1
|
Qin W, Saris A, van ’t Veer C, Roelofs JJTH, Scicluna BP, de Vos AF, van der Poll T. Myeloid miR-155 plays a limited role in antibacterial defense during Klebsiella-derived pneumosepsis and is dispensable for lipopolysaccharide- or Klebsiella-induced inflammation in mice. Pathog Dis 2023; 81:ftad031. [PMID: 37858304 PMCID: PMC10636497 DOI: 10.1093/femspd/ftad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
MicroRNA-155 (miR-155) plays a crucial role in regulating host inflammatory responses during bacterial infection. Previous studies have shown that constitutive miR-155 deficiency alleviates inflammation while having varying effects in different bacterial infection models. However, whether miR-155 in myeloid cells is involved in the regulation of inflammatory and antibacterial responses is largely elusive. Mice with myeloid cell specific miR-155 deficiency were generated to study the in vitro response of bone marrow-derived macrophages (BMDMs), alveolar macrophages (AMs) and peritoneal macrophages (PMs) to lipopolysaccharide (LPS), and the in vivo response after intranasal or intraperitoneal challenge with LPS or infection with Klebsiella (K.) pneumoniae via the airways. MiR-155-deficient macrophages released less inflammatory cytokines than control macrophages upon stimulation with LPS in vitro. However, the in vivo inflammatory cytokine response to LPS or K. pneumoniae was not affected by myeloid miR-155 deficiency. Moreover, bacterial outgrowth in the lungs was not altered in myeloid miR-155-deficient mice, but Klebsiella loads in the liver of these mice were significantly higher than in control mice. These data argue against a major role for myeloid miR-155 in host inflammatory responses during LPS-induced inflammation and K. pneumoniae-induced pneumosepsis but suggest that myeloid miR-155 contributes to host defense against Klebsiella infection in the liver.
Collapse
Affiliation(s)
- Wanhai Qin
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Cornelis van ’t Veer
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, University of Malta, MSD 2080, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080, Msida, Malta
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Yang B, Luo W, Wang M, Tang Y, Zhu W, Jin L, Wang M, Wang Y, Zhang Y, Zuo W, Huang LJ, Zhao Y, Liang G. Macrophage-specific MyD88 deletion and pharmacological inhibition prevents liver damage in non-alcoholic fatty liver disease via reducing inflammatory response. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166480. [PMID: 35811033 DOI: 10.1016/j.bbadis.2022.166480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Activation of the innate immune system through toll-like receptors (TLRs) has been repeatedly demonstrated in non-alcoholic fatty liver disease (NAFLD) and several TLRs have been shown to contribute. Myeloid differentiation primary response 88 (MyD88) is as an adapter protein for the activation of TLRs and bridges TLRs to NF-κB-mediated inflammation in macrophages. However, whether myeloid cell MyD88 contributes to NAFLD are largely unknown. To test this approach, we generated macrophage-specific MyD88 knockout mice and show that these mice are protected against high-fat diet (HFD)-induced hepatic injury, lipid accumulation, and fibrosis. These protective effects were associated with reduced macrophage numbers in liver tissues and surpassed inflammatory responses. In cultured macrophages, saturated fatty acid palmitate utilizes MyD88 to activate NF-κB and induce inflammatory and fibrogenic factors. In hepatocytes, these factors may cause lipid accumulation and a further elaboration of inflammatory cytokines. In hepatic stellate cells, macrophage-derived factors, especially TGF-β, cause activation and hepatic fibrosis. We further show that pharmacological inhibition of MyD88 is also able to reduce NAFLD injury in HFD-fed mice. Therefore, our study has provided empirical evidence that macrophage MyD88 participates in HFD-induced NAFLD and could be targeted to prevent the development and progression of NAFLD/NASH.
Collapse
Affiliation(s)
- Bin Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yelin Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Meihong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Wei Zuo
- Affiliated Xiangshan Hospital of Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, Zhejiang 315799, China
| | - Li-Jiang Huang
- Affiliated Xiangshan Hospital of Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, Zhejiang 315799, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
3
|
Qin W, Liu Z, van der Poll T, de Vos AF. Induction of Acute or Disseminating Bacterial Pneumonia in Mice and Sampling of Infected Organs for Studying the Host Response to Bacterial Pneumonia. Bio Protoc 2022; 12:e4287. [PMID: 35118178 PMCID: PMC8769758 DOI: 10.21769/bioprotoc.4287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 03/10/2024] Open
Abstract
Experimental pneumonia models are important tools to study the pathophysiology of lung inflammation caused by microbial infections and the efficacy of (novel) drugs. We have applied a murine model of pneumonia induced by Pseudomonas (P.) aeruginosa infection to study acute host antibacterial defense in lungs, and assess epithelial cell specific responses as well as leukocyte recruitment to the alveolar space. To study host responses during disseminating pneumonia, we also applied a model of infecting mice with hypermucoviscous Klebsiella (K.) pneumoniae. In the latter model, K. pneumoniae is restricted to lung during the early phase of infection and at the later time points disseminates to the circulation and distal organs resulting in sepsis. Detailed procedures for induction of pneumonia in mice by Pseudomonas and Klebsiella and for isolation and analysis of infected organs, bronchoalveolar fluid, and bronchial brushes are provided in this article.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| | - Zhe Liu
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| | - Alex F de Vos
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| |
Collapse
|
4
|
Role of Myeloid Tet Methylcytosine Dioxygenase 2 in Pulmonary and Peritoneal Inflammation Induced by Lipopolysaccharide and Peritonitis Induced by Escherichia coli. Cells 2021; 11:cells11010082. [PMID: 35011643 PMCID: PMC8750455 DOI: 10.3390/cells11010082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Tet methylcytosine dioxygenase 2 (Tet2) mediates demethylation of DNA. We here sought to determine the expression and function of Tet2 in macrophages upon exposure to lipopolysaccharide (LPS), and in the host response to LPS induced lung and peritoneal inflammation, and during Escherichia (E.) coli induced peritonitis. LPS induced Tet2 expression in mouse macrophages and human monocytes in vitro, as well as in human alveolar macrophages after bronchial instillation in vivo. Bone marrow-derived macrophages from myeloid Tet2 deficient (Tet2fl/flLysMCre) mice displayed enhanced production of IL-1β, IL-6 and CXCL1 upon stimulation with several Toll-like receptor agonists; similar results were obtained with LPS stimulated alveolar and peritoneal macrophages. Histone deacetylation was involved in the effect of Tet2 on IL-6 production, whilst methylation at the Il6 promoter was not altered by Tet2 deficiency. Tet2fl/flLysMCre mice showed higher IL-6 and TNF levels in bronchoalveolar and peritoneal lavage fluid after intranasal and intraperitoneal LPS administration, respectively, whilst other inflammatory responses were unaltered. E. coli induced stronger production of IL-1β and IL-6 by Tet2 deficient peritoneal macrophages but not in peritoneal lavage fluid of Tet2fl/flLysMCre mice after in vivo intraperitoneal infection. Tet2fl/flLysMCre mice displayed enhanced bacterial growth during E. coli peritonitis, which was associated with a reduced capacity of Tet2fl/flLysMCre peritoneal macrophages to inhibit the growth of E. coli in vitro. Collectively, these data suggest that Tet2 is involved in the regulation of macrophage functions triggered by LPS and during E. coli infection.
Collapse
|
5
|
Meijer MT, de Vos AF, Peters Sengers H, Scicluna BP, Roelofs JJ, Abou Fayçal C, Uhel F, Orend G, van der Poll T. Tenascin C Has a Modest Protective Effect on Acute Lung Pathology during Methicillin-Resistant Staphylococcus aureus-Induced Pneumonia in Mice. Microbiol Spectr 2021; 9:e0020721. [PMID: 34319124 PMCID: PMC8552697 DOI: 10.1128/spectrum.00207-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/03/2022] Open
Abstract
Tenascin C (TNC) is an extracellular matrix protein with immunomodulatory properties that plays a major role during tissue injury and repair. TNC levels are increased in patients with pneumonia and pneumosepsis, and they are associated with worse outcomes. Methicillin-resistant Staphylococcus aureus (MRSA) is a Gram-positive bacterium that is a major causative pathogen in nosocomial pneumonia and a rising cause of community-acquired pneumonia. To study the role of TNC during MRSA-induced pneumonia, TNC sufficient (TNC+/+) and TNC-deficient (TNC-/-) mice were infected with MRSA via the airways and euthanized after 6, 24, and 48 h for analysis. Pulmonary transcription of TNC peaked at 6 h, while immunohistochemistry revealed higher protein levels at later time points. Although TNC deficiency was not associated with changes in bacterial clearance, TNC-/- mice showed increased levels of TNF-α and IL-6 in bronchoalveolar lavage fluid during the acute phase of infection when compared with TNC+/+ mice. In addition, TNC-/- mice showed more severe pulmonary pathology at 6, but not at 24 or 48 h, after infection. Together, these data suggest that TNC plays a moderate protective role against tissue pathology during the acute inflammatory phase, but not during the bacterial clearance phase, of MRSA-induced pneumonia. These results argue against an important role of TNC on disease outcome during MRSA-induced pneumonia. IMPORTANCE Recently, the immunomodulatory properties of TNC have drawn substantial interest. However, to date most studies made use of sterile models of inflammation. In this study, we examine the pathobiology of MRSA-induced pneumonia in a model of TNC-sufficient and TNC-deficient mice. We have studied the immune response and tissue pathology both during the initial insult and also during the resolution phase. We demonstrate that MRSA-induced pneumonia upregulates pulmonary TNC expression at the mRNA and protein levels. However, the immunomodulatory role of TNC during bacterial pneumonia is distinct from models of sterile inflammation, indicating that the function of TNC is context dependent. Contrary to previous descriptions of TNC as a proinflammatory mediator, TNC-deficient mice seem to suffer from enhanced tissue pathology during the acute phase of infection. Nonetheless, besides its role during the acute phase response, TNC does not seem to play a major role in disease outcome during MRSA-induced pneumonia.
Collapse
Affiliation(s)
- Mariska T. Meijer
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex F. de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Hessel Peters Sengers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Brendon P. Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Clinical Epidemiology Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris J. Roelofs
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Chérine Abou Fayçal
- The Tumor Microenvironment Laboratory, INSERM UMR_S 1109, Université Strasbourg, Faculté de Médecine, Hopital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Fabrice Uhel
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Gertraud Orend
- The Tumor Microenvironment Laboratory, INSERM UMR_S 1109, Université Strasbourg, Faculté de Médecine, Hopital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Hypoxia-Inducible Factor-1 α in Macrophages, but Not in Neutrophils, Is Important for Host Defense during Klebsiella pneumoniae-Induced Pneumosepsis. Mediators Inflamm 2021; 2021:9958281. [PMID: 34393650 PMCID: PMC8360744 DOI: 10.1155/2021/9958281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-inducible factor- (HIF-) 1α has been implicated in the ability of cells to adapt to alterations in oxygen levels. Bacterial stimuli can induce HIF1α in immune cells, including those of myeloid origin. We here determined the role of myeloid cell HIF1α in the host response during pneumonia and sepsis caused by the common human pathogen Klebsiella pneumoniae. To this end, we generated mice deficient for HIF1α in myeloid cells (LysM-cre × Hif1αfl/fl) or neutrophils (Mrp8-cre × Hif1αfl/fl) and infected these with Klebsiella pneumoniae via the airways. Myeloid, but not neutrophil, HIF1α-deficient mice had increased bacterial loads in the lungs and distant organs after infection as compared to control mice, pointing at a role for HIF1α in macrophages. Myeloid HIF1α-deficient mice did not show increased bacterial growth after intravenous infection, suggesting that their phenotype during pneumonia was mediated by lung macrophages. Alveolar and lung interstitial macrophages from LysM-cre × Hif1αfl/fl mice produced lower amounts of the immune enhancing cytokine tumor necrosis factor upon stimulation with Klebsiella, while their capacity to phagocytose or to produce reactive oxygen species was unaltered. Alveolar macrophages did not upregulate glycolysis in response to lipopolysaccharide, irrespective of HIF1α presence. These data suggest a role for HIF1α expressed in lung macrophages in protective innate immunity during pneumonia caused by a common bacterial pathogen.
Collapse
|
7
|
Qin W, Brands X, van’t Veer C, F. de Vos A, Sirard JC, J. T. H. Roelofs J, P. Scicluna B, van der Poll T. Bronchial epithelial DNA methyltransferase 3b dampens pulmonary immune responses during Pseudomonas aeruginosa infection. PLoS Pathog 2021; 17:e1009491. [PMID: 33793661 PMCID: PMC8043394 DOI: 10.1371/journal.ppat.1009491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/13/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023] Open
Abstract
DNA methyltransferase (Dnmt)3b mediates de novo DNA methylation and modulation of Dnmt3b in respiratory epithelial cells has been shown to affect the expression of multiple genes. Respiratory epithelial cells provide a first line of defense against pulmonary pathogens and play a crucial role in the immune response during pneumonia caused by Pseudomonas (P.) aeruginosa, a gram-negative bacterium that expresses flagellin as an important virulence factor. We here sought to determine the role of Dntm3b in respiratory epithelial cells in immune responses elicited by P. aeruginosa. DNMT3B expression was reduced in human bronchial epithelial (BEAS-2B) cells as well as in primary human and mouse bronchial epithelial cells grown in air liquid interface upon exposure to P. aeruginosa (PAK). Dnmt3b deficient human bronchial epithelial (BEAS-2B) cells produced more CXCL1, CXCL8 and CCL20 than control cells when stimulated with PAK, flagellin-deficient PAK (PAKflic) or flagellin. Dnmt3b deficiency reduced DNA methylation at exon 1 of CXCL1 and enhanced NF-ĸB p65 binding to the CXCL1 promoter. Mice with bronchial epithelial Dntm3b deficiency showed increased Cxcl1 mRNA expression in bronchial epithelium and CXCL1 protein release in the airways during pneumonia caused by PAK, which was associated with enhanced neutrophil recruitment and accelerated bacterial clearance; bronchial epithelial Dnmt3b deficiency did not modify responses during pneumonia caused by PAKflic or Klebsiella pneumoniae (an un-flagellated gram-negative bacterium). Dnmt3b deficiency in type II alveolar epithelial cells did not affect mouse pulmonary defense against PAK infection. These results suggest that bronchial epithelial Dnmt3b impairs host defense during Pseudomonas induced pneumonia, at least in part, by dampening mucosal responses to flagellin.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xanthe Brands
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis van’t Veer
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex F. de Vos
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Claude Sirard
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Joris J. T. H. Roelofs
- Department of Pathology, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Brendon P. Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Ramirez-Moral I, Blok DC, Bernink JH, Garcia-Laorden MI, Florquin S, Boon L, Van't Veer C, Mack M, Saluzzo S, Knapp S, Spits H, de Vos AF, van der Poll T. Interleukin-33 improves local immunity during Gram-negative pneumonia by a combined effect on neutrophils and inflammatory monocytes. J Pathol 2021; 253:374-383. [PMID: 33305354 PMCID: PMC7986604 DOI: 10.1002/path.5601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/30/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Pneumonia represents a major health care burden and Gram‐negative bacteria provide an increasing therapeutic challenge at least in part through the emergence of multidrug‐resistant strains. IL‐33 is a multifunctional cytokine belonging to the IL‐1 family that can affect many different cell types. We sought here to determine the effect of recombinant IL‐33 on the host response during murine pneumonia caused by the common Gram‐negative pathogen Klebsiella pneumoniae. IL‐33 pretreatment prolonged survival for more than 1 day during lethal airway infection and decreased bacterial loads at the primary site of infection and distant organs. Postponed treatment with IL‐33 (3 h) also reduced bacterial growth and dissemination. IL‐33‐mediated protection was not observed in mice deficient for the IL‐33 receptor component IL‐1 receptor‐like 1. IL‐33 induced a brisk type 2 response, characterized by recruitment of type 2 innate lymphoid cells to the lungs and enhanced release of IL‐5 and IL‐13. However, neither absence of innate lymphoid cells or IL‐13, nor blocking of IL‐5 impacted on IL‐33 effects in mice infected with Klebsiella. Likewise, IL‐33 remained effective in reducing bacterial loads in mice lacking B, T, and natural killer T cells. Experiments using antibody‐mediated cell depletion indicated that neutrophils and inflammatory monocytes were of importance for antibacterial defense. The capacity of IL‐33 to restrict bacterial growth in the lungs was strongly reduced in mice depleted of both neutrophils and inflammatory monocytes, but not in mice selectively depleted of either one of these cell types. These results suggest that IL‐33 boosts host defense during bacterial pneumonia by a combined effect on neutrophils and inflammatory monocytes. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dana C Blok
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jochem H Bernink
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M Isabel Garcia-Laorden
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Cornelis Van't Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Simona Saluzzo
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Perlee D, de Beer R, Florquin S, van der Poll T, van 't Veer C, de Vos AF. Caspase-11 contributes to pulmonary host defense against Klebsiella pneumoniae and local activation of coagulation. Am J Physiol Lung Cell Mol Physiol 2020; 319:L105-L114. [PMID: 32401674 DOI: 10.1152/ajplung.00422.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Klebsiella (K.) pneumoniae is a common cause of gram-negative pneumonia and sepsis. Caspase-11 is an intracellular receptor for lipopolysaccharide and regulates pyroptosis, a specific form of inflammatory cell death, which aids in host defense against intracellular gram-negative bacteria. Recently, caspase-11 has also been implicated in blood coagulation. Previously, we found that local fibrin formation contributes to protective immunity against Klebsiella infection of the lung. The aim of the present study was to determine the role of caspase-11 in host defense during K. pneumoniae-evoked pneumonia and sepsis. Therefore, we infected wild-type and caspase-11-deficient (Casp11-/-) mice with a low-dose K. pneumoniae via the airways to induce a gradually evolving pneumosepsis. Casp11-/- mice displayed increased bacterial numbers in the lung 12 h and 48 h after inoculation. Analysis of pulmonary IL-1α, IL-1β, and TNF levels showed reduced IL-1α levels in bronchoalveolar lavage fluid and increased TNF levels in the lung of Casp11-/- mice at 48 h after inoculation. Lung γH2AX staining (marker for cell death), lung pathology and neutrophil influx in the lung, as well as bacterial dissemination and organ damage, however, were not altered in Casp11-/- mice after Klebsiella infection. Strikingly, analysis of cross-linked fibrin and D-dimer (markers for coagulation) revealed significantly less fibrin formation in the lungs of Casp11-/- mice at either time point after Klebsiella infection. These data reveal that caspase-11 contributes to protective immunity against K. pneumoniae possibly by activation of blood coagulation in the lung.
Collapse
Affiliation(s)
- Desiree Perlee
- Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Regina de Beer
- Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis van 't Veer
- Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Lee MSJ, Natsume-Kitatani Y, Temizoz B, Fujita Y, Konishi A, Matsuda K, Igari Y, Tsukui T, Kobiyama K, Kuroda E, Onishi M, Marichal T, Ise W, Inoue T, Kurosaki T, Mizuguchi K, Akira S, Ishii KJ, Coban C. B cell-intrinsic MyD88 signaling controls IFN-γ-mediated early IgG2c class switching in mice in response to a particulate adjuvant. Eur J Immunol 2019; 49:1433-1440. [PMID: 31087643 DOI: 10.1002/eji.201848084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/27/2019] [Accepted: 05/13/2019] [Indexed: 02/01/2023]
Abstract
Adjuvants improve the potency of vaccines, but the modes of action (MOAs) of most adjuvants are largely unknown. TLR-dependent and -independent innate immune signaling through the adaptor molecule MyD88 has been shown to be pivotal to the effects of most adjuvants; however, MyD88's involvement in the TLR-independent MOAs of adjuvants is poorly understood. Here, using the T-dependent antigen NIPOVA and a unique particulate adjuvant called synthetic hemozoin (sHZ), we show that MyD88 is required for early GC formation and enhanced antibody class-switch recombination (CSR) in mice. Using cell-type-specific MyD88 KO mice, we found that IgG2c class switching, but not IgG1 class switching, was controlled by B cell-intrinsic MyD88 signaling. Notably, IFN-γ produced by various cells including T cells, NK cells, and dendritic cells was the primary cytokine for IgG2c CSR and B-cell intrinsic MyD88 is required for IFN-γ production. Moreover, IFN-γ receptor (IFNγR) deficiency abolished sHZ-induced IgG2c production, while recombinant IFN-γ administration successfully rescued IgG2c CSR impairment in mice lacking B-cell intrinsic MyD88. Together, our results show that B cell-intrinsic MyD88 signaling is involved in the MOA of certain particulate adjuvants and this may enhance our specific understanding of how adjuvants and vaccines work.
Collapse
Affiliation(s)
- Michelle Sue Jann Lee
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Yayoi Natsume-Kitatani
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Burcu Temizoz
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Yukiko Fujita
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Aki Konishi
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Kyoko Matsuda
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Yoshikatsu Igari
- ZENOAQ, Nippon Zenyaku Kogyo Co. Ltd., Koriyama, Fukushima, Japan
| | - Toshihiro Tsukui
- ZENOAQ, Nippon Zenyaku Kogyo Co. Ltd., Koriyama, Fukushima, Japan
| | - Kouji Kobiyama
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Motoyasu Onishi
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, and Faculty of Veterinary Medicine, Liege University, Liège, Belgium
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Cevayir Coban
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Fuchs A, Monlish DA, Ghosh S, Chang SW, Bochicchio GV, Schuettpelz LG, Turnbull IR. Trauma Induces Emergency Hematopoiesis through IL-1/MyD88-Dependent Production of G-CSF. THE JOURNAL OF IMMUNOLOGY 2019; 202:3020-3032. [PMID: 30988118 DOI: 10.4049/jimmunol.1801456] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
The inflammatory response to infection or injury dramatically increases the hematopoietic demand on the bone marrow to replace effector leukocytes consumed in the inflammatory response. In the setting of infection, pathogen-associated molecular patterns induce emergency hematopoiesis, activating hematopoietic stem and progenitor cells to proliferate and produce progeny for accelerated myelopoiesis. Sterile tissue injury due to trauma also increases leukocyte demand; however, the effect of sterile tissue injury on hematopoiesis is not well described. We find that tissue injury alone induces emergency hematopoiesis in mice subjected to polytrauma. This process is driven by IL-1/MyD88-dependent production of G-CSF. G-CSF induces the expansion of hematopoietic progenitors, including hematopoietic stem cells and multipotent progenitors, and increases the frequency of myeloid-skewed progenitors. To our knowledge, these data provide the first comprehensive description of injury-induced emergency hematopoiesis and identify an IL-1/MyD88/G-CSF-dependent pathway as the key regulator of emergency hematopoiesis after injury.
Collapse
Affiliation(s)
- Anja Fuchs
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Darlene A Monlish
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Sarbani Ghosh
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Shin-Wen Chang
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Grant V Bochicchio
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Isaiah R Turnbull
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| |
Collapse
|
12
|
Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2019; 43:123-144. [PMID: 30452654 PMCID: PMC6435446 DOI: 10.1093/femsre/fuy043] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022] Open
Abstract
Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an 'urgent threat to human health' by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host-pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.
Collapse
Affiliation(s)
- José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Joana Sa Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
13
|
Ding C, van 't Veer C, Roelofs JJTH, Shukla M, McCrae KR, Revenko AS, Crosby J, van der Poll T. Limited role of kininogen in the host response during gram-negative pneumonia-derived sepsis. Am J Physiol Lung Cell Mol Physiol 2017; 314:L397-L405. [PMID: 29122754 DOI: 10.1152/ajplung.00288.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-molecular-weight kininogen (HK), together with factor XI, factor XII and prekallikrein, is part of the contact system that has proinflammatory, prothrombotic, and vasoactive properties. We hypothesized that HK plays a role in the host response during pneumonia-derived sepsis. To this end mice were depleted of kininogen (KNG) to plasma HK levels of 28% of normal by repeated treatment with a specific antisense oligonucleotide (KNG ASO) for 3 wk before infection with the common human sepsis pathogen Klebsiella pneumoniae via the airways. Whereas plasma HK levels increased during infection in mice treated with a scrambled control ASO (Ctrl ASO), HK level in the KNG ASO-treated group remained reduced to 25-30% of that in the corresponding Ctrl ASO group both before and after infection. KNG depletion did not influence bacterial growth in lungs or dissemination to distant body sites. KNG depletion was associated with lower lung CXC chemokine and myeloperoxidase levels but did not impact neutrophil influx, lung pathology, activation of the vascular endothelium, activation of the coagulation system, or the extent of distant organ injury. These results were corroborated by studies in mice with a genetic deficiency of KNG, which were indistinguishable from wild-type mice during Klebsiella-induced sepsis. Both KNG depletion and KNG deficiency were associated with strongly reduced plasma prekallikrein levels, indicating the carrier function of HK for this zymogen. This study suggests that KNG does not significantly contribute to the host defense during gram-negative pneumonia-derived sepsis.
Collapse
Affiliation(s)
- Chao Ding
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University , Nanjing , China.,Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Cornelis van 't Veer
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam , The Netherlands
| | - Meenal Shukla
- Departments of Hematology-Oncology and Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Keith R McCrae
- Departments of Hematology-Oncology and Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Alexey S Revenko
- Antisense Drug Discovery, IONIS Pharmaceuticals, Carlsbad, California
| | - Jeff Crosby
- Antisense Drug Discovery, IONIS Pharmaceuticals, Carlsbad, California
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam , The Netherlands
| |
Collapse
|
14
|
van Lieshout MHP, de Vos AF, Dessing MC, de Porto APNA, de Boer OJ, de Beer R, Terpstra S, Florquin S, Van't Veer C, van der Poll T. ASC and NLRP3 impair host defense during lethal pneumonia caused by serotype 3 Streptococcus pneumoniae in mice. Eur J Immunol 2017; 48:66-79. [PMID: 28971472 DOI: 10.1002/eji.201646554] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/29/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
Streptococcus (S.) pneumoniae is the most common cause of community-acquired pneumonia. The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, consisting of NLRP3, ASC (the adaptor apoptosis-associated speck-like protein containing a CARD) and caspase-1, has been implicated in protective immunity during pneumonia induced by high doses of S. pneumoniae serotype 2. Here we investigated the role of the NLRP3 inflammasome in the host response during lethal airway infection with a low dose of serotype 3 S. pneumoniae. Mice were euthanized at predefined endpoints for analysis or observed in survival studies. In additional studies, Tlr2-/- /Tlr4-/- mice and Myd88-/- mice incapable of Toll-like receptor signaling were studied. In stark contrast with existing literature, both Nlrp3-/- and Asc-/- mice showed a strongly improved host defense, as reflected by a markedly reduced mortality rate accompanied by diminished bacterial growth and dissemination. Host defense was unaltered in Tlr2-/- /Tlr4-/- mice and Myd88-/- mice. These results show that the NLRP3 inflammasome impairs host defense during lethal pneumonia caused by serotype 3 S. pneumoniae. Our findings challenge the current paradigm that proximal innate detection systems are indispensable for an adequate host immune response against bacteria.
Collapse
Affiliation(s)
- Miriam H P van Lieshout
- Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.,Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.,Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Mark C Dessing
- Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Alexander P N A de Porto
- Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.,Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Onno J de Boer
- Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Regina de Beer
- Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.,Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Sanne Terpstra
- Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.,Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Cornelis Van't Veer
- Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.,Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.,Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
15
|
Anas AA, Claushuis TAM, Mohan RA, Christoffels VM, Aidinis V, Florquin S, Van't Veer C, Hou B, de Vos AF, van der Poll T. Epithelial Myeloid-Differentiation Factor 88 Is Dispensable during Klebsiella Pneumonia. Am J Respir Cell Mol Biol 2017; 56:648-656. [PMID: 28187270 DOI: 10.1165/rcmb.2016-0190oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of pneumonia. Previous studies have documented an important role for Toll-like receptors (TLRs) expressed by myeloid cells in the recognition of K. pneumoniae and the initiation of a protective immune response. Lung epithelial cells also express TLRs and can participate in innate immune defense. The aim of this study was to examine the role of the common TLR adaptor protein myeloid-differentiation factor (MyD) 88 in lung epithelium during host defense against K. pneumoniae-induced pneumonia. To this end, we first crossed mice expressing cre recombinase under the control of the surfactant protein C (SftpCcre) or the club cell 10 kD (CC10cre) promoter with reporter mice to show that SftpCcre mice mainly express cre in type II alveolar cells, whereas CC10cre mice express cre almost exclusively in bronchiolar epithelial cells. We then generated mice with cell-targeted deletion of MyD88 in type II alveolar (SftpCcre-MyD88-lox) and bronchiolar epithelial (CC10cre-MyD88-lox) cells, and infected them with K. pneumoniae via the airways. Bacterial growth and dissemination were not affected by the loss of MyD88 in SftpCcre-MyD88-lox or CC10cre-MyD88-lox mice compared with control littermates. Furthermore, inflammatory responses induced by K. pneumoniae in the lung were not dependent on MyD88 expression in type II alveolar or bronchiolar epithelial cells. These results indicate that MyD88 expression in two distinct lung epithelial cell types does not contribute to host defense during pneumonia caused by a common human gram-negative pathogen.
Collapse
Affiliation(s)
- Adam A Anas
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine
| | - Theodora A M Claushuis
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine
| | - Rajiv A Mohan
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,3 Department of Anatomy, Embryology, and Physiology, and
| | - Vincent M Christoffels
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,3 Department of Anatomy, Embryology, and Physiology, and
| | - Vassilis Aidinis
- 4 Division of Immunology, Biomedical Sciences Research Center Alexander Flemming, Athens, Greece
| | - Sandrine Florquin
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,5 Department of Pathology
| | - Cornelis Van't Veer
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine
| | - Baidong Hou
- 6 Institute of Biophysics, Chaoyang District, Beijing, China; and
| | - Alex F de Vos
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine
| | - Tom van der Poll
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine.,7 Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Stroo I, Zeerleder S, Ding C, Luken BM, Roelofs JJTH, de Boer OJ, Meijers JCM, Castellino FJ, van 't Veer C, van der Poll T. Coagulation factor XI improves host defence during murine pneumonia-derived sepsis independent of factor XII activation. Thromb Haemost 2017; 117:1601-1614. [PMID: 28492700 DOI: 10.1160/th16-12-0920] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/16/2017] [Indexed: 11/05/2022]
Abstract
Bacterial pneumonia, the most common cause of sepsis, is associated with activation of coagulation. Factor XI (FXI), the key component of the intrinsic pathway, can be activated via factor XII (FXII), part of the contact system, or via thrombin. To determine whether intrinsic coagulation is involved in host defence during pneumonia and whether this is dependent on FXII activation, we infected in parallel wild-type (WT), FXI knockout (KO) and FXII KO mice with two different clinically relevant pathogens, the Gram-positive bacterium Streptococcus pneumoniae and the Gram-negative bacterium Klebsiella pneumoniae, via the airways. FXI deficiency worsened survival and enhanced bacterial outgrowth in both pneumonia models. This was accompanied with enhanced inflammatory responses in FXI KO mice. FXII KO mice were comparable with WT mice in Streptococcus pneumoniae pneumonia. On the contrary, FXII deficiency improved survival and reduced bacterial outgrowth following infection with Klebsiella pneumoniae. In both pneumonia models, local coagulation was not impaired in either FXI KO or FXII KO mice. The capacity to phagocytose bacteria was impaired in FXI KO neutrophils and in human neutrophils where activation of FXI was inhibited. Deficiency for FXII or blocking activation of FXI via FXIIa had no effect on phagocytosis. Taken together, these data suggest that FXI protects against sepsis derived from Streptococcus pneumoniae or Klebsiella pneumoniae pneumonia at least in part by enhancing the phagocytic capacity of neutrophils by a mechanism that is independent of activation via FXIIa.
Collapse
Affiliation(s)
- Ingrid Stroo
- Ingrid Stroo, Center for Experimental and Molecular Medicine, Academic Medical Center, Meibergdreef 9, G2-1051105 AZ Amsterdam, the Netherlands, Tel.: +31 20 5666034, E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Anas AA, Yang J, Daan de Boer J, Roelofs JJTH, Hou B, de Vos AF, van der Poll T. General, but not myeloid or type II lung epithelial cell, myeloid differentiation factor 88 deficiency abrogates house dust mite induced allergic lung inflammation. Clin Exp Immunol 2016; 187:204-212. [PMID: 27625307 DOI: 10.1111/cei.12867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 12/27/2022] Open
Abstract
Asthma is a highly prevalent chronic allergic inflammatory disease of the airways affecting people worldwide. House dust mite (HDM) is the most common allergen implicated in human allergic asthma. HDM-induced allergic responses are thought to depend upon activation of pathways involving Toll-like receptors and their adaptor protein myeloid differentiation factor 88 (MyD88). We sought here to determine the role of MyD88 in myeloid and type II lung epithelial cells in the development of asthma-like allergic disease using a mouse model. Repeated exposure to HDM caused allergic responses in control mice characterized by influx of eosinophils into the bronchoalveolar space and lung tissue, lung pathology and mucus production and protein leak into bronchoalveolar lavage fluid. All these responses were abrogated in mice with a general deficiency of MyD88 but unaltered in mice with MyD88 deficiency, specifically in myeloid or type II lung epithelial cells. We conclude that cells other than myeloid or type II lung epithelial cells are responsible for MyD88-dependent HDM-induced allergic airway inflammation.
Collapse
Affiliation(s)
- A A Anas
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J Yang
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J Daan de Boer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - B Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chaoyang District, Beijing, China
| | - A F de Vos
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - T van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger MD, Liu C, Fassbender K. Stimulation of TLR4 Attenuates Alzheimer’s Disease–Related Symptoms and Pathology in Tau-Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:3281-3292. [DOI: 10.4049/jimmunol.1600873] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/14/2016] [Indexed: 01/09/2023]
|
19
|
Anas AA, van Lieshout MHP, Claushuis TAM, de Vos AF, Florquin S, de Boer OJ, Hou B, Van't Veer C, van der Poll T. Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2016; 311:L219-28. [PMID: 27288486 DOI: 10.1152/ajplung.00078.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a flagellated pathogen frequently causing pneumonia in hospitalized patients and sufferers of chronic lung disease. Here we investigated the role of the common Toll-like receptor (TLR) adaptor myeloid differentiation factor (MyD)88 in myeloid vs. lung epithelial cells in clearance of P. aeruginosa from the airways. Mice deficient for MyD88 in lung epithelial cells (Sftpccre-MyD88-lox mice) or myeloid cells (LysMcre-MyD88-lox mice) and bone marrow chimeric mice deficient for TLR5 (the receptor recognizing Pseudomonas flagellin) in either parenchymal or hematopoietic cells were infected with P. aeruginosa via the airways. Sftpccre-MyD88-lox mice demonstrated a reduced influx of neutrophils into the bronchoalveolar space and an impaired early antibacterial defense after infection with P. aeruginosa, whereas the response of LysMcre-MyD88-lox mice did not differ from control mice. The immune-enhancing role of epithelial MyD88 was dependent on recognition of pathogen-derived flagellin by epithelial TLR5, as demonstrated by an unaltered clearance of mutant P. aeruginosa lacking flagellin from the lungs of Sftpccre-MyD88-lox mice and an impaired bacterial clearance in bone marrow chimeric mice lacking TLR5 in parenchymal cells. These data indicate that early clearance of P. aeruginosa from the airways is dependent on flagellin-TLR5-MyD88-dependent signaling in respiratory epithelial cells.
Collapse
Affiliation(s)
- Adam A Anas
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands;
| | - Miriam H P van Lieshout
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Theodora A M Claushuis
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Onno J de Boer
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chaoyang District, Beijing, China; and
| | - Cornelis Van't Veer
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
García-Laorden MI, Stroo I, Blok DC, Florquin S, Medema JP, de Vos AF, van der Poll T. Granzymes A and B Regulate the Local Inflammatory Response during Klebsiella pneumoniae Pneumonia. J Innate Immun 2016; 8:258-68. [PMID: 26894590 DOI: 10.1159/000443401] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/16/2015] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of hospital-acquired pneumonia. Granzymes (gzms), mainly found in cytotoxic lymphocytes, have been implicated as mediators of infection and inflammation. We here sought to investigate the role of gzmA and gzmB in the host response to K. pneumoniae-induced airway infection and sepsis. For this purpose, pneumonia was induced in wild-type (WT) and gzmA-deficient (gzmA-/-), gzmB-/- and gzmAxB-/- mice by intranasal infection with K. pneumoniae. In WT mice, gzmA and gzmB were mainly expressed by natural killer cells. Pneumonia was associated with reduced intracellular gzmA and increased intracellular gzmB levels. Gzm deficiency had little impact on antibacterial defence: gzmA-/- and gzmAxB-/- mice transiently showed modestly higher bacterial loads in the lungs but not in distant organs. GzmB-/- and, to a larger extent, gzmAxB-/- mice displayed transiently increased lung inflammation, reflected in the semi-quantitative histology scores and levels of pro-inflammatory cytokines and chemokines. Most differences between gzm-deficient and WT mice had disappeared during late-stage pneumonia. Gzm deficiency did not impact on distant organ injury or survival. These results suggest that gzmA and gzmB partly regulate local inflammation during early pneumonia but eventually play an insignificant role during pneumosepsis by the common human pathogen K. pneumoniae.
Collapse
Affiliation(s)
- M Isabel García-Laorden
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Anas AA, de Vos AF, Hoogendijk AJ, van Lieshout MHP, van Heijst JWJ, Florquin S, Li Z, van 't Veer C, van der Poll T. Endoplasmic reticulum chaperone gp96 in macrophages is essential for protective immunity during Gram-negative pneumonia. J Pathol 2015; 238:74-84. [PMID: 26365983 DOI: 10.1002/path.4637] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 11/11/2022]
Abstract
Klebsiella pneumoniae is among the most common Gram-negative bacteria that cause pneumonia. Gp96 is an endoplasmic reticulum chaperone that is essential for the trafficking and function of Toll-like receptors (TLRs) and integrins. To determine the role of gp96 in myeloid cells in host defence during Klebsiella pneumonia, mice homozygous for the conditional Hsp90b1 allele encoding gp96 were crossed with mice expressing Cre-recombinase under control of the LysM promoter to generate LysMcre-Hsp90b1-flox mice. LysMcre-Hsp90b1-flox mice showed absence of gp96 protein in macrophages and partial depletion in monocytes and granulocytes. This was accompanied by almost complete absence of TLR2 and TLR4 on macrophages. Likewise, integrin subunits CD11b and CD18 were not detectable on macrophages, while being only slightly reduced on monocytes and granulocytes. Gp96-deficient macrophages did not release pro-inflammatory cytokines in response to Klebsiella and displayed reduced phagocytic capacity independent of CD18. LysMcre-Hsp90b1-flox mice were highly vulnerable to lower airway infection induced by K. pneumoniae, as reflected by enhanced bacterial growth and a higher mortality rate. The early inflammatory response in Hsp90b1-flox mice was characterized by strongly impaired recruitment of granulocytes into the lungs, accompanied by attenuated production of pro-inflammatory cytokines, while the inflammatory response during late-stage pneumonia was not dependent on the presence of gp96. Blocking CD18 did not reproduce the impaired host defence of LysMcre-Hsp90b1-flox mice during Klebsiella pneumonia. These data indicate that macrophage gp96 is essential for protective immunity during Gram-negative pneumonia by regulating TLR expression.
Collapse
Affiliation(s)
- Adam A Anas
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie J Hoogendijk
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Miriam H P van Lieshout
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen W J van Heijst
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zihai Li
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Cornelis van 't Veer
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
de Stoppelaar SF, Claushuis TAM, Jansen MPB, Hou B, Roelofs JJTH, van 't Veer C, van der Poll T. The role of platelet MyD88 in host response during gram-negative sepsis. J Thromb Haemost 2015; 13:1709-20. [PMID: 26178922 DOI: 10.1111/jth.13048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/30/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Beside their role in hemostasis, platelets serve as sentinel cells in host defense during infection. In sepsis, platelets have been implicated in both beneficial (antibacterial) and detrimental responses (thrombosis and organ damage). Toll-like receptors and their common adaptor, myeloid differentiation factor 88 (MyD88), are essential for pathogen recognition and protective immunity. Platelets express functional Toll-like receptors and MyD88, which participate in platelet responsiveness to bacterial agonists. OBJECTIVE Considering the pivotal involvement of platelets and MyD88 in the host response to bacteria, we studied the role of platelet MyD88 in gram-negative sepsis using intravenous and airway infections with the common human sepsis pathogen Klebsiella pneumoniae. METHODS Platelet-specific Myd88(-/-) mice were generated by crossing mice with a conditional Myd88 flox allele with mice expressing Cre recombinase controlled by the platelet factor 4 promoter. In a reverse approach, full Myd88(-/-) mice were transfused with wild-type platelets. RESULTS In both settings, platelet MyD88 did not impact on bacterial growth or dissemination. In addition, platelet MyD88 did not influence hallmark sepsis responses such as thrombocytopenia, coagulation or endothelial activation, or distant organ injury. Platelet MyD88 played no role in lung pathology during pneumonia-derived sepsis. CONCLUSION Despite known literature, platelet MyD88-dependent TLR signaling does not contribute to the host response during gram-negative sepsis.
Collapse
Affiliation(s)
- S F de Stoppelaar
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - T A M Claushuis
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - M P B Jansen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - B Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chaoyang District, Beijing, China
| | - J J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - C van 't Veer
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - T van der Poll
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
23
|
van Lieshout MHP, Florquin S, Vanʼt Veer C, de Vos AF, van der Poll T. TIR-Domain-Containing Adaptor-Inducing Interferon-β (TRIF) Mediates Antibacterial Defense during Gram-Negative Pneumonia by Inducing Interferon-x03B3. J Innate Immun 2015; 7:637-46. [PMID: 26065469 DOI: 10.1159/000430913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/25/2015] [Indexed: 12/13/2022] Open
Abstract
Klebsiella pneumoniae is an important cause of Gram-negative pneumonia and sepsis. Mice deficient for TIR-domain-containing adaptor-inducing interferon-β (TRIF) demonstrate enhanced bacterial growth and dissemination during Klebsiella pneumonia. We show here that the impaired antibacterial defense of TRIF mutant mice is associated with absent interferon (IFN)-x03B3; production in the lungs. IFN-x03B3; production by splenocytes in response to K. pneumoniae in vitro was critically dependent on Toll-like receptor 4 (TLR4), the common TLR adaptor myeloid differentiation primary response gene (MyD88) and TRIF. Reconstitution of TRIF mutant mice with recombinant IFN-x03B3; via the airways reduced bacterial loads in lungs and distant body sites to levels measured in wild-type mice, and partially restored pulmonary cytokine levels. The IFN-x03B3;-induced, improved, enhanced antibacterial response in TRIF mutant mice occurred at the expense of increased hepatocellular injury. These data indicate that TRIF mediates antibacterial defense during Gram-negative pneumonia, at least in part, by inducing IFN-x03B3; at the primary site of infection.
Collapse
Affiliation(s)
- Miriam H P van Lieshout
- Center of Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|