1
|
Tessmer C, Plotzky C, Fees J, Welsch H, Eudenbach R, Faber M, Simón A, Angelova A, Rommelaere J, Hofmann I, Nüesch JPF. Generation and Validation of Monoclonal Antibodies Suitable for Detecting and Monitoring Parvovirus Infections. Pathogens 2022; 11:pathogens11020208. [PMID: 35215151 PMCID: PMC8877868 DOI: 10.3390/pathogens11020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
For many applications it is necessary to detect target proteins in living cells. This is particularly the case when monitoring viral infections, in which the presence (or absence) of distinct target polypeptides potentially provides vital information about the pathology caused by the agent. To obtain suitable tools with which to monitor parvoviral infections, we thus generated monoclonal antibodies (mAbs) in order to detect the major non-structural protein NS1 in the intracellular environment and tested them for sensitivity and specificity, as well as for cross-reactivity towards related species. Using different immunogens and screening approaches based on indirect immunofluorescence, we describe here a panel of mAbs suitable for monitoring active infections with various parvovirus species by targeting the major non-structural protein NS1. In addition to mAbs detecting the NS1 of parvovirus H-1 (H-1PV) (belonging to the Rodent protoparvovirus 1 species, which is currently under validation as an anti-cancer agent), we generated tools with which to monitor infections by human cutavirus (CuV) and B19 virus (B19V) (belonging to the Primate protoparvovirus 3 and the Primate erythroparvovirus 1 species, respectively, which were both found to persistently infect human tissues). As well as mAbs able to detect NS1 from a broad range of parvoviruses, we obtained entities specific for either (distinct) members of the Rodent protoparvovirus 1 species, human CuV, or human B19V.
Collapse
Affiliation(s)
- Claudia Tessmer
- Genomics and Proteomics Core Facility, Unit Antibodies, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.T.); (I.H.)
| | - Claudia Plotzky
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
| | - Jana Fees
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
| | - Hendrik Welsch
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
| | - Rebecca Eudenbach
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
| | - Martin Faber
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
| | - Alicia Simón
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
| | - Assia Angelova
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.A.); (J.R.)
| | - Jean Rommelaere
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.A.); (J.R.)
| | - Ilse Hofmann
- Genomics and Proteomics Core Facility, Unit Antibodies, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.T.); (I.H.)
| | - Jürg P. F. Nüesch
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.P.); (J.F.); (H.W.); (R.E.); (M.F.); (A.S.)
- Correspondence: ; Tel.: +49-6221-424982; Fax: +49-6221-424971
| |
Collapse
|
2
|
Kulkarni A, Ferreira T, Bretscher C, Grewenig A, El-Andaloussi N, Bonifati S, Marttila T, Palissot V, Hossain JA, Azuaje F, Miletic H, Ystaas LAR, Golebiewska A, Niclou SP, Roeth R, Niesler B, Weiss A, Brino L, Marchini A. Oncolytic H-1 parvovirus binds to sialic acid on laminins for cell attachment and entry. Nat Commun 2021; 12:3834. [PMID: 34158478 PMCID: PMC8219832 DOI: 10.1038/s41467-021-24034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
H-1 parvovirus (H-1PV) is a promising anticancer therapy. However, in-depth understanding of its life cycle, including the host cell factors needed for infectivity and oncolysis, is lacking. This understanding may guide the rational design of combination strategies, aid development of more effective viruses, and help identify biomarkers of susceptibility to H-1PV treatment. To identify the host cell factors involved, we carry out siRNA library screening using a druggable genome library. We identify one crucial modulator of H-1PV infection: laminin γ1 (LAMC1). Using loss- and gain-of-function studies, competition experiments, and ELISA, we validate LAMC1 and laminin family members as being essential to H-1PV cell attachment and entry. H-1PV binding to laminins is dependent on their sialic acid moieties and is inhibited by heparin. We show that laminins are differentially expressed in various tumour entities, including glioblastoma. We confirm the expression pattern of laminin γ1 in glioblastoma biopsies by immunohistochemistry. We also provide evidence of a direct correlation between LAMC1 expression levels and H-1PV oncolytic activity in 59 cancer cell lines and in 3D organotypic spheroid cultures with different sensitivities to H-1PV infection. These results support the idea that tumours with elevated levels of γ1 containing laminins are more susceptible to H-1PV-based therapies.
Collapse
Affiliation(s)
- Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tiago Ferreira
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Annabel Grewenig
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Nazim El-Andaloussi
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Lonza Cologne GmbH, Köln, Germany
| | - Serena Bonifati
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Tiina Marttila
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Valérie Palissot
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jubayer A Hossain
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Francisco Azuaje
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Genomics England, London, United Kingdom
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Lars A R Ystaas
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna Golebiewska
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ralf Roeth
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Amélie Weiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Laurent Brino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany.
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
3
|
Non-viral gene delivery of the oncotoxic protein NS1 for treatment of hepatocellular carcinoma. J Control Release 2021; 334:138-152. [PMID: 33894304 DOI: 10.1016/j.jconrel.2021.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is related to increasing incidence rates and poor clinical outcomes due to lack of efficient treatment options and emerging resistance mechanisms. The aim of the present study is to exploit a non-viral gene therapy enabling the expression of the parvovirus-derived oncotoxic protein NS1 in HCC. This anticancer protein interacts with different cellular kinases mediating a multimodal host-cell death. Lipoplexes (LPX) designed to deliver a DNA expression plasmid encoding NS1 are characterized using a comprehensive set of in vitro assays. The mechanisms of cell death induction are assessed and phosphoinositide-dependent kinase 1 (PDK1) is identified as a potential predictive biomarker for a NS1-LPX-based gene therapy. In an HCC xenograft mouse model, NS1-LPX therapeutic approach results in a significant reduction in tumor growth and extended survival. Data provide convincing evidence for future studies using a targeted NS1 gene therapy for PDK1 overexpressing HCC.
Collapse
|
4
|
Hartley A, Kavishwar G, Salvato I, Marchini A. A Roadmap for the Success of Oncolytic Parvovirus-Based Anticancer Therapies. Annu Rev Virol 2020; 7:537-557. [PMID: 32600158 DOI: 10.1146/annurev-virology-012220-023606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autonomous rodent protoparvoviruses (PVs) are promising anticancer agents due to their excellent safety profile, natural oncotropism, and oncosuppressive activities. Viral infection can trigger immunogenic cell death, activating the immune system against the tumor. However, the efficacy of this treatment in recent clinical trials is moderate compared with results seen in preclinical work. Various strategies have been employed to improve the anticancer activities of oncolytic PVs, including development of second-generation parvoviruses with enhanced oncolytic and immunostimulatory activities and rational combination of PVs with other therapies. Understanding the cellular factors involved in the PV life cycle is another important area of investigation. Indeed, these studies may lead to the identification of biomarkers that would allow a more personalized use of PV-based therapies. This review focuses on this work and the challenges that still need to be overcome to move PVs forward into clinical practice as an effective therapeutic option for cancer patients.
Collapse
Affiliation(s)
- Anna Hartley
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Gayatri Kavishwar
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Ilaria Salvato
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany; .,Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| |
Collapse
|
5
|
Bretscher C, Marchini A. H-1 Parvovirus as a Cancer-Killing Agent: Past, Present, and Future. Viruses 2019; 11:v11060562. [PMID: 31216641 PMCID: PMC6630270 DOI: 10.3390/v11060562] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
The rat protoparvovirus H-1PV is nonpathogenic in humans, replicates preferentially in cancer cells, and has natural oncolytic and oncosuppressive activities. The virus is able to kill cancer cells by activating several cell death pathways. H-1PV-mediated cancer cell death is often immunogenic and triggers anticancer immune responses. The safety and tolerability of H-1PV treatment has been demonstrated in early clinical studies in glioma and pancreatic carcinoma patients. Virus treatment was associated with surrogate signs of efficacy including immune conversion of tumor microenvironment, effective virus distribution into the tumor bed even after systemic administration, and improved patient overall survival compared with historical control. However, monotherapeutic use of the virus was unable to eradicate tumors. Thus, further studies are needed to improve H-1PV's anticancer profile. In this review, we describe H-1PV's anticancer properties and discuss recent efforts to improve the efficacy of H-1PV and, thereby, the clinical outcome of H-1PV-based therapies.
Collapse
Affiliation(s)
- Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, F011, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, F011, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
6
|
Sahu SK, Kumar M. Application of Oncolytic Virus as a Therapy of Cancer. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Atomic Resolution Structure of the Oncolytic Parvovirus LuIII by Electron Microscopy and 3D Image Reconstruction. Viruses 2017; 9:v9110321. [PMID: 29084163 PMCID: PMC5707528 DOI: 10.3390/v9110321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/23/2023] Open
Abstract
LuIII, a protoparvovirus pathogenic to rodents, replicates in human mitotic cells, making it applicable for use to kill cancer cells. This virus group includes H-1 parvovirus (H-1PV) and minute virus of mice (MVM). However, LuIII displays enhanced oncolysis compared to H-1PV and MVM, a phenotype mapped to the major capsid viral protein 2 (VP2). This suggests that within LuIII VP2 are determinants for improved tumor lysis. To investigate this, the structure of the LuIII virus-like-particle was determined using single particle cryo-electron microscopy and image reconstruction to 3.17 Å resolution, and compared to the H-1PV and MVM structures. The LuIII VP2 structure, ordered from residue 37 to 587 (C-terminal), had the conserved VP topology and capsid morphology previously reported for other protoparvoviruses. This includes a core β-barrel and α-helix A, a depression at the icosahedral 2-fold and surrounding the 5-fold axes, and a single protrusion at the 3-fold axes. Comparative analysis identified surface loop differences among LuIII, H-1PV, and MVM at or close to the capsid 2- and 5-fold symmetry axes, and the shoulder of the 3-fold protrusions. The 2-fold differences cluster near the previously identified MVM sialic acid receptor binding pocket, and revealed potential determinants of protoparvovirus tumor tropism.
Collapse
|
8
|
Heckman CA, Pandey P, Cayer ML, Biswas T, Zhang Z, Boudreau NS. The tumor promoter-activated protein kinase Cs are a system for regulating filopodia. Cytoskeleton (Hoboken) 2017; 74:297-314. [PMID: 28481056 PMCID: PMC5575509 DOI: 10.1002/cm.21373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 01/02/2023]
Abstract
Different protein kinase C (PKC) isoforms have distinct roles in regulating cell functions. The conventional (α, β, γ) and novel (δ, ɛ, η, θ) classes are targets of phorbol ester tumor promoters, which are surrogates of endogenous second messenger, diacylglycerol. The promoter-stimulated disappearance of filopodia was investigated by use of blocking peptides (BPs) that inhibit PKC maturation and/or docking. Filopodia were partially rescued by a peptide representing PKC ɛ hydrophobic sequence, but also by a myristoylated PKC α/β pseudosubstrate sequence, and an inhibitor of T-cell protein tyrosine phosphatase (TC-PTP). The ability to turn over filopodia was widely distributed among PKC isoforms. PKC α and η hydrophobic sequences enhanced filopodia in cells in the absence of tumor promoter treatment. With transcriptional knockdown of PKC α, the content of PKC ɛ predominated over other isoforms. PKC ɛ could decrease filopodia significantly in promoter-treated cells, and this was attributed to ruffling. The presence of PKC α counteracted the PKC ɛ-mediated enhancement of ruffling. The results showed that there were two mechanisms of filopodia downregulation. One operated in the steady-state and relied on PKC α and η. The other was stimulated by tumor promoters and relied on PKC ɛ. Cycles of protrusion and retraction are characteristic of filopodia and are essential for the cell to orient itself during chemotaxis and haptotaxis. By suppressing filopodia, PKC ɛ can create a long-term "memory" of an environmental signal that may act in nature as a mnemonic device to mark the direction of a repulsive signal.
Collapse
Affiliation(s)
- Carol A. Heckman
- Department of Biological SciencesBowling Green State UniversityLife Sciences Building Room 217Bowling GreenOhio43403
| | - Pratima Pandey
- Department of Biological SciencesBowling Green State UniversityLife Sciences Building Room 217Bowling GreenOhio43403
| | - Marilyn L. Cayer
- Center for Microscopy and MicroanalysisBowling Green State UniversityLife Sciences Building Room 217Bowling GreenOhio43403
| | - Tania Biswas
- Department of Biological SciencesBowling Green State UniversityLife Sciences Building Room 217Bowling GreenOhio43403
| | - Zhong‐Yin Zhang
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityRobert E. Heine Pharmacy Building, Room 202A, 575 Stadium Mall DriveWest LafayetteIndiana47907
| | - Nancy S. Boudreau
- Department of Applied Statistics and Operations ResearchBowling Green State University344 Business Administration BuildingBowling GreenOhio43403
| |
Collapse
|
9
|
Salasc F, Mutuel D, Debaisieux S, Perrin A, Dupressoir T, Grenet ASG, Ogliastro M. Role of the phosphatidylinositol-3-kinase/Akt/target of rapamycin pathway during ambidensovirus infection of insect cells. J Gen Virol 2015; 97:233-245. [PMID: 26508507 DOI: 10.1099/jgv.0.000327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K)/Akt/target of rapamycin (TOR) signalling pathway controls cell growth and survival, and is targeted by a number of viruses at different phases of their infection cycle to control translation. Whether and how insect viruses interact with this pathway remain poorly addressed. Here, we investigated the role of PI3K/Akt/TOR signalling during lethal infection of insect cells with an insect parvovirus. Using Junonia coenia densovirus (JcDV; lepidopteran ambidensovirus 1) and susceptible insect cells as experimental models, we first described JcDV cytopathology, and showed that viral infection affects cell size, cell proliferation and survival. We deciphered the role of PI3K/Akt/TOR signalling in the course of infection and found that non-structural (NS) protein expression correlates with the inhibition of TOR and the shutdown of cellular synthesis, concomitant with the burst of viral protein expression. Together, these results suggest that NS proteins control the cellular translational machinery to favour the translation of viral mRNAs at the expense of cellular mRNAs. As a consequence of TOR inhibition, cell autophagy is activated. These results highlight new functions for NS proteins in the course of multiplication of an insect parvovirus.
Collapse
Affiliation(s)
- F Salasc
- EPHE, Pathologie Comparée des Invertébrés, UMR 1333, 34000 Montpellier, France.,INRA, UMR 1333, 34000 Montpellier, France
| | - D Mutuel
- INRA, UMR 1333, 34000 Montpellier, France
| | | | - A Perrin
- INRA, UMR 1333, 34000 Montpellier, France.,Invivo Agrosolutions, 06560 Valbonne, France
| | - T Dupressoir
- EPHE, Pathologie Comparée des Invertébrés, UMR 1333, 34000 Montpellier, France.,INRA, UMR 1333, 34000 Montpellier, France
| | - A-S Gosselin Grenet
- INRA, UMR 1333, 34000 Montpellier, France.,Université de Montpellier, UMR 1333, 34000 Montpellier, France
| | | |
Collapse
|
10
|
Angelova AL, Geletneky K, Nüesch JPF, Rommelaere J. Tumor Selectivity of Oncolytic Parvoviruses: From in vitro and Animal Models to Cancer Patients. Front Bioeng Biotechnol 2015; 3:55. [PMID: 25954743 PMCID: PMC4406089 DOI: 10.3389/fbioe.2015.00055] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/05/2015] [Indexed: 11/23/2022] Open
Abstract
Oncolytic virotherapy of cancer is among the innovative modalities being under development and especially promising for targeting tumors, which are resistant to conventional treatments. Presently, at least a dozen of viruses, belonging to nine different virus families, are being tested within the frames of various clinical studies in cancer patients. Continuously growing preclinical evidence showing that the autonomous rat parvovirus H-1 (H-1PV) is able to kill tumor cells that resist conventional treatments and to achieve a complete cure of various human tumors in animal models argues for its inclusion in the arsenal of oncolytic viruses with an especially promising bench to bedside translation potential. Oncolytic parvovirus safe administration to humans relies on the intrinsic preference of these agents for quickly proliferating, metabolically, and biochemically disturbed tumor versus normal cells (tumor selectivity or oncotropism). The present review summarizes and discusses (i) preclinical evidence of H-1PV innocuousness for normal cells and healthy tissues in vitro and in animals, respectively, (ii) toxicological assessments of H-1PV mono- or combined therapy in tumor-bearing virus-permissive animal models, as well as (iii) historical results of experimental infection of human cancer patients with H-1PV. Altogether, these data argue against a risk of H-1PV inducing significant toxic effects in human patients. This highly favorable safety profile allowed the translation of H-1PV preclinical research into a Phase I/IIa clinical trial being currently in progress.
Collapse
Affiliation(s)
- Assia L Angelova
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Karsten Geletneky
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany ; Department of Neurosurgery, University of Heidelberg , Heidelberg , Germany
| | - Jürg P F Nüesch
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Jean Rommelaere
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
11
|
Geletneky K, Nüesch JP, Angelova A, Kiprianova I, Rommelaere J. Double-faceted mechanism of parvoviral oncosuppression. Curr Opin Virol 2015; 13:17-24. [PMID: 25841215 DOI: 10.1016/j.coviro.2015.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 11/17/2022]
Abstract
The H-1 parvovirus (H-1PV) exerts oncosuppressive action that has two components: oncotoxicity and immunostimulation. While many human tumor cells, including conventional drug-resistant ones, can be killed by H-1PV, some fail to support progeny virus production, necessary for infection propagation in neoplastic tissues. This limitation can be overcome through forced selection of H-1PV variants capable of enhanced multiplication and spreading in human tumor cells. In the context of further developing H-1PV for use in cancer therapy, arming it with immunostimulatory CpG motifs under conditions preserving replication and oncolysis enhances its action as an anticancer vaccine adjuvant. A first clinical study of H-1PV treatment in glioma patients has yielded evidence of intratumoral synthesis of the viral oncotoxic protein NS1 and immune cell infiltration.
Collapse
Affiliation(s)
- Karsten Geletneky
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany; Department of Neurosurgery, University Hospital, 69120 Heidelberg, Germany
| | - Jürg Pf Nüesch
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Assia Angelova
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Irina Kiprianova
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Jean Rommelaere
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany.
| |
Collapse
|