquitoes and to drugs in parasites, the need for novel strategies to inhibit the transmission of the disease is pressing. In recent years, several studies have focused on the interaction of malaria parasites, bacteria and their insect vectors. Their findings suggested that the microbiota of mosquitoes could be used to block Plasmodium transmission. A strategy, termed paratransgenesis, aims to interfere with the development of malaria parasites within their vectors through genetically-modified microbes, which produce antimalarial effectors inside the insect host. Here we review the progress of the paratransgenesis approach. We provide a historical perspective and then focus on the choice of microbial strains and on genetic engineering strategies. We finally describe the different steps from laboratory design to field implementation to fight against malaria.
Collapse
|
7
|
Moustafa MAM, Mohamed WMA, Lau AC, Chatanga E, Qiu Y, Hayashi N, Naguib D, Sato K, Takano A, Mastuno K, Nonaka N, Taylor D, Kawabata H, Nakao R. Novel symbionts and potential human pathogens excavated from argasid tick microbiomes that are shaped by dual or single symbiosis. Comput Struct Biotechnol J 2022; 20:1979-1992. [PMID: 35521555 PMCID: PMC9062450 DOI: 10.1016/j.csbj.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022] Open
Abstract
Research on vector-associated microbiomes has been expanding due to increasing emergence of vector-borne pathogens and awareness of the importance of symbionts in the vector physiology. However, little is known about microbiomes of argasid (or soft-bodied) ticks due to limited access to specimens. We collected four argasid species (Argas japonicus, Carios vespertilionis, Ornithodoros capensis, and Ornithodoros sawaii) from the nests or burrows of their vertebrate hosts. One laboratory-reared argasid species (Ornithodoros moubata) was also included. Attempts were then made to isolate and characterize potential symbionts/pathogens using arthropod cell lines. Microbial community structure was distinct for each tick species. Coxiella was detected as the predominant symbiont in four tick species where dual symbiosis between Coxiella and Rickettsia or Coxiella and Francisella was observed in C. vespertilionis and O. moubata, respectively. Of note, A. japonicus lacked Coxiella and instead had Occidentia massiliensis and Thiotrichales as alternative symbionts. Our study found strong correlation between tick species and life stage. We successfully isolated Oc. massiliensis and characterized potential pathogens of genera Ehrlichia and Borrelia. The results suggest that there is no consistent trend of microbiomes in relation to tick life stage that fit all tick species and that the final interpretation should be related to the balance between environmental bacterial exposure and endosymbiont ecology. Nevertheless, our findings provide insights on the ecology of tick microbiomes and basis for future investigations on the capacity of argasid ticks to carry novel pathogens with public health importance.
Collapse
|
8
|
Yaméogo KB, Yerbanga RS, Ouattara SB, Yao FA, Lefèvre T, Zongo I, Nikièma F, Compaoré YD, Tinto H, Chandramohan D, Greenwood B, Belem AMG, Cohuet A, Ouédraogo JB. Effect of seasonal malaria chemoprevention plus azithromycin on Plasmodium falciparum transmission: gametocyte infectivity and mosquito fitness. Malar J 2021; 20:326. [PMID: 34315475 PMCID: PMC8314489 DOI: 10.1186/s12936-021-03855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022] Open
Abstract
Background Seasonal malaria chemoprevention (SMC) consists of administration of sulfadoxine-pyrimethamine (SP) + amodiaquine (AQ) at monthly intervals to children during the malaria transmission period. Whether the addition of azithromycin (AZ) to SMC could potentiate the benefit of the intervention was tested through a double-blind, randomized, placebo-controlled trial. The effect of SMC and the addition of AZ, on malaria transmission and on the life history traits of Anopheles gambiae mosquitoes have been investigated. Methods The study included 438 children randomly selected from among participants in the SMC + AZ trial and 198 children from the same area who did not receive chemoprevention. For each participant in the SMC + AZ trial, blood was collected 14 to 21 days post treatment, examined for the presence of malaria sexual and asexual stages and provided as a blood meal to An. gambiae females using a direct membrane-feeding assay. Results The SMC treatment, with or without AZ, significantly reduced the prevalence of asexual Plasmodium falciparum (LRT X22 = 69, P < 0.0001) and the gametocyte prevalence (LRT X22 = 54, P < 0.0001). In addition, the proportion of infectious feeds (LRT X22 = 61, P < 0.0001) and the prevalence of oocysts among exposed mosquitoes (LRT X22 = 22.8, P < 0.001) was reduced when mosquitoes were fed on blood from treated children compared to untreated controls. The addition of AZ to SPAQ was associated with an increased proportion of infectious feeds (LRT X21 = 5.2, P = 0.02), suggesting a significant effect of AZ on gametocyte infectivity. There was a slight negative effect of SPAQ and SPAQ + AZ on mosquito survival compared to mosquitoes fed with blood from control children (LRTX22 = 330, P < 0.0001). Conclusion This study demonstrates that SMC may contribute to a reduction in human to mosquito transmission of P. falciparum, and the reduced mosquito longevity observed for females fed on treated blood may increase the benefit of this intervention in control of malaria. The addition of AZ to SPAQ in SMC appeared to enhance the infectivity of gametocytes providing further evidence that this combination is not an appropriate intervention.
Collapse
Affiliation(s)
- Koudraogo Bienvenue Yaméogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso. .,Université Nazi Boni, Bobo-Dioulasso, Burkina Faso.
| | - Rakiswendé Serge Yerbanga
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Institut des Sciences et Techniques (INSTech Bobo), BP2779, Bobo-Dioulasso, Burkina Faso
| | | | - Franck A Yao
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France.,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso.,Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Frederic Nikièma
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | | | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | | | | | | | - Anna Cohuet
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France.,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Jean Bosco Ouédraogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Institut des Sciences et Techniques (INSTech Bobo), BP2779, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
9
|
Steven B, Hyde J, LaReau JC, Brackney DE. The Axenic and Gnotobiotic Mosquito: Emerging Models for Microbiome Host Interactions. Front Microbiol 2021; 12:714222. [PMID: 34322111 PMCID: PMC8312643 DOI: 10.3389/fmicb.2021.714222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023] Open
Abstract
The increasing availability of modern research tools has enabled a revolution in studies of non-model organisms. Yet, one aspect that remains difficult or impossible to control in many model and most non-model organisms is the presence and composition of the host-associated microbiota or the microbiome. In this review, we explore the development of axenic (microbe-free) mosquito models and what these systems reveal about the role of the microbiome in mosquito biology. Additionally, the axenic host is a blank template on which a microbiome of known composition can be introduced, also known as a gnotobiotic organism. Finally, we identify a "most wanted" list of common mosquito microbiome members that show the greatest potential to influence host phenotypes. We propose that these are high-value targets to be employed in future gnotobiotic studies. The use of axenic and gnotobiotic organisms will transition the microbiome into another experimental variable that can be manipulated and controlled. Through these efforts, the mosquito will be a true model for examining host microbiome interactions.
Collapse
Affiliation(s)
- Blaire Steven
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Josephine Hyde
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Jacquelyn C. LaReau
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Doug E. Brackney
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| |
Collapse
|
10
|
E Silva B, Matsena Zingoni Z, Koekemoer LL, Dahan-Moss YL. Microbiota identified from preserved Anopheles. Malar J 2021; 20:230. [PMID: 34022891 PMCID: PMC8141131 DOI: 10.1186/s12936-021-03754-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Mosquito species from the Anopheles gambiae complex and the Anopheles funestus group are dominant African malaria vectors. Mosquito microbiota play vital roles in physiology and vector competence. Recent research has focused on investigating the mosquito microbiota, especially in wild populations. Wild mosquitoes are preserved and transported to a laboratory for analyses. Thus far, microbial characterization post-preservation has been investigated in only Aedes vexans and Culex pipiens. Investigating the efficacy of cost-effective preservatives has also been limited to AllProtect reagent, ethanol and nucleic acid preservation buffer. This study characterized the microbiota of African Anopheles vectors: Anopheles arabiensis (member of the An. gambiae complex) and An. funestus (member of the An. funestus group), preserved on silica desiccant and RNAlater® solution. Methods Microbial composition and diversity were characterized using culture-dependent (midgut dissections, culturomics, MALDI-TOF MS) and culture-independent techniques (abdominal dissections, DNA extraction, next-generation sequencing) from laboratory (colonized) and field-collected mosquitoes. Colonized mosquitoes were either fresh (non-preserved) or preserved for 4 and 12 weeks on silica or in RNAlater®. Microbiota were also characterized from field-collected An. arabiensis preserved on silica for 8, 12 and 16 weeks. Results Elizabethkingia anophelis and Serratia oryzae were common between both vector species, while Enterobacter cloacae and Staphylococcus epidermidis were specific to females and males, respectively. Microbial diversity was not influenced by sex, condition (fresh or preserved), preservative, or preservation time-period; however, the type of bacterial identification technique affected all microbial diversity indices. Conclusions This study broadly characterized the microbiota of An. arabiensis and An. funestus. Silica- and RNAlater®-preservation were appropriate when paired with culture-dependent and culture-independent techniques, respectively. These results broaden the selection of cost-effective methods available for handling vector samples for downstream microbial analyses. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03754-7.
Collapse
Affiliation(s)
- Bianca E Silva
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Zvifadzo Matsena Zingoni
- Division of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Parktown, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Yael L Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
11
|
Ferdous Z, Fuchs S, Behrends V, Trasanidis N, Waterhouse RM, Vlachou D, Christophides GK. Anopheles coluzzii stearoyl-CoA desaturase is essential for adult female survival and reproduction upon blood feeding. PLoS Pathog 2021; 17:e1009486. [PMID: 34015060 PMCID: PMC8171932 DOI: 10.1371/journal.ppat.1009486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 06/02/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Vitellogenesis and oocyte maturation require anautogenous female Anopheles mosquitoes to obtain a bloodmeal from a vertebrate host. The bloodmeal is rich in proteins that are readily broken down into amino acids in the midgut lumen and absorbed by the midgut epithelial cells where they are converted into lipids and then transported to other tissues including ovaries. The stearoyl-CoA desaturase (SCD) plays a pivotal role in this process by converting saturated (SFAs) to unsaturated (UFAs) fatty acids; the latter being essential for maintaining cell membrane fluidity amongst other housekeeping functions. Here, we report the functional and phenotypic characterization of SCD1 in the malaria vector mosquito Anopheles coluzzii. We show that RNA interference (RNAi) silencing of SCD1 and administration of sterculic acid (SA), a small molecule inhibitor of SCD1, significantly impact on the survival and reproduction of female mosquitoes following blood feeding. Microscopic observations reveal that the mosquito thorax is quickly filled with blood, a phenomenon likely caused by the collapse of midgut epithelial cell membranes, and that epithelial cells are depleted of lipid droplets and oocytes fail to mature. Transcriptional profiling shows that genes involved in protein, lipid and carbohydrate metabolism and immunity-related genes are the most affected by SCD1 knock down (KD) in blood-fed mosquitoes. Metabolic profiling reveals that these mosquitoes exhibit increased amounts of saturated fatty acids and TCA cycle intermediates, highlighting the biochemical framework by which the SCD1 KD phenotype manifests as a result of a detrimental metabolic syndrome. Accumulation of SFAs is also the likely cause of the potent immune response observed in the absence of infection, which resembles an auto-inflammatory condition. These data provide insights into mosquito bloodmeal metabolism and lipid homeostasis and could inform efforts to develop novel interventions against mosquito-borne diseases. Female mosquitoes can become infected with malaria parasites upon ingestion of blood from an infected person and can transmit the disease when they bite another person some days later. The bloodmeal is rich in proteins which female mosquitoes use to develop their eggs after converting them first to saturated and then to unsaturated fatty acids inside their gut cells. Here, we present the characterization of the enzyme that mosquitoes use to convert saturated to unsaturated fatty acids and show that when this enzyme is eliminated or inhibited mosquitoes cannot produce eggs and die soon after they feed on blood. The mosquito death appears to be primarily associated with the collapse of their gut epithelial barrier due to the loss of cell membrane integrity, leading to their inner body cavity being filled with the ingested blood. These mosquitoes also suffer from an acute and detrimental auto-inflammatory condition due to mounting of a potent immune response in the absence of any infection. We conclude that this enzyme and the mechanism of converting blood-derived proteins to unsaturated fatty acids as a whole can be a good target of interventions aiming at limiting the mosquito abundance and blocking malaria transmission.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Volker Behrends
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Health Science Research Centre, University of Roehampton, London, United Kingdom
| | - Nikolaos Trasanidis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Dina Vlachou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
12
|
Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. MICROBIOME 2021; 9:111. [PMID: 34006334 PMCID: PMC8132434 DOI: 10.1186/s40168-021-01073-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/07/2021] [Indexed: 05/09/2023]
Abstract
Microbiome research has gained considerable interest due to the emerging evidence of its impact on human and animal health. As in other animals, the gut-associated microbiota of mosquitoes affect host fitness and other phenotypes. It is now well established that microbes can alter pathogen transmission in mosquitoes, either positively or negatively, and avenues are being explored to exploit microbes for vector control. However, less attention has been paid to how microbiota affect phenotypes that impact vectorial capacity. Several mosquito and pathogen components, such as vector density, biting rate, survival, vector competence, and the pathogen extrinsic incubation period all influence pathogen transmission. Recent studies also indicate that mosquito gut-associated microbes can impact each of these components, and therefore ultimately modulate vectorial capacity. Promisingly, this expands the options available to exploit microbes for vector control by also targeting parameters that affect vectorial capacity. However, there are still many knowledge gaps regarding mosquito-microbe interactions that need to be addressed in order to exploit them efficiently. Here, we review current evidence of impacts of the microbiome on aspects of vectorial capacity, and we highlight likely opportunities for novel vector control strategies and areas where further studies are required. Video abstract.
Collapse
Affiliation(s)
- Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Serena Y Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
13
|
Gabrieli P, Caccia S, Varotto-Boccazzi I, Arnoldi I, Barbieri G, Comandatore F, Epis S. Mosquito Trilogy: Microbiota, Immunity and Pathogens, and Their Implications for the Control of Disease Transmission. Front Microbiol 2021; 12:630438. [PMID: 33889137 PMCID: PMC8056039 DOI: 10.3389/fmicb.2021.630438] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
In mosquitoes, the interaction between the gut microbiota, the immune system, and the pathogens that these insects transmit to humans and animals is regarded as a key component toward the development of control strategies, aimed at reducing the burden of severe diseases, such as malaria and dengue fever. Indeed, different microorganisms from the mosquito microbiota have been investigated for their ability to affect important traits of the biology of the host insect, related with its survival, development and reproduction. Furthermore, some microorganisms have been shown to modulate the immune response of mosquito females, significantly shaping their vector competence. Here, we will review current knowledge in this field, focusing on i) the complex interaction between the intestinal microbiota and mosquito females defenses, both in the gut and at humoral level; ii) how knowledge on these issues contributes to the development of novel and targeted strategies for the control of mosquito-borne diseases such as the use of paratransgenesis or taking advantage of the relationship between Wolbachia and mosquito hosts. We conclude by providing a brief overview of available knowledge on microbiota-immune system interplay in major insect vectors.
Collapse
Affiliation(s)
- Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy.,Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Irene Arnoldi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesco Comandatore
- "L. Sacco" Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
14
|
Dada N, Jupatanakul N, Minard G, Short SM, Akorli J, Villegas LM. Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium. MICROBIOME 2021; 9:36. [PMID: 33522965 PMCID: PMC7849159 DOI: 10.1186/s40168-020-00987-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 05/17/2023]
Abstract
In the past decade, there has been increasing interest in mosquito microbiome research, leading to large amounts of data on different mosquito species, with various underlying physiological characteristics, and from diverse geographical locations. However, guidelines and standardized methods for conducting mosquito microbiome research are lacking. To streamline methods in mosquito microbiome research and optimize data quality, reproducibility, and comparability, as well as facilitate data curation in a centralized location, we are establishing the Mosquito Microbiome Consortium, a collaborative initiative for the advancement of mosquito microbiome research. Our overall goal is to collectively work on unraveling the role of the mosquito microbiome in mosquito biology, while critically evaluating its potential for mosquito-borne disease control. This perspective serves to introduce the consortium and invite broader participation. It highlights the issues we view as most pressing to the community and proposes guidelines for conducting mosquito microbiome research. We focus on four broad areas in this piece: (1) sampling/experimental design for field, semi-field, or laboratory studies; (2) metadata collection; (3) sample processing, sequencing, and use of appropriate controls; and (4) data handling and analysis. We finally summarize current challenges and highlight future directions in mosquito microbiome research. We hope that this piece will spark discussions around this area of disease vector biology, as well as encourage careful considerations in the design and implementation of mosquito microbiome research. Video Abstract.
Collapse
Affiliation(s)
- Nsa Dada
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
| | - Natapong Jupatanakul
- Protein-Ligand Engineering and Molecular Biology Research Team, National Center for Genetic Engineering and Biotechnology, Khlong Neung, Thailand
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Sarah M Short
- Department of Entomology, The Ohio State University, Columbus, USA
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | |
Collapse
|
15
|
Chevalier FD, Diaz R, McDew-White M, Anderson TJC, Clec’h WL. The hemolymph of Biomphalaria snail vectors of schistosomiasis supports a diverse microbiome. Environ Microbiol 2020; 22:5450-5466. [PMID: 33169917 PMCID: PMC8023393 DOI: 10.1111/1462-2920.15303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Abstract
The microbiome - the microorganism community that is found on or within an organism's body - is increasingly recognized to shape many aspects of its host biology and is a key determinant of health and disease. Microbiomes modulate the capacity of insect disease vectors (mosquitoes, tsetse flies, sandflies) to transmit parasites and disease. We investigate the diversity and abundance of microorganisms within the hemolymph (i.e. blood) of Biomphalaria snails, the intermediate host for Schistosoma mansoni, using Illumina MiSeq sequencing of the bacterial 16S V4 rDNA. We sampled hemolymph from five snails from six different laboratory populations of B. glabrata and one population of B. alexandrina. We observed 279.84 ± 0.79 amplicon sequence variants per snail. There were significant differences in microbiome composition at the level of individual snails, snail populations and species. Snail microbiomes were dominated by Proteobacteria and Bacteroidetes while water microbiomes from snail tank were dominated by Actinobacteria. We investigated the absolute bacterial load using qPCR: hemolymph samples contained 2784 ± 339 bacteria/μl. We speculate that the microbiome may represent a critical, but unexplored intermediary in the snail-schistosome interaction as hemolymph is in very close contact with the parasite at each step of its development.
Collapse
Affiliation(s)
| | - Robbie Diaz
- Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78258
| | - Marina McDew-White
- Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78258
| | | | - Winka Le Clec’h
- Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78258
| |
Collapse
|
16
|
Dekmak AS, Yang X, Zu Dohna H, Buchon N, Osta MA. The Route of Infection Influences the Contribution of Key Immunity Genes to Antibacterial Defense in Anopheles gambiae. J Innate Immun 2020; 13:107-126. [PMID: 33207342 DOI: 10.1159/000511401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Insect systemic immune responses to bacterial infections have been mainly studied using microinjections, whereby the microbe is directly injected into the hemocoel. While this methodology has been instrumental in defining immune signaling pathways and enzymatic cascades in the hemolymph, it remains unclear whether and to what extent the contribution of systemic immune defenses to host microbial resistance varies if bacteria invade the hemolymph after crossing the midgut epithelium subsequent to an oral infection. Here, we address this question using the pathogenic Serratia marcescens (Sm) DB11 strain to establish systemic infections of the malaria vector Anopheles gambiae, either by septic Sm injections or by midgut crossing after feeding on Sm. Using functional genetic studies by RNAi, we report that the two humoral immune factors, thioester-containing protein 1 and C-type lectin 4, which play key roles in defense against Gram-negative bacterial infections, are essential for defense against systemic Sm infections established through injection, but they become dispensable when Sm infects the hemolymph following oral infection. Similar results were observed for the mosquito Rel2 pathway. Surprisingly, blocking phagocytosis by cytochalasin D treatment did not affect mosquito susceptibility to Sm infections established through either route. Transcriptomic analysis of mosquito midguts and abdomens by RNA-seq revealed that the transcriptional response in these tissues is more pronounced in response to feeding on Sm. Functional classification of differentially expressed transcripts identified metabolic genes as the most represented class in response to both routes of infection, while immune genes were poorly regulated in both routes. We also report that Sm oral infections are associated with significant downregulation of several immune genes belonging to different families, specifically the clip-domain serine protease family. In sum, our findings reveal that the route of infection not only alters the contribution of key immunity genes to host antimicrobial defense but is also associated with different transcriptional responses in midguts and abdomens, possibly reflecting different adaptive strategies of the host.
Collapse
Affiliation(s)
- Amira San Dekmak
- Biology Department, American University of Beirut, Beirut, Lebanon
| | - Xiaowei Yang
- Entomology Department, Cornell Institute for Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | | | - Nicolas Buchon
- Entomology Department, Cornell Institute for Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | - Mike A Osta
- Biology Department, American University of Beirut, Beirut, Lebanon,
| |
Collapse
|
17
|
Möhlmann TWR, Vogels CBF, Göertz GP, Pijlman GP, Ter Braak CJF, Te Beest DE, Hendriks M, Nijhuis EH, Warris S, Drolet BS, van Overbeek L, Koenraadt CJM. Impact of Gut Bacteria on the Infection and Transmission of Pathogenic Arboviruses by Biting Midges and Mosquitoes. MICROBIAL ECOLOGY 2020; 80:703-717. [PMID: 32462391 PMCID: PMC7476999 DOI: 10.1007/s00248-020-01517-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/23/2020] [Indexed: 05/10/2023]
Abstract
Tripartite interactions among insect vectors, midgut bacteria, and viruses may determine the ability of insects to transmit pathogenic arboviruses. Here, we investigated the impact of gut bacteria on the susceptibility of Culicoides nubeculosus and Culicoides sonorensis biting midges for Schmallenberg virus, and of Aedes aegypti mosquitoes for Zika and chikungunya viruses. Gut bacteria were manipulated by treating the adult insects with antibiotics. The gut bacterial communities were investigated using Illumina MiSeq sequencing of 16S rRNA, and susceptibility to arbovirus infection was tested by feeding insects with an infectious blood meal. Antibiotic treatment led to changes in gut bacteria for all insects. Interestingly, the gut bacterial composition of untreated Ae. aegypti and C. nubeculosus showed Asaia as the dominant genus, which was drastically reduced after antibiotic treatment. Furthermore, antibiotic treatment resulted in relatively more Delftia bacteria in both biting midge species, but not in mosquitoes. Antibiotic treatment and subsequent changes in gut bacterial communities were associated with a significant, 1.8-fold increased infection rate of C. nubeculosus with Schmallenberg virus, but not for C. sonorensis. We did not find any changes in infection rates for Ae. aegypti mosquitoes with Zika or chikungunya virus. We conclude that resident gut bacteria may dampen arbovirus transmission in biting midges, but not so in mosquitoes. Use of antimicrobial compounds at livestock farms might therefore have an unexpected contradictory effect on the health of animals, by increasing the transmission of viral pathogens by biting midges.
Collapse
Affiliation(s)
- Tim W R Möhlmann
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Chantal B F Vogels
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Giel P Göertz
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Cajo J F Ter Braak
- Biometris, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Dennis E Te Beest
- Biometris, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Marc Hendriks
- Biointeractions and Plant Health, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Els H Nijhuis
- Biointeractions and Plant Health, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Sven Warris
- Bioscience, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, USDA, Agricultural Research Service, 1515 College Ave, Manhattan, KS, USA
| | - Leo van Overbeek
- Biointeractions and Plant Health, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
18
|
Ganley JG, Pandey A, Sylvester K, Lu KY, Toro-Moreno M, Rütschlin S, Bradford JM, Champion CJ, Böttcher T, Xu J, Derbyshire ER. A Systematic Analysis of Mosquito-Microbiome Biosynthetic Gene Clusters Reveals Antimalarial Siderophores that Reduce Mosquito Reproduction Capacity. Cell Chem Biol 2020; 27:817-826.e5. [PMID: 32619453 DOI: 10.1016/j.chembiol.2020.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Advances in infectious disease control strategies through genetic manipulation of insect microbiomes have heightened interest in microbially produced small molecules within mosquitoes. Herein, 33 mosquito-associated bacterial genomes were mined and over 700 putative biosynthetic gene clusters (BGCs) were identified, 135 of which belong to known classes of BGCs. After an in-depth analysis of the 135 BGCs, iron-binding siderophores were chosen for further investigation due to their high abundance and well-characterized bioactivities. Through various metabolomic strategies, eight siderophore scaffolds were identified in six strains of mosquito-associated bacteria. Among these, serratiochelin A and pyochelin were found to reduce female Anopheles gambiae overall fecundity likely by lowering their blood-feeding rate. Serratiochelin A and pyochelin were further found to inhibit the Plasmodium parasite asexual blood and liver stages in vitro. Our work supplies a bioinformatic resource for future mosquito-microbiome studies and highlights an understudied source of bioactive small molecules.
Collapse
Affiliation(s)
- Jack G Ganley
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Ashmita Pandey
- Department of Biology, Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Sina Rütschlin
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | | | - Cody J Champion
- Department of Biology, Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Jiannong Xu
- Department of Biology, Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Wang X, Sun S, Yang X, Cheng J, Wei H, Li Z, Michaud JP, Liu X. Variability of Gut Microbiota Across the Life Cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front Microbiol 2020; 11:1366. [PMID: 32714300 PMCID: PMC7340173 DOI: 10.3389/fmicb.2020.01366] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Grapholita molesta, the oriental fruit moth, is a serious global pest of many Rosaceae fruit trees. Gut microorganisms play important roles in host nutrition, digestion, detoxification, and resistance to pathogens. However, there are few studies on the microbiota of G. molesta, particularly during metamorphosis. Here, the diversity of gut microbiota across the holometabolous life cycle of G. molesta was investigated comprehensively by Illumina high-throughput sequencing technology. The results showed that the microbiota associated with eggs had a high number of operational taxonomic units (OTUs). OTU and species richness in early-instar larvae (first and second instars) were significantly higher than those in late-instar larvae (third to fifth instars). Species richness increased again in male pupae and adults, apparently during the process of metamorphosis, compared to late-instar larvae. Proteobacteria and Firmicutes were the dominant phyla in the gut and underwent notable changes during metamorphosis. At the genus level, gut microbial community shifts from Gluconobacter and Pantoea in early-instar larvae to Enterococcus and Enterobacter in late-instar larvae and to Serratia in pupae were apparent, in concert with host developmental changes. Principal coordinate analysis (PCoA) and linear discriminant analysis effect size (LEfSe) analyses confirmed the differences in the structure of gut microbiota across different developmental stages. In addition, sex-dependent bacterial community differences were observed. Microbial interaction network analysis showed different correlations among intestinal microbes at each developmental stage of G. molesta, which may result from the different abundance and diversity of gut microbiota at different life stages. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that most functional prediction categories of gut microbiota were related to membrane transport, carbohydrate and amino acid metabolism, and DNA replication and repair. Bacteria isolated by conventional culture-dependent methods belonged to Proteobacteria, Firmicutes, and Actinobacteria, which was consistent with high-throughput sequencing results. In conclusion, exploration of gut bacterial community composition in the gut of G. molesta should shed light into deeper understanding about the intricate associations between microbiota and host and might provide clues to the development of novel pest management strategies against fruit borers.
Collapse
Affiliation(s)
- Xueli Wang
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shengjie Sun
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xuelin Yang
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hongshuang Wei
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, Hays, KS, United States
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Mitri C, Bischoff E, Belda Cuesta E, Volant S, Ghozlane A, Eiglmeier K, Holm I, Dieme C, Brito-Fravallo E, Guelbeogo WM, Sagnon N, Riehle MM, Vernick KD. Leucine-Rich Immune Factor APL1 Is Associated With Specific Modulation of Enteric Microbiome Taxa in the Asian Malaria Mosquito Anopheles stephensi. Front Microbiol 2020; 11:306. [PMID: 32174902 PMCID: PMC7054466 DOI: 10.3389/fmicb.2020.00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
The commensal gut microbiome is contained by the enteric epithelial barrier, but little is known about the degree of specificity of host immune barrier interactions for particular bacterial taxa. Here, we show that depletion of leucine-rich repeat immune factor APL1 in the Asian malaria mosquito Anopheles stephensi is associated with higher midgut abundance of just the family Enterobacteraceae, and not generalized dysbiosis of the microbiome. The effect is explained by the response of a narrow clade containing two main taxa related to Klebsiella and Cedecea. Analysis of field samples indicate that these two taxa are recurrent members of the wild Anopheles microbiome. Triangulation using sequence and functional data incriminated relatives of C. neteri and Cedecea NFIX57 as candidates for the Cedecea component, and K. michiganensis, K. oxytoca, and K.sp. LTGPAF-6F as candidates for the Klebsiella component. APL1 presence is associated with host ability to specifically constrain the abundance of a narrow microbiome clade of the Enterobacteraceae, and the immune factor may promote homeostasis of this clade in the enteric microbiome for host benefit.
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Eugeni Belda Cuesta
- Integromics Unit, Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
- CNRS USR 3756, Institut Pasteur, Paris, France
| | - Amine Ghozlane
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
- CNRS USR 3756, Institut Pasteur, Paris, France
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Inge Holm
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Constentin Dieme
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Emma Brito-Fravallo
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Wamdaogo M. Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - N’Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kenneth D. Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| |
Collapse
|
21
|
The environment and species affect gut bacteria composition in laboratory co-cultured Anopheles gambiae and Aedes albopictus mosquitoes. Sci Rep 2020; 10:3352. [PMID: 32099004 PMCID: PMC7042291 DOI: 10.1038/s41598-020-60075-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
The midgut microbiota of disease vectors plays a critical role in the successful transmission of human pathogens. The environment influences the microbiota composition; however, the relative mosquito-species contribution has not been rigorously disentangled from the environmental contribution to the microbiota structure. Also, the extent to which the microbiota of the adult sugar food source and larval water can predict that of the adult midgut and vice versa is not fully understood. To address these relationships, larvae and adults of Anopheles gambiae and Aedes albopictus were either reared separately or in a co-rearing system, whereby aquatic and adult stages of both species shared the larval water and sugar food source, respectively. Despite being reared under identical conditions, clear intra- and interspecies differences in midgut microbiota-composition were observed across seven cohorts, collected at different time points over a period of eight months. Fitting a linear model separately for each OTU in the mosquito midgut showed that two OTUs significantly differed between the midguts of the two mosquito species. We also show an effect for the sugar food source and larval water on the adult midgut microbiota. Our findings suggest that the mosquito midgut microbiota is highly dynamic and controlled by multiple factors.
Collapse
|
22
|
Ganley JG, D'Ambrosio HK, Shieh M, Derbyshire ER. Coculturing of Mosquito-Microbiome Bacteria Promotes Heme Degradation in Elizabethkingia anophelis. Chembiochem 2020; 21:1279-1284. [PMID: 31845464 DOI: 10.1002/cbic.201900675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/31/2022]
Abstract
Anopheles mosquito microbiomes are intriguing ecological niches. Within the gut, microbes adapt to oxidative stress due to heme and iron after blood meals. Although metagenomic sequencing has illuminated spatial and temporal fluxes of microbiome populations, limited data exist on microbial growth dynamics. Here, we analyze growth interactions between a dominant microbiome species, Elizabethkingia anophelis, and other Anopheles-associated bacteria. We find E. anophelis inhibits a Pseudomonas sp. via an antimicrobial-independent mechanism and observe biliverdins, heme degradation products, upregulated in cocultures. Purification and characterization of E. anophelis HemS demonstrates heme degradation, and we observe hemS expression is upregulated when cocultured with Pseudomonas sp. This study reveals a competitive microbial interaction between mosquito-associated bacteria and characterizes the stimulation of heme degradation in E. anophelis when grown with Pseudomonas sp.
Collapse
Affiliation(s)
- Jack G Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Hannah K D'Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Meg Shieh
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC, 27710, USA
| |
Collapse
|
23
|
Galeano-Castañeda Y, Urrea-Aguirre P, Piedrahita S, Bascuñán P, Correa MM. Composition and structure of the culturable gut bacterial communities in Anopheles albimanus from Colombia. PLoS One 2019; 14:e0225833. [PMID: 31790474 PMCID: PMC6886788 DOI: 10.1371/journal.pone.0225833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
The understanding of factors affecting the gut bacterial communities in malaria vectors is essential for the design of vector control interventions, such as those based on a paratransgenic approach. One of the requirements of this method is the availability of bacteria from the mosquito susceptible to culture. Thus, the aim of this study was to evaluate the composition and structure of the culturable gut bacterial communities in field mosquitoes Anopheles albimanus from Colombia, in addition to generate a bacterial collection to further analyze microbial functional activity. Gut bacteria were isolated from An. albimanus larvae and adult mosquitoes collected in localities of the Atlantic and Pacific Coasts. The bacterial isolates were grouped in 28 morphospecies that corresponded to three phyla, three classes, nine families and 14 genera. The larvae guts from San Antero (Atlantic Coast) and Buenaventura (Pacific Coast) shared the genera Bacillus and Lysinibacillus and in adults, Bacillus and Bacillus cereus Group were registered in both localities. Gut bacterial richness was higher in adults from the Pacific with respect to the Atlantic Coast, while larval richness was similar in samples of both coasts. The Shannon index indicated uniformity in morphospecies abundances in both localities. Finally, the characterization of morphospecies from the gut of Anopheles albimanus mosquitoes from Colombia by culture-dependent methods complemented with 16S rRNA gene sequencing allowed the definition, at a finer resolution, of the composition and structure of these microbial communities. In addition, the obtained bacterial culture collection will allow further evaluation of the microorganisms for their potential as biocontrol agents.
Collapse
Affiliation(s)
- Yadira Galeano-Castañeda
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Paula Urrea-Aguirre
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Stefani Piedrahita
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Priscila Bascuñán
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| |
Collapse
|
24
|
Gazzoni Araújo Gonçalves G, Feitosa APS, Portela-Júnior NC, de Oliveira CMF, de Lima Filho JL, Brayner FA, Alves LC. Use of MALDI-TOF MS to identify the culturable midgut microbiota of laboratory and wild mosquitoes. Acta Trop 2019; 200:105174. [PMID: 31525322 DOI: 10.1016/j.actatropica.2019.105174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023]
Abstract
Mosquitoes are responsible for transmitting many pathogens to humans and Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are important vectors in the world. The microbiota plays an important role in developmental studies that involve impacts on the biological cycle of mosquitoes and vector control strategies. In this study, the aim was to understand the environment plays in the microbiota culturable diversity of Aedes aegytpi, Aedes albopictus and Culex quinquefasciatus. Midgut of studied mosquitoes (laboratory-reared and wild) were dissected and analyzed by MALDI-TOF MS to identify the microbiota. Most of the bacteria identified in the microbiota of mosquitoes from the laboratory and field belong to the phylum Proteobacteria. We reported on the microbial diversity among the mosquito species studied where Cx. quinquefasciatus and Ae. albopictus show greater bacterial similarity. The genus Rahnella was present in all mosquito species studied, both in those from the laboratory and those from the wild. Bacillus, Ewingella, Microccocus, Klebsiella and Pantoea are genera was predominant among the mosquitoes studied. The difference of microbiota diversity between mosquitoes laboratory-reared and wild shows that the environment plays an important role in the acquisition of bacteria, mainly in Ae. aegypti and Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Gabriel Gazzoni Araújo Gonçalves
- Departamento de Parasitologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Av. Prof. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil; Laboratório de Imunopatologia Keiso Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego s/n - Cidade Universitária, Recife, PE, 52171-011, Brazil.
| | - Ana Paula Sampaio Feitosa
- Laboratório de Imunopatologia Keiso Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego s/n - Cidade Universitária, Recife, PE, 52171-011, Brazil
| | - Nairomberg Cavalcanti Portela-Júnior
- Laboratório de Imunopatologia Keiso Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego s/n - Cidade Universitária, Recife, PE, 52171-011, Brazil
| | - Cláudia Maria Fontes de Oliveira
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Av. Prof. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420 Brazil.
| | - José Luiz de Lima Filho
- Laboratório de Imunopatologia Keiso Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego s/n - Cidade Universitária, Recife, PE, 52171-011, Brazil
| | - Fábio André Brayner
- Departamento de Parasitologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Av. Prof. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil; Laboratório de Imunopatologia Keiso Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego s/n - Cidade Universitária, Recife, PE, 52171-011, Brazil
| | - Luiz Carlos Alves
- Departamento de Parasitologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Av. Prof. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil; Laboratório de Imunopatologia Keiso Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego s/n - Cidade Universitária, Recife, PE, 52171-011, Brazil.
| |
Collapse
|
25
|
Hegde S, Nilyanimit P, Kozlova E, Anderson ER, Narra HP, Sahni SK, Heinz E, Hughes GL. CRISPR/Cas9-mediated gene deletion of the ompA gene in symbiotic Cedecea neteri impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes. PLoS Negl Trop Dis 2019; 13:e0007883. [PMID: 31790395 PMCID: PMC6907859 DOI: 10.1371/journal.pntd.0007883] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 12/12/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Symbiotic bacteria are pervasive in mosquitoes and their presence can influence many host phenotypes that affect vectoral capacity. While it is evident that environmental and host genetic factors contribute in shaping the microbiome of mosquitoes, we have a poor understanding regarding how bacterial genetics affects colonization of the mosquito gut. The CRISPR/Cas9 gene editing system is a powerful tool to alter bacterial genomes facilitating investigations into host-microbe interactions but has yet to be applied to insect symbionts. METHODOLOGY/PRINCIPAL FINDINGS To investigate the role of bacterial genetic factors in mosquito biology and in colonization of mosquitoes we used CRISPR/Cas9 gene editing system to mutate the outer membrane protein A (ompA) gene of a Cedecea neteri symbiont isolated from Aedes mosquitoes. The ompA mutant had an impaired ability to form biofilms and poorly infected Ae. aegypti when reared in a mono-association under gnotobiotic conditions. In adult mosquitoes, the mutant had a significantly reduced infection prevalence compared to the wild type or complement strains, while no differences in prevalence were seen in larvae, suggesting genetic factors are particularly important for adult gut colonization. We also used the CRISPR/Cas9 system to integrate genes (antibiotic resistance and fluorescent markers) into the symbionts genome and demonstrated that these genes were functional in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE Our results shed insights into the role of ompA gene in host-microbe interactions in Ae. aegypti and confirm that CRISPR/Cas9 gene editing can be employed for genetic manipulation of non-model gut microbes. The ability to use this technology for site-specific integration of genes into the symbiont will facilitate the development of paratransgenic control strategies to interfere with arboviral pathogens such Chikungunya, dengue, Zika and Yellow fever viruses transmitted by Aedes mosquitoes.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Elena Kozlova
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Enyia R. Anderson
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hema P. Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sanjeev K. Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Eva Heinz
- Department of Vector Biology and Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
26
|
Janeh M, Osman D, Kambris Z. Comparative Analysis of Midgut Regeneration Capacity and Resistance to Oral Infection in Three Disease-Vector Mosquitoes. Sci Rep 2019; 9:14556. [PMID: 31601867 PMCID: PMC6787257 DOI: 10.1038/s41598-019-50994-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/23/2019] [Indexed: 11/09/2022] Open
Abstract
Mosquitoes acquire the pathogens they transmit through ingestion, and the insects' gut constitutes the first line of defense against invading pathogens. Indeed the gut epithelium acts as a physical barrier, activates local antimicrobial peptides production and triggers the systemic immune response. Consequently, gut epithelium is constantly confronted to stress and often suffers cellular damage. We have previously shown that regenerative cells are present in the guts of adult Aedes albopictus, and that chemical damage or bacterial infection leads to the proliferation of these regenerative cells in the midgut. In this study, we extended the analysis of gut cells response to stress to two other important disease vector mosquitoes: Culex pipiens and Anopheles gambiae. We fed mosquitoes on sucrose solutions or on sucrose supplemented with pathogenic bacteria or with damage-inducing chemicals. We also assayed the survival of mosquitoes following the ingestion of pathogenic bacteria. We found that in adult C. pipiens, dividing cells exist in the digestive tract and that these cells proliferate in the midgut after bacterial or chemical damage, similarly to what we previously observed in A. albopictus. In sharp contrast, we did not detect any mitotic cell in the midguts of A. gambiae mosquitoes, neither in normal situation nor after the induction of gut damage. In agreement with this observation, A. gambiae mosquitoes were more sensitive to oral bacterial infections compared to A. albopictus and C. pipiens. This work provides evidence that major differences in gut physiological responses exist between different mosquitoes. The presence of regenerative cells in the mosquito guts and their ability to multiply after gut damage affect the mosquito survival to oral infections, and is also likely to affect its vectorial capacity.
Collapse
Affiliation(s)
- Maria Janeh
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, 1300, Tripoli, Lebanon
| | - Zakaria Kambris
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
27
|
Guégan M, Minard G, Tran FH, Tran Van V, Dubost A, Valiente Moro C. Short-term impacts of anthropogenic stressors on Aedes albopictus mosquito vector microbiota. FEMS Microbiol Ecol 2019; 94:5101426. [PMID: 30239661 DOI: 10.1093/femsec/fiy188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022] Open
Abstract
Recent studies have highlighted the potential role of microbiota in the biology of the Aedes albopictus mosquito vector. This species is highly anthropogenic and exhibits marked ecological plasticity, with a resulting high potential to colonize a wide range of habitats-including anthropized areas-under various climatic conditions. We put forward the hypothesis that climate and anthropogenic activities, such as the use of antibiotics in agriculture and human medicine, might affect the mosquito-associated bacterial community. We thus studied the additive impact of a temperature decrease and antibiotic ingestion on the temporal dynamics of Ae. albopictus survival and its associated bacterial communities. The results showed no effects of disturbances on mosquito survival. However, short-term temperature impacts on bacterial diversity were observed, while both the community structure and bacterial diversity were affected by early antibiotic ingestion. The genera Elizabethkingia, Chryseobacterium and Wolbachia, as well as an unclassified member of the Bacteroidales order were particularly affected. Antibiotics negatively impacted Elizabethkingia abundance, while Chryseobacterium was completely eliminated following both disturbances, to the benefit of Wolbachia and the unclassified Bacteroidales species. These results generated fresh insight into the effects of climate and anthropogenic activities such as the use of antibiotics on mosquito microbiota.
Collapse
Affiliation(s)
- Morgane Guégan
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Guillaume Minard
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Florence-Hélène Tran
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Van Tran Van
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Audrey Dubost
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Claire Valiente Moro
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
28
|
Bai L, Wang L, Vega-Rodríguez J, Wang G, Wang S. A Gut Symbiotic Bacterium Serratia marcescens Renders Mosquito Resistance to Plasmodium Infection Through Activation of Mosquito Immune Responses. Front Microbiol 2019; 10:1580. [PMID: 31379768 PMCID: PMC6657657 DOI: 10.3389/fmicb.2019.01580] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/25/2019] [Indexed: 01/04/2023] Open
Abstract
The malaria development in the mosquito midgut is a complex process that results in considerable parasite losses. The mosquito gut microbiota influences the outcome of pathogen infection in mosquitoes, but the underlying mechanisms through which gut symbiotic bacteria affect vector competence remain elusive. Here, we identified two Serratia strains (Y1 and J1) isolated from field-caught female Anopheles sinensis from China and assessed their effect on Plasmodium development in An. stephensi. Colonization of An. stephensi midgut by Serratia Y1 significantly renders the mosquito resistant to Plasmodium berghei infection, while Serratia J1 has no impact on parasite development. Parasite inhibition by Serratia Y1 is induced by the activation of the mosquito immune system. Genome-wide transcriptomic analysis by RNA-seq shows a similar pattern of midgut gene expression in response to Serratia Y1 and J1 in sugar-fed mosquitoes. However, 24 h after blood ingestion, Serratia Y1 modulates more midgut genes than Serratia J1 including the c-type lectins (CTLs), CLIP serine proteases and other immune effectors. Furthermore, silencing of several Serratia Y1-induced anti-Plasmodium factors like the thioester-containing protein 1 (TEP1), fibrinogen immunolectin 9 (FBN9) or leucine-rich repeat protein LRRD7 can rescue parasite oocyst development in the presence of Serratia Y1, suggesting that these factors modulate the Serratia Y1-mediated anti-Plasmodium effect. This study enhances our understanding of how gut bacteria influence mosquito-Plasmodium interactions.
Collapse
Affiliation(s)
- Liang Bai
- School of Life Science and Technology, Tongji University, Shanghai, China.,CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
29
|
Santana RAG, Oliveira MC, Cabral I, Junior RCAS, de Sousa DRT, Ferreira L, Lacerda MVG, Monteiro WM, Abrantes P, Guerra MDGVB, Silveira H. Anopheles aquasalis transcriptome reveals autophagic responses to Plasmodium vivax midgut invasion. Parasit Vectors 2019; 12:261. [PMID: 31126324 PMCID: PMC6534896 DOI: 10.1186/s13071-019-3506-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/14/2019] [Indexed: 01/23/2023] Open
Abstract
Background Elimination of malaria depends on mastering transmission and understanding the biological basis of Plasmodium infection in the vector. The first mosquito organ to interact with the parasite is the midgut and its transcriptomic characterization during infection can reveal effective antiplasmodial responses able to limit the survival of the parasite. The vector response to Plasmodium vivax is not fully characterized, and its specificities when compared with other malaria parasites can be of fundamental interest for specific control measures. Methods Experimental infections were performed using a membrane-feeding device. Three groups were used: P. vivax-blood-fed, blood-fed on inactivated gametocytes, and unfed mosquitoes. Twenty-four hours after feeding, the mosquitoes were dissected and the midgut collected for transcriptomic analysis using RNAseq. Nine cDNA libraries were generated and sequenced on an Illumina HiSeq2500. Readings were checked for quality control and analysed using the Trinity platform for de novo transcriptome assembly. Transcript quantification was performed and the transcriptome was functionally annotated. Differential expression gene analysis was carried out. The role of the identified mechanisms was further explored using functional approaches. Results Forty-nine genes were identified as being differentially expressed with P. vivax infection: 34 were upregulated and 15 were downregulated. Half of the P. vivax-related differentially expressed genes could be related to autophagy; therefore, the effect of the known inhibitor (wortmannin) and activator (spermidine) was tested on the infection outcome. Autophagic activation significantly reduced the intensity and prevalence of infection. This was associated with transcription alterations of the autophagy regulating genes Beclin, DRAM and Apg8. Conclusions Our data indicate that P. vivax invasion of An. aquasalis midgut epithelium triggers an autophagic response and its activation reduces infection. This suggests a novel mechanism that mosquitoes can use to fight Plasmodium infection. Electronic supplementary material The online version of this article (10.1186/s13071-019-3506-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rosa Amélia Gonçalves Santana
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Maurício Costa Oliveira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Iria Cabral
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Rubens Celso Andrade Silva Junior
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Débora Raysa Teixeira de Sousa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Lucas Ferreira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Patrícia Abrantes
- Instituto de Higiene e Medicina Tropical, Global Health and Tropical Medicine, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Maria das Graças Vale Barbosa Guerra
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Henrique Silveira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil. .,Instituto de Higiene e Medicina Tropical, Global Health and Tropical Medicine, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
30
|
Debalke S, Habtewold T, Duchateau L, Christophides GK. The effect of silencing immunity related genes on longevity in a naturally occurring Anopheles arabiensis mosquito population from southwest Ethiopia. Parasit Vectors 2019; 12:174. [PMID: 30992084 PMCID: PMC6469062 DOI: 10.1186/s13071-019-3414-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Vector control remains the most important tool to prevent malaria transmission. However, it is now severely constrained by the appearance of physiological and behavioral insecticide resistance. Therefore, the development of new vector control tools is warranted. Such tools could include immunization of blood hosts of vector mosquitoes with mosquito proteins involved in midgut homeostasis (anti-mosquito vaccines) or genetic engineering of mosquitoes that can drive population-wide knockout of genes producing such proteins to reduce mosquito lifespan and malaria transmission probability. METHODS To achieve this, candidate genes related to midgut homeostasis regulation need to be assessed for their effect on mosquito survival. Here, different such candidate genes were silenced through dsRNA injection in the naturally occurring Anopheles arabiensis mosquitoes and the effect on mosquito survival was evaluated. RESULTS Significantly higher mortality rates were observed in the mosquitoes silenced for FN3D1 (AARA003032), FN3D3 (AARA007751) and GPRGr9 (AARA003963) genes as compared to the control group injected with dsRNA against a non-related bacterial gene (LacZ). This observed difference in mortality rate between the candidate genes and the control disappeared when gene-silenced mosquitoes were treated with antibiotic mixtures, suggesting that gut microbiota play a key role in the observed reduction of mosquito survival. CONCLUSIONS We demonstrated that interference with the expression of the FN3D1, FN3D3 or GPRGr9 genes causes a significant reduction of the longevity of An. arabiensis mosquito in the wild.
Collapse
Affiliation(s)
- Serkadis Debalke
- Department of Medical Laboratory Science & Pathology, Jimma University, Jimma, Ethiopia
- Biometrics Research Group, Ghent University, Ghent, Belgium
| | - Tibebu Habtewold
- Biometrics Research Group, Ghent University, Ghent, Belgium
- Department of Life Sciences, Imperial College London, London, UK
| | - Luc Duchateau
- Biometrics Research Group, Ghent University, Ghent, Belgium
| | | |
Collapse
|
31
|
Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldaña MA, Rojas MM, Hornett EA, Motl GC, Fredregill CL, Dennett JA, Debboun M, Fofanov Y, Hughes GL. Microbiome Interaction Networks and Community Structure From Laboratory-Reared and Field-Collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors. Front Microbiol 2018; 9:2160. [PMID: 30250462 PMCID: PMC6140713 DOI: 10.3389/fmicb.2018.02160] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Microbial interactions are an underappreciated force in shaping insect microbiome communities. Although pairwise patterns of symbiont interactions have been identified, we have a poor understanding regarding the scale and the nature of co-occurrence and co-exclusion interactions within the microbiome. To characterize these patterns in mosquitoes, we sequenced the bacterial microbiome of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus caught in the field or reared in the laboratory and used these data to generate interaction networks. For collections, we used traps that attracted host-seeking or ovipositing female mosquitoes to determine how physiological state affects the microbiome under field conditions. Interestingly, we saw few differences in species richness or microbiome community structure in mosquitoes caught in either trap. Co-occurrence and co-exclusion analysis identified 116 pairwise interactions substantially increasing the list of bacterial interactions observed in mosquitoes. Networks generated from the microbiome of Ae. aegypti often included highly interconnected hub bacteria. There were several instances where co-occurring bacteria co-excluded a third taxa, suggesting the existence of tripartite relationships. Several associations were observed in multiple species or in field and laboratory-reared mosquitoes indicating these associations are robust and not influenced by environmental or host factors. To demonstrate that microbial interactions can influence colonization of the host, we administered symbionts to Ae. aegypti larvae that either possessed or lacked their resident microbiota. We found that the presence of resident microbiota can inhibit colonization of particular bacterial taxa. Our results highlight that microbial interactions in mosquitoes are complex and influence microbiome composition.
Collapse
Affiliation(s)
- Shivanand Hegde
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Computer Science, University of Houston, Houston, TX, United States
| | - Levent Albayrak
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - George Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Miguel A. Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark M. Rojas
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Emily A. Hornett
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Greg C. Motl
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - Chris L. Fredregill
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - James A. Dennett
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - Mustapha Debboun
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Grant L. Hughes
- Department of Pathology, Institute for Human Infections and Immunity, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
32
|
Bascuñán P, Niño-Garcia JP, Galeano-Castañeda Y, Serre D, Correa MM. Factors shaping the gut bacterial community assembly in two main Colombian malaria vectors. MICROBIOME 2018; 6:148. [PMID: 30149801 PMCID: PMC6112144 DOI: 10.1186/s40168-018-0528-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/09/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND The understanding of the roles of gut bacteria in the fitness and vectorial capacity of mosquitoes that transmit malaria, is improving; however, the factors shaping the composition and structure of such bacterial communities remain elusive. In this study, a high-throughput 16S rRNA gene sequencing was conducted to understand the effect of developmental stage, feeding status, species, and geography on the composition of the gut bacterial microbiota of two main Colombian malaria vectors, Anopheles nuneztovari and Anopheles darlingi. RESULTS The results revealed that mosquito developmental stage, followed by geographical location, are more important determinants of the gut bacterial composition than mosquito species or adult feeding status. Further, they showed that mosquito gut is a major filter for environmental bacteria colonization. CONCLUSIONS The sampling design and analytical approach of this study allowed to untangle the influence of factors that are simultaneously shaping the microbiota composition of two Latin-American malaria vectors, essential aspect for the design of vector biocontrol strategies.
Collapse
Affiliation(s)
- Priscila Bascuñán
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | | | - Yadira Galeano-Castañeda
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
33
|
Guégan M, Zouache K, Démichel C, Minard G, Tran Van V, Potier P, Mavingui P, Valiente Moro C. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. MICROBIOME 2018; 6:49. [PMID: 29554951 PMCID: PMC5859429 DOI: 10.1186/s40168-018-0435-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/05/2018] [Indexed: 05/19/2023]
Abstract
The holobiont concept was first developed for coral ecosystems but has been extended to multiple organisms, including plants and other animals. Studies on insect-associated microbial communities have produced strong evidence that symbiotic bacteria play a major role in host biology. However, the understanding of these symbiotic relationships has mainly been limited to phytophagous insects, while the role of host-associated microbiota in haematophagous insect vectors remains largely unexplored. Mosquitoes are a major global public health concern, with a concomitant increase in people at risk of infection. The global emergence and re-emergence of mosquito-borne diseases has led many researchers to study both the mosquito host and its associated microbiota. Although most of these studies have been descriptive, they have led to a broad description of the bacterial communities hosted by mosquito populations. This review describes key advances and progress in the field of the mosquito microbiota research while also encompassing other microbes and the environmental factors driving their composition and diversity. The discussion includes recent findings on the microbiota functional roles and underlines their interactions with the host biology and pathogen transmission. Insight into the ecology of multipartite interactions, we consider that conferring the term holobiont to the mosquito and its microbiota is useful to get a comprehensive understanding of the vector pathosystem functioning so as to be able to develop innovative and efficient novel vector control strategies.
Collapse
Affiliation(s)
- Morgane Guégan
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Karima Zouache
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Colin Démichel
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Guillaume Minard
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Van Tran Van
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Patrick Potier
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Patrick Mavingui
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Claire Valiente Moro
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| |
Collapse
|
34
|
Romoli O, Gendrin M. The tripartite interactions between the mosquito, its microbiota and Plasmodium. Parasit Vectors 2018; 11:200. [PMID: 29558973 PMCID: PMC5861617 DOI: 10.1186/s13071-018-2784-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/06/2018] [Indexed: 11/24/2022] Open
Abstract
The microbiota of Anopheles mosquitoes interferes with mosquito infection by Plasmodium and influences mosquito fitness, therefore affecting vectorial capacity. This natural barrier to malaria transmission has been regarded with growing interest in the last 20 years, as it may be a source of new transmission-blocking strategies. The last decade has seen tremendous progress in the functional characterisation of the tripartite interactions between the mosquito, its microbiota and Plasmodium parasites. In this review, we provide insights into the effects of the mosquito microbiota on Plasmodium infection and on mosquito physiology, and on how these aspects together influence vectorial capacity. We also discuss three current challenges in the field, namely the need for a more relevant microbiota composition in experimental mosquitoes involved in vector biology studies, for a better characterisation of the non-bacterial microbiota, and for further functional studies of the microbiota present outside the gut.
Collapse
Affiliation(s)
- Ottavia Romoli
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Mathilde Gendrin
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, Cayenne, French Guiana, France. .,Parasites and Insect Vectors Department, Institut Pasteur, Paris, France.
| |
Collapse
|
35
|
Muturi EJ, Ramirez JL, Rooney AP, Kim CH. Comparative Analysis of Gut Microbiota of Culex restuans (Diptera: Culicidae) Females From Different Parents. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:163-171. [PMID: 29045737 DOI: 10.1093/jme/tjx199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 06/07/2023]
Abstract
The potential for gut microbiota to impede or enhance pathogen transmission is well-documented but the factors that shape this microbiota in mosquito vectors are poorly understood. We characterized and compared the gut microbiota of adult females of Culex restuans (Theobald; Diptera: Culicidae) from different parents. Cx. restuans larvae from nine field-collected egg rafts were reared on a common diet and gut microbiota of newly emerged adult females characterized by MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Bacterial diversity and evenness in individuals from one egg raft were significantly lower compared to those of three of the other eight egg rafts. The gut microbiota of adult females reared from seven of the nine egg rafts clustered together suggesting that individuals from most egg rafts had similar profiles of gut microbiota. These findings suggest that the microbiota of adult females from the same parents do not differ appreciably from the microbiota of adult females from different parents. However, additional studies using mosquitoes separated by geographic distances greater than those studied here and estimating the genetic distances between populations from different egg rafts are needed to provide further insights into the influence of host genetics on gut microbiota. Also worthwhile are studies evaluating how individuals from different egg rafts and harboring different gut microbiota compare in relation to vector competence for different pathogens.
Collapse
Affiliation(s)
- Ephantus J Muturi
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL
| | - Jose L Ramirez
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL
| |
Collapse
|
36
|
Chen S, Blom J, Walker ED. Genomic, Physiologic, and Symbiotic Characterization of Serratia marcescens Strains Isolated from the Mosquito Anopheles stephensi. Front Microbiol 2017; 8:1483. [PMID: 28861046 PMCID: PMC5561391 DOI: 10.3389/fmicb.2017.01483] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
Strains of Serratia marcescens, originally isolated from the gut lumen of adult female Anopheles stephensi mosquitoes, established persistent infection at high rates in adult A. stephensi whether fed to larvae or in the sugar meal to adults. By contrast, the congener S. fonticola originating from Aedes triseriatus had lower infection in A. stephensi, suggesting co-adaptation of Serratia strains in different species of host mosquitoes. Coinfection at high infection rate in adult A. stephensi resulted after feeding S. marcescens and Elizabethkingia anophelis in the sugar meal, but when fed together to larvae, infection rates with E. anophelis were much higher than were S. marcescens in adult A. stephensi, suggesting a suppression effect of coinfection across life stages. A primary isolate of S. marcescens was resistant to all tested antibiotics, showed high survival in the mosquito gut, and produced alpha-hemolysins which contributed to lysis of erythrocytes ingested with the blood meal. Genomes of two primary isolates from A. stephensi, designated S. marcescens ano1 and ano2, were sequenced and compared to other Serratia symbionts associated with insects, nematodes and plants. Serratia marcescens ano1 and ano2 had predicted virulence factors possibly involved in attacking parasites and/or causing opportunistic infection in mosquito hosts. S. marcescens ano1 and ano2 possessed multiple mechanisms for antagonism against other microorganisms, including production of bacteriocins and multi-antibiotic resistance determinants. These genes contributing to potential anti-malaria activity including serralysins, hemolysins and chitinases are only found in some Serratia species. It is interesting that genome sequences in S. marcescens ano1 and ano2 are distinctly different from those in Serratia sp. Ag1 and Ag2 which were isolated from Anopheles gambiae. Compared to Serratia sp. Ag1 and Ag2, S. marcescens ano1 and ano2 have more rRNAs and many important genes involved in commensal and anti-parasite traits.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State UniversityEast Lansing, MI, United States
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-UniversityGiessen, Germany
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State UniversityEast Lansing, MI, United States
- Department of Entomology, Michigan State UniversityEast Lansing, MI, United States
| |
Collapse
|
37
|
Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci U S A 2017; 114:5994-5999. [PMID: 28533370 DOI: 10.1073/pnas.1703546114] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The insect gut microbiota plays crucial roles in modulating the interactions between the host and intestinal pathogens. Unlike viruses, bacteria, and parasites, which need to be ingested to cause disease, entomopathogenic fungi infect insects through the cuticle and proliferate in the hemolymph. However, interactions between the gut microbiota and entomopathogenic fungi are unknown. Here we show that the pathogenic fungus Beauveria bassiana interacts with the gut microbiota to accelerate mosquito death. After topical fungal infection, mosquitoes with gut microbiota die significantly faster than mosquitoes without microbiota. Furthermore, fungal infection causes dysbiosis of mosquito gut microbiota with a significant increase in gut bacterial load and a significant decrease in bacterial diversity. In particular, the opportunistic pathogenic bacterium Serratia marcescens overgrows in the midgut and translocates to the hemocoel, which promotes fungal killing of mosquitoes. We further reveal that fungal infection down-regulates antimicrobial peptide and dual oxidase expression in the midgut. Duox down-regulation in the midgut is mediated by secretion of the toxin oosporein from B. bassiana Our findings reveal the important contribution of the gut microbiota in B. bassiana-killing activity, providing new insights into the mechanisms of fungal pathogenesis in insects.
Collapse
|
38
|
Habtewold T, Groom Z, Christophides GK. Immune resistance and tolerance strategies in malaria vector and non-vector mosquitoes. Parasit Vectors 2017; 10:186. [PMID: 28420446 PMCID: PMC5395841 DOI: 10.1186/s13071-017-2109-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/24/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Anopheles gambiae complex consists of species that vary greatly in their capacity to transmit malaria. The mosquito immune system has been identified as a key factor that can influence whether Plasmodium infection establishes within the mosquito vector. This study was designed to investigate the immune responses of An. coluzzii, An. arabiensis and An. quadriannulatus mosquitoes. The first two mosquito species are major vectors of malaria in sub-Saharan Africa, while the third is thought to be a non-vector. Methods All three mosquito species were reared in mixed cultures. Their capacity to eliminate P. berghei and regulate midgut bacteria was examined. Results Our results revealed large differences in mosquito resistance to P. berghei. In all three mosquito species, immune reactions involving the complement system were triggered when the number of parasites that mosquitoes were challenged with exceeded a certain level, i.e. immune tolerance threshold. This threshold was markedly lower in An. quadriannulatus compared to An. coluzzii and An. arabiensis. We also demonstrated that the level of immune tolerance to P. berghei infection in the haemolymph is inversely correlated with the level of immune tolerance to microbiota observed in the midgut lumen after a blood meal. The malaria non-vector mosquito species, An. quadriannulatus was shown to have a much higher level of tolerance to microbiota in the midgut than An. coluzzii. Conclusions We propose a model whereby an increased tolerance to microbiota in the mosquito midgut results in lower tolerance to Plasmodium infection. In this model, malaria non-vector mosquito species are expected to have increased immune resistance in the haemocoel, possibly due to complement priming by microbiota elicitors. We propose that this strategy is employed by the malaria non-vector mosquito, An. quadriannulatus, while An. coluzzii has reduced tolerance to bacterial infection in the midgut and consequently reduced immune resistance to Plasmodium infection at the haemocoel level. An in-depth understanding of the molecular mechanisms regulating immune tolerance versus resistance in different mosquito vectors of malaria could guide the design of new vector and disease control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2109-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, UK. .,Department of Comparative Physiology and Biometrics, University of Ghent, Ghent, Belgium.
| | - Zoe Groom
- Department of Life Sciences, Imperial College London, London, UK.,Costello Medical Consulting, Cambridge, UK
| | | |
Collapse
|
39
|
Domingos A, Pinheiro-Silva R, Couto J, do Rosário V, de la Fuente J. The Anopheles gambiae transcriptome - a turning point for malaria control. INSECT MOLECULAR BIOLOGY 2017; 26:140-151. [PMID: 28067439 DOI: 10.1111/imb.12289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence.
Collapse
Affiliation(s)
- A Domingos
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
- Global Health and Tropical Medicine (GHMT), Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - R Pinheiro-Silva
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - J Couto
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - V do Rosário
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - J de la Fuente
- SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
40
|
Muturi EJ, Ramirez JL, Rooney AP, Kim CH. Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoS Negl Trop Dis 2017; 11:e0005377. [PMID: 28245239 PMCID: PMC5345876 DOI: 10.1371/journal.pntd.0005377] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 03/10/2017] [Accepted: 02/01/2017] [Indexed: 11/19/2022] Open
Abstract
Background The composition and structure of microbial communities that inhabit the mosquito midguts are poorly understood despite their well-documented potential to impede pathogen transmission. Methodology/Principal findings We used MiSeq sequencing of the 16S rRNA gene to characterize the bacterial communities of field-collected populations of 12 mosquito species. After quality filtering and rarefaction, the remaining sequences were assigned to 181 operational taxonomic units (OTUs). Approximately 58% of these OTUs occurred in at least two mosquito species but only three OTUs: Gluconobacter (OTU 1), Propionibacterium (OTU 9), and Staphylococcus (OTU 31) occurred in all 12 mosquito species. Individuals of different mosquito species shared similar gut microbiota and it was common for individuals of the same species from the same study site and collection date to harbor different gut microbiota. On average, the microbiota of Aedes albopictus was the least diverse and significantly less even compared to Anopheles crucians, An. quadrimaculatus, Ae. triseriatus, Ae. vexans, Ae. japonicus, Culex restuans, and Culiseta inornata. The microbial community of Cx. pipiens and Ae. albopictus differed significantly from all other mosquitoes species and was primarily driven by the dominance of Wolbachia. Conclusion and significance These findings expand the range of mosquito species whose gut microbiota has been characterized and sets the foundation for further studies to determine the influence of these microbiota on vector susceptibility to pathogens. The microbial communities that reside in mosquito midguts can impact transmission of mosquito-borne pathogens. We used high throughput next generation sequencing to characterize the midgut microbial communities of 12 mosquito species collected in urban residential areas in Champaign County, Illinois. A total of 181 OTUs from 11 phyla and 66 families were identified. Although several bacterial taxa were shared between two or more mosquito species, there was remarkable individual differences in gut microbiota and it was common for individuals of different mosquito species to harbor similar gut microbiota. The microbiota of Ae. albopictus was the least diverse and significantly less evenly distributed compared to 7 of 11 mosquito species. The microbial community of Cx. pipiens and Ae. albopictus differed significantly from other mosquito species and was primarily dominated by Wolbachia. These findings improve current knowledge on the composition and structure of mosquito gut microbiota and provide the framework for understanding their contribution to individual variation in vector competence and potential application in disease control.
Collapse
Affiliation(s)
- Ephantus J. Muturi
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL United States of America
- * E-mail: ,
| | - Jose L. Ramirez
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL United States of America
| | - Alejandro P. Rooney
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL United States of America
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign IL. United States of America
| |
Collapse
|
41
|
Saldaña MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease. Mem Inst Oswaldo Cruz 2017; 112:81-93. [PMID: 28177042 PMCID: PMC5293117 DOI: 10.1590/0074-02760160373] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 01/03/2023] Open
Abstract
Arthropods harbor a diverse array of microbes that profoundly influence many aspects of host biology, including vector competence. Additionally, symbionts can be engineered to produce molecules that inhibit pathogens. Due to their intimate association with the host, microbes have developed strategies that facilitate their transmission, either horizontally or vertically, to conspecifics. These attributes make microbes attractive agents for applied strategies to control arthropod-borne disease. Here we discuss the recent advances in microbial control approaches to reduce the burden of pathogens such as Zika, Dengue and Chikungunya viruses, and Trypanosome and Plasmodium parasites. We also highlight where further investigation is warranted.
Collapse
Affiliation(s)
- Miguel A Saldaña
- University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX, USA
| | - Shivanand Hegde
- University of Texas Medical Branch, Department of Pathology, Galveston, TX, USA
| | - Grant L Hughes
- University of Texas Medical Branch, Department of Pathology, Galveston, TX, USA
- University of Texas Medical Branch, Institute for Human Infections and Immunity, Galveston, TX, USA
- University of Texas Medical Branch, Center for Biodefense and Emerging Infectious Disease, Galveston, TX, USA
- University of Texas Medical Branch, Center for Tropical Diseases, Galveston, TX, USA
| |
Collapse
|
42
|
Tchioffo MT, Abate L, Boissière A, Nsango SE, Gimonneau G, Berry A, Oswald E, Dubois D, Morlais I. An epidemiologically successful Escherichia coli sequence type modulates Plasmodium falciparum infection in the mosquito midgut. INFECTION GENETICS AND EVOLUTION 2016; 43:22-30. [DOI: 10.1016/j.meegid.2016.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
43
|
Two insulin-like peptides differentially regulate malaria parasite infection in the mosquito through effects on intermediary metabolism. Biochem J 2016; 473:3487-3503. [PMID: 27496548 DOI: 10.1042/bcj20160271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/05/2016] [Indexed: 01/20/2023]
Abstract
Insulin-like peptides (ILPs) play important roles in growth and metabolic homeostasis, but have also emerged as key regulators of stress responses and immunity in a variety of vertebrates and invertebrates. Furthermore, a growing literature suggests that insulin signaling-dependent metabolic provisioning can influence host responses to infection and affect infection outcomes. In line with these studies, we previously showed that knockdown of either of two closely related, infection-induced ILPs, ILP3 and ILP4, in the mosquito Anopheles stephensi decreased infection with the human malaria parasite Plasmodium falciparum through kinetically distinct effects on parasite death. However, the precise mechanisms by which ILP3 and ILP4 control the response to infection remained unknown. To address this knowledge gap, we used a complementary approach of direct ILP supplementation into the blood meal to further define ILP-specific effects on mosquito biology and parasite infection. Notably, we observed that feeding resulted in differential effects of ILP3 and ILP4 on blood-feeding behavior and P. falciparum development. These effects depended on ILP-specific regulation of intermediary metabolism in the mosquito midgut, suggesting a major contribution of ILP-dependent metabolic shifts to the regulation of infection resistance and parasite transmission. Accordingly, our data implicate endogenous ILP signaling in balancing intermediary metabolism for the host response to infection, affirming this emerging tenet in host-pathogen interactions with novel insights from a system of significant public health importance.
Collapse
|
44
|
Habtewold T, Duchateau L, Christophides GK. Flow cytometry analysis of the microbiota associated with the midguts of vector mosquitoes. Parasit Vectors 2016; 9:167. [PMID: 27004717 PMCID: PMC4802834 DOI: 10.1186/s13071-016-1438-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/08/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The scientific interest to understand the function and structure of the microbiota associated with the midgut of mosquito disease vectors is increasing. The advancement of such a knowledge has encountered challenges and limitations associated with conventional culture-based and PCR techniques. METHODS Flow cytometry (FCM) combined with various cell marking dyes have been successfully applied in the field of ecological microbiology to circumvent the above shortcomings. Here, we describe FCM technique coupled with live/dead differential staining dyes SYBR Green I (SGI) and Propidium Iodide (PI) to quantify and study other essential characteristics of the mosquito gut microbiota. RESULTS A clear discrimination between cells and debris, as well as between live and dead cells was achieved when the midgut homogenate was subjected to staining with 5 × 103 dilution of the SGI and 30 μM concentration of the PI. Reproducibly, FCM event collections produced discrete populations including non-fluorescent cells, SYBR positive cells, PI fluorescing cells and cells that fluoresce both in SYBR and PI, all these cell populations representing, respectively, background noise, live bacterial, dead cells and inactive cells with partial permeability to PI. The FCM produced a strong linear relationship between cell counts and their corresponding dilution factors (R (2) = 0.987), and the technique has a better precision compared to qRT-PCR. The FCM count of the microbiota reached a peak load at 18 h post-feeding and started declining at 24 h. The present FCM technique also successfully applied to quantify bacterial cells in fixed midgut samples that were homogenized in 4 % PFA. CONCLUSION The FCM technique described here offers enormous potential and possibilities of integration with advanced molecular biochemical techniques for the study of the microbiota community in disease vector mosquitoes.
Collapse
Affiliation(s)
- Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, UK ,Department of Comparative Physiology and Biometrics, University of Ghent, Ghent, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, University of Ghent, Ghent, Belgium
| | | |
Collapse
|
45
|
Lombardo F, Christophides GK. Novel factors of Anopheles gambiae haemocyte immune response to Plasmodium berghei infection. Parasit Vectors 2016; 9:78. [PMID: 26858200 PMCID: PMC4746906 DOI: 10.1186/s13071-016-1359-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/03/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Insect haemocytes mediate cellular immune responses (e.g., phagocytosis) and contribute to the synthesis of humoral immune factors. In previous work, a genome-wide molecular characterization of Anopheles gambiae circulating haemocytes was followed by functional gene characterization using cell-based RNAi screens. Assays were carried out to investigate the role of selected haemocyte-specific or enriched genes in phagocytosis of bacterial bio-particles, expression of the antimicrobial peptide cecropin1, and basal and induced expression of the mosquito complement factor LRIM1 (leucine-rich repeat immune gene I). FINDINGS Here we studied the impact of a subset of genes (37 candidates) from the haemocyte-specific dsRNA collection on the development of Plasmodium in the mosquito by in vivo gene silencing. Our screening identifies 10 novel factors with a role in the mosquito response to Plasmodium. Analysis of in vivo screening phenotypes reveals a significant anti-correlation between the prevalence of oocysts and melanised ookinetes. CONCLUSIONS Among novel immune genes are putative pattern recognition proteins (leucine-rich repeat, fibrinogen-domain and R-type lectins), immune modulation and signalling proteins (LPS-induced tumor necrosis factor alpha factor, LITAF and CLIP proteases), and components of extracellular matrix such as laminin and collagen. Additional identified proteins such as the storage protein hexamerin and vesicular-type ATPase (V-ATPase) are associated for the first time with the mosquito response against Plasmodium.
Collapse
Affiliation(s)
- Fabrizio Lombardo
- Department of Life Sciences, Imperial College London, London, UK.
- Current address: Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | | |
Collapse
|
46
|
Genetic Structure of a Local Population of the Anopheles gambiae Complex in Burkina Faso. PLoS One 2016; 11:e0145308. [PMID: 26731649 PMCID: PMC4701492 DOI: 10.1371/journal.pone.0145308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/01/2015] [Indexed: 01/21/2023] Open
Abstract
Members of the Anopheles gambiae species complex are primary vectors of human malaria in Africa. Population heterogeneities for ecological and behavioral attributes expand and stabilize malaria transmission over space and time, and populations may change in response to vector control, urbanization and other factors. There is a need for approaches to comprehensively describe the structure and characteristics of a sympatric local mosquito population, because incomplete knowledge of vector population composition may hinder control efforts. To this end, we used a genome-wide custom SNP typing array to analyze a population collection from a single geographic region in West Africa. The combination of sample depth (n = 456) and marker density (n = 1536) unambiguously resolved population subgroups, which were also compared for their relative susceptibility to natural genotypes of Plasmodium falciparum malaria. The population subgroups display fluctuating patterns of differentiation or sharing across the genome. Analysis of linkage disequilibrium identified 19 new candidate genes for association with underlying population divergence between sister taxa, A. coluzzii (M-form) and A. gambiae (S-form).
Collapse
|
47
|
Hegde S, Rasgon JL, Hughes GL. The microbiome modulates arbovirus transmission in mosquitoes. Curr Opin Virol 2015; 15:97-102. [PMID: 26363996 DOI: 10.1016/j.coviro.2015.08.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022]
Abstract
Mosquito-transmitted arthropod-borne viruses (arboviruses) such as dengue virus, chikungunya virus, and West Nile virus constitute a major public health burden and are increasing in severity and frequency worldwide. The microbiota associated with mosquitoes (comprised of viruses, bacteria, fungi and protozoa) can profoundly influence many host phenotypes including vector competence, which can either be enhanced or suppressed. Thus, the tripartite interactions between the mosquito vector, its microbiota and the pathogens they transmit offer novel possibilities to control arthropod-borne diseases.
Collapse
Affiliation(s)
- Shivanand Hegde
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
| | - Grant L Hughes
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
48
|
Lawniczak MK. Connecting genotypes to medically relevant phenotypes in major vector mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2015; 10:59-64. [PMID: 29588015 DOI: 10.1016/j.cois.2015.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/16/2015] [Indexed: 06/08/2023]
Abstract
Transmission of mosquito-borne human disease relies on vectors maintaining strong human host preference and continued susceptibility to disease-causing pathogens or parasites. These traits are affected by the genetics and the environments of all involved organisms, and genotypic interactions are common between parasite and vector, and between virus and vector. A recent study on Aedes host preference has exploited natural genetic variation to make great progress. Here I review our current understanding of the genetic basis of transmission-relevant traits in Anopheles and Aedes, highlighting additional research areas that would benefit from the integration of natural genetic variation.
Collapse
Affiliation(s)
- Mara Kn Lawniczak
- Wellcome Trust Sanger Institute, Malaria Programme, Hinxton CB10 1SA, United Kingdom; Imperial College London, Department of Life Sciences, London SW7 2AZ, United Kingdom.
| |
Collapse
|
49
|
Sen R, Raychoudhury R, Cai Y, Sun Y, Lietze VU, Peterson BF, Scharf ME, Boucias DG. Molecular signatures of nicotinoid-pathogen synergy in the termite gut. PLoS One 2015; 10:e0123391. [PMID: 25837376 PMCID: PMC4383478 DOI: 10.1371/journal.pone.0123391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae), bacteria (Serratia marcescens) or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes) exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies.
Collapse
Affiliation(s)
- Ruchira Sen
- Dept. of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Rhitoban Raychoudhury
- Dept. of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Yunpeng Cai
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States of America
| | - Yijun Sun
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States of America
| | - Verena-Ulrike Lietze
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
| | - Brittany F. Peterson
- Dept. of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Michael E. Scharf
- Dept. of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Drion G. Boucias
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
50
|
Juneja P, Ariani CV, Ho YS, Akorli J, Palmer WJ, Pain A, Jiggins FM. Exome and transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response. PLoS Pathog 2015; 11:e1004765. [PMID: 25815506 PMCID: PMC4376896 DOI: 10.1371/journal.ppat.1004765] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/25/2015] [Indexed: 11/18/2022] Open
Abstract
Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait.
Collapse
Affiliation(s)
- Punita Juneja
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Cristina V. Ariani
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Yung Shwen Ho
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | - Jewelna Akorli
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - William J. Palmer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|