1
|
Dutta P, Mäkinen K. Mapping and quantification of potato virus A RNA genomes within viral particles and polysomes in infected plant cells. J Virol Methods 2025; 332:115066. [PMID: 39549925 DOI: 10.1016/j.jviromet.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Potato virus A belongs to the genus Potyvirus, a group of single-stranded positive sense RNA viruses infecting crops worldwide. To initiate infection in a host, its genome takes part in different activities, viz., translation, replication, encapsidation during the infection cycle. Extensive research has been carried out to scrutinize the stages of potyviral infection cycle and decipher the strategies it employs to cause disease. Nonetheless, the amount of viral RNA taking part in translation and virion formation, at a given time point, is missing. In this study, we quantified the percentage of viral RNA that exists as virions and those that associates with host polysome, relative to total viral RNA in infected plant tissue. We employed a revised version of immuno-capture reverse transcription PCR and polysome profiling to address our queries. We tested three different coating antibody concentrations and further optimized the immuno-capture reverse transcription PCR protocol to address its limitation of binding and retaining viral particles. Our results indicate that most of the viral RNA (69 %) exists as encapsidated genomes, while 3 % of total viral RNA associates with host polysomes. These findings are crucial for correct interpretation of quantitative translational studies in which correlation must be made between the number of polysome-associated transcripts and the amount of protein synthesized.
Collapse
Affiliation(s)
- Pinky Dutta
- Viikki Plants Science Centre and Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland
| | - Kristiina Mäkinen
- Viikki Plants Science Centre and Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland.
| |
Collapse
|
2
|
Brown SL, May JP. Viral condensates formed by Pea enation mosaic virus 2 sequester ribosomal components and suppress translation. Virology 2025; 601:110301. [PMID: 39549315 DOI: 10.1016/j.virol.2024.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Viral proteins with intrinsic disorder, such as the p26 movement protein from Pea enation mosaic virus 2 (PEMV2), can phase separate and form condensates that aid specific stages of virus replication. However, little is known about the impact of viral condensate formation on essential cellular processes, like translation. In this study, we performed mass spectrometry on affinity-purified p26 condensates and found an enrichment of RNA-binding proteins involved in translation and ribosome biogenesis. Puromycin assays and polysome profiling show that ectopic p26 expression suppresses ribosome assembly and translation in Nicotiana benthamiana, mirroring defects in late-stage PEMV2 infection. Despite interactions with the 2'-O-methyltransferase fibrillarin, p26 does not inhibit translation by altering rRNA methylation but instead binds directly to rRNAs and decreases their solubility. Disruption of ribosome assembly and translation by p26 during late PEMV2 infection may promote stages of the virus replication cycle that are incompatible with translation, including systemic movement.
Collapse
Affiliation(s)
- Shelby L Brown
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jared P May
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO, 64110, USA.
| |
Collapse
|
3
|
Pollari ME, Aspelin WWE, Wang L, Mäkinen KM. The Molecular Maze of Potyviral and Host Protein Interactions. Annu Rev Virol 2024; 11:147-170. [PMID: 38848589 DOI: 10.1146/annurev-virology-100422-034124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The negative effects of potyvirus diseases on the agricultural industry are extensive and global. Understanding how protein-protein interactions contribute to potyviral infections is imperative to developing resistant varieties that help counter the threat potyviruses pose. While many protein-protein interactions have been reported, only a fraction are essential for potyviral infection. Accumulating evidence demonstrates that potyviral infection processes are interconnected. For instance, the interaction between the eukaryotic initiation factor 4E (eIF4E) and viral protein genome-linked (VPg) is crucial for both viral translation and protecting viral RNA (vRNA). Additionally, recent evidence for open reading frames on the reverse-sense vRNA and for nonequimolar expression of viral proteins has challenged the previous polyprotein expression model. These discoveries will surely reveal more about the potyviral protein interactome. In this review, we present a synthesis of the potyviral infection cycle and discuss influential past discoveries and recent work on protein-protein interactions in various infection processes.
Collapse
Affiliation(s)
- Maija E Pollari
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - William W E Aspelin
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - Linping Wang
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - Kristiina M Mäkinen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| |
Collapse
|
4
|
Lin W, Nagy PD. Co-opted cytosolic proteins form condensate substructures within membranous replication organelles of a positive-strand RNA virus. THE NEW PHYTOLOGIST 2024; 243:1917-1935. [PMID: 38515267 DOI: 10.1111/nph.19691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Positive-strand RNA viruses co-opt organellar membranes for biogenesis of viral replication organelles (VROs). Tombusviruses also co-opt pro-viral cytosolic proteins to VROs. It is currently not known what type of molecular organization keeps co-opted proteins sequestered within membranous VROs. In this study, we employed tomato bushy stunt virus (TBSV) and carnation Italian ringspot virus (CIRV) - Nicotiana benthamiana pathosystems to identify biomolecular condensate formation in VROs. We show that TBSV p33 and the CIRV p36 replication proteins sequester glycolytic and fermentation enzymes in unique condensate substructures associated with membranous VROs. We find that p33 and p36 form droplets in vitro driven by intrinsically disordered region. The replication protein organizes partitioning of co-opted host proteins into droplets. VRO-associated condensates are critical for local adenosine triphosphate production to support energy for virus replication. We find that co-opted endoplasmic reticulum membranes and actin filaments form meshworks within and around VRO condensates, contributing to unique composition and structure. We propose that p33/p36 organize liquid-liquid phase separation of co-opted concentrated host proteins in condensate substructures within membranous VROs. Overall, we demonstrate that subverted membranes and condensate substructures co-exist and are critical for VRO functions. The replication proteins induce and connect the two substructures within VROs.
Collapse
Affiliation(s)
- Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40543, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40543, USA
| |
Collapse
|
5
|
Carrasco JL, Ambrós S, Gutiérrez PA, Elena SF. Adaptation of turnip mosaic virus to Arabidopsis thaliana involves rewiring of VPg-host proteome interactions. Virus Evol 2024; 10:veae055. [PMID: 39091990 PMCID: PMC11291303 DOI: 10.1093/ve/veae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
The outcome of a viral infection depends on a complex interplay between the host physiology and the virus, mediated through numerous protein-protein interactions. In a previous study, we used high-throughput yeast two-hybrid (HT-Y2H) to identify proteins in Arabidopsis thaliana that bind to the proteins encoded by the turnip mosaic virus (TuMV) genome. Furthermore, after experimental evolution of TuMV lineages in plants with mutations in defense-related or proviral genes, most mutations observed in the evolved viruses affected the VPg cistron. Among these mutations, D113G was a convergent mutation selected in many lineages across different plant genotypes, including cpr5-2 with constitutive expression of systemic acquired resistance. In contrast, mutation R118H specifically emerged in the jin1 mutant with affected jasmonate signaling. Using the HT-Y2H system, we analyzed the impact of these two mutations on VPg's interaction with plant proteins. Interestingly, both mutations severely compromised the interaction of VPg with the translation initiation factor eIF(iso)4E, a crucial interactor for potyvirus infection. Moreover, mutation D113G, but not R118H, adversely affected the interaction with RHD1, a zinc-finger homeodomain transcription factor involved in regulating DNA demethylation. Our results suggest that RHD1 enhances plant tolerance to TuMV infection. We also discuss our findings in a broad virus evolution context.
Collapse
Affiliation(s)
- José L Carrasco
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
| | - Silvia Ambrós
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
| | - Pablo A Gutiérrez
- Laboratorio de Microbiología Industrial, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 65 Nro. 59A - 110, Medellín, Antioquia 050034, Colombia
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
- The Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, United States
| |
Collapse
|
6
|
Peng Q, Jiao B, Cheng Y, Yuan B, Zhou J, Cai J, Jiang N, Lin H, Xi D. NtG3BPL1 confers resistance to chilli veinal mottle virus through promoting the degradation of 6K2 in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:720-734. [PMID: 38713838 DOI: 10.1111/tpj.16789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
The RNA regulatory network is a complex and dynamic regulation in plant cells involved in mRNA modification, translation, and degradation. Ras-GAP SH3 domain-binding protein (G3BP) is a scaffold protein for the assembly of stress granules (SGs) and is considered an antiviral component in mammals. However, the function of G3BP during virus infection in plants is still largely unknown. In this study, four members of the G3BP-like proteins (NtG3BPLs) were identified in Nicotiana tabacum and the expression levels of NtG3BPL1 were upregulated during chilli veinal mottle virus (ChiVMV) infection. NtG3BPL1 was localized in the nucleus and cytoplasm, forming cytoplasmic granules under transient high-temperature treatment, whereas the abundance of cytoplasmic granules was decreased under ChiVMV infection. Overexpression of NtG3BPL1 inhibited ChiVMV infection and delayed the onset of symptoms, whereas knockout of NtG3BPL1 promoted ChiVMV infection. In addition, NtG3BPL1 directly interacted with ChiVMV 6K2 protein, whereas 6K2 protein had no effect on NtG3BPL1-derived cytoplasmic granules. Further studies revealed that the expression of NtG3BPL1 reduced the chloroplast localization of 6K2-GFP and the NtG3BPL1-6K2 interaction complex was localized in the cytoplasm. Furthermore, NtG3BPL1 promoted the degradation of 6K2 through autophagy pathway, and the accumulation of 6K2 and ChiVMV was affected by autophagy activation or inhibition in plants. Taken together, our results demonstrate that NtG3BPL1 plays a positive role in tobacco resistance against ChiVMV infection, revealing a novel mechanism of plant G3BP in antiviral strategy.
Collapse
Affiliation(s)
- Qiding Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Bolei Jiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Yongchao Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Bowen Yuan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Jingya Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Jingliu Cai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Ning Jiang
- Agronomic Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, P.R. China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Dehui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| |
Collapse
|
7
|
Kang Y, Lin W, Nagy PD. Subversion of selective autophagy for the biogenesis of tombusvirus replication organelles inhibits autophagy. PLoS Pathog 2024; 20:e1012085. [PMID: 38484009 DOI: 10.1371/journal.ppat.1012085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/26/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Elaborate viral replication organelles (VROs) are formed to support positive-strand RNA virus replication in infected cells. VRO formation requires subversion of intracellular membranes by viral replication proteins. Here, we showed that the key ATG8f autophagy protein and NBR1 selective autophagy receptor were co-opted by Tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus. Knockdown of ATG8f or NBR1 in plants led to reduced tombusvirus replication, suggesting pro-viral function for selective autophagy. BiFC and proximity-labeling experiments showed that the TBSV p33 replication protein interacted with ATG8f and NBR1 to recruit them to VROs. In addition, we observed that several core autophagy proteins, such as ATG1a, ATG4, ATG5, ATG101 and the plant-specific SH3P2 autophagy adaptor proteins were also re-localized to TBSV VROs, suggesting that TBSV hijacks the autophagy machinery in plant cells. We demonstrated that subversion of autophagy components facilitated the recruitment of VPS34 PI3 kinase and enrichment of phospholipids, such as phosphatidylethanolamine and PI3P phosphoinositide in the VRO membranes. Hijacking of autophagy components into TBSV VROs led to inhibition of autophagic flux. We also found that a fraction of the subverted ATG8f and NBR1 was sequestered in biomolecular condensates associated with VROs. We propose that the VRO-associated condensates trap those autophagy proteins, taking them away from the autophagy pathway. Overall, tombusviruses hijack selective autophagy to provide phospholipid-rich membranes for replication and to regulate the antiviral autophagic flux.
Collapse
Affiliation(s)
- Yuanrong Kang
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
8
|
Qin L, Liu H, Liu P, Jiang L, Cheng X, Li F, Shen W, Qiu W, Dai Z, Cui H. Rubisco small subunit (RbCS) is co-opted by potyvirids as the scaffold protein in assembling a complex for viral intercellular movement. PLoS Pathog 2024; 20:e1012064. [PMID: 38437247 PMCID: PMC10939294 DOI: 10.1371/journal.ppat.1012064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.
Collapse
Affiliation(s)
- Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongjun Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peilan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lu Jiang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenping Qiu
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, United States of America
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
9
|
Li Q, Liu Y, Zhang X. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses. THE PLANT CELL 2024; 36:227-245. [PMID: 37772963 PMCID: PMC10827315 DOI: 10.1093/plcell/koad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Biomolecular condensates are dynamic structures formed through diverse mechanisms, including liquid-liquid phase separation. These condensates have emerged as crucial regulators of cellular processes in eukaryotic cells, enabling the compartmentalization of specific biological reactions while allowing for dynamic exchange of molecules with the surrounding environment. RNA silencing, a conserved gene regulatory mechanism mediated by small RNAs (sRNAs), plays pivotal roles in various biological processes. Multiple types of biomolecular condensate, including dicing bodies, processing bodies, small interfering RNA bodies, and Cajal bodies, have been identified as key players in RNA silencing pathways. These biomolecular condensates provide spatial compartmentation for the biogenesis, loading, action, and turnover of small RNAs. Moreover, they actively respond to stresses, such as viral infections, and modulate RNA silencing activities during stress responses. This review summarizes recent advances in understanding of dicing bodies and other biomolecular condensates involved in RNA silencing. We explore their formation, roles in RNA silencing, and contributions to antiviral resistance responses. This comprehensive overview provides insights into the functional significance of biomolecular condensates in RNA silencing and expands our understanding of their roles in gene expression and stress responses in plants.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| |
Collapse
|
10
|
Mäkinen K, Aspelin W, Pollari M, Wang L. How do they do it? The infection biology of potyviruses. Adv Virus Res 2023; 117:1-79. [PMID: 37832990 DOI: 10.1016/bs.aivir.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Kristiina Mäkinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - William Aspelin
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Linping Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Hoffmann G, López-González S, Mahboubi A, Hanson J, Hafrén A. Cauliflower mosaic virus protein P6 is a multivalent node for RNA granule proteins and interferes with stress granule responses during plant infection. THE PLANT CELL 2023; 35:3363-3382. [PMID: 37040611 PMCID: PMC10473198 DOI: 10.1093/plcell/koad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Biomolecular condensation is a multipurpose cellular process that viruses use ubiquitously during their multiplication. Cauliflower mosaic virus replication complexes are condensates that differ from those of most viruses, as they are nonmembranous assemblies that consist of RNA and protein, mainly the viral protein P6. Although these viral factories (VFs) were described half a century ago, with many observations that followed since, functional details of the condensation process and the properties and relevance of VFs have remained enigmatic. Here, we studied these issues in Arabidopsis thaliana and Nicotiana benthamiana. We observed a large dynamic mobility range of host proteins within VFs, while the viral matrix protein P6 is immobile, as it represents the central node of these condensates. We identified the stress granule (SG) nucleating factors G3BP7 and UBP1 family members as components of VFs. Similarly, as SG components localize to VFs during infection, ectopic P6 localizes to SGs and reduces their assembly after stress. Intriguingly, it appears that soluble rather than condensed P6 suppresses SG formation and mediates other essential P6 functions, suggesting that the increased condensation over the infection time-course may accompany a progressive shift in selected P6 functions. Together, this study highlights VFs as dynamic condensates and P6 as a complex modulator of SG responses.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Amir Mahboubi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90736 Umeå, Sweden
| | - Johannes Hanson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90736 Umeå, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| |
Collapse
|
12
|
Miao Y, Guo X, Zhu K, Zhao W. Biomolecular condensates tunes immune signaling at the Host-Pathogen interface. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102374. [PMID: 37148673 DOI: 10.1016/j.pbi.2023.102374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/08/2023]
Abstract
Membraneless organelles participate in diverse spatiotemporal regulation of cellular signal transduction by recruiting necessary signaling factors. During host-pathogen interactions, the plasma membrane (PM) at the interface between the plant and microbes serves as a central platform for forming multicomponent immune signaling hubs. The macromolecular condensation of the immune complex and regulators is important in regulating immune signaling outputs regarding strength, timing, and crosstalk between signaling pathways. This review discusses mechanisms that regulate specific and crosstalk of plant immune signal transduction pathways through macromolecular assembly and condensation.
Collapse
Affiliation(s)
- Yansong Miao
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore.
| | - Xiangfu Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Kexin Zhu
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore; Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
| |
Collapse
|
13
|
Nunna H, Qu F, Tatineni S. P3 and NIa-Pro of Turnip Mosaic Virus Are Independent Elicitors of Superinfection Exclusion. Viruses 2023; 15:1459. [PMID: 37515147 PMCID: PMC10383533 DOI: 10.3390/v15071459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Superinfection exclusion (SIE) is an antagonistic interaction between identical or closely related viruses in host cells. Previous studies by us and others led to the hypothesis that SIE was elicited by one or more proteins encoded in the genomes of primary viruses. Here, we tested this hypothesis using Turnip mosaic virus (TuMV), a member of the genus Potyvirus of the family Potyviridae, with significant economic consequences. To this end, individual TuMV-encoded proteins were transiently expressed in the cells of Nicotiana benthamiana leaves, followed by challenging them with a modified TuMV expressing the green fluorescent protein (TuMV-GFP). Three days after TuMV-GFP delivery, these cells were examined for the replication-dependent expression of GFP. Cells expressing TuMV P1, HC-Pro, 6K1, CI, 6K2, NIa-VPg, NIb, or CP proteins permitted an efficient expression of GFP, suggesting that these proteins failed to block the replication of a superinfecting TuMV-GFP. By contrast, N. benthamiana cells expressing TuMV P3 or NIa-Pro did not express visible GFP fluorescence, suggesting that both of them could elicit potent SIE against TuMV-GFP. The SIE elicitor activity of P3 and NIa-Pro was further confirmed by their heterologous expression from a different potyvirus, potato virus A (PVA). Plants systemically infected with PVA variants expressing TuMV P3 or NIa-Pro blocked subsequent infection by TuMV-GFP. A +1-frameshift mutation in P3 and NIa-Pro cistrons facilitated superinfection by TuMV-GFP, suggesting that the P3 and NIa-Pro proteins, but not the RNA, are involved in SIE activity. Additionally, deletion mutagenesis identified P3 amino acids 3 to 200 of 352 and NIa-Pro amino acids 3 to 40 and 181 to 242 of 242 as essential for SIE elicitation. Collectively, our study demonstrates that TuMV encodes two spatially separated proteins that act independently to exert SIE on superinfecting TuMV. These results lay the foundation for further mechanistic interrogations of SIE in this virus.
Collapse
Affiliation(s)
- Haritha Nunna
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Satyanarayana Tatineni
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| |
Collapse
|
14
|
Hu W, Dai Z, Liu P, Deng C, Shen W, Li Z, Cui H. The Single Distinct Leader Protease Encoded by Alpinia oxyphylla Mosaic Virus (Genus Macluravirus) Suppresses RNA Silencing Through Interfering with Double-Stranded RNA Synthesis. PHYTOPATHOLOGY 2023; 113:1103-1114. [PMID: 36576401 DOI: 10.1094/phyto-10-22-0371-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The genomic 5'-terminal regions of viruses in the family Potyviridae (potyvirids) encode two types of leader proteases: serine-protease (P1) and cysteine-protease (HCPro), which differ greatly in the arrangement and sequence composition among inter-genus viruses. Most potyvirids have the same tandemly arranged P1 and HCPro, whereas viruses in the genus Macluravirus encode a single distinct leader protease, a truncated version of HCPro with yet-unknown functions. We investigated the RNA silencing suppression (RSS) activity and its underpinning mechanism of the distinct HCPro from alpinia oxyphylla mosaic macluravirus (aHCPro). Sequence analysis revealed that macluraviral HCPros have obvious truncations in the N-terminal and middle regions when aligned to their counterparts in potyviruses (well-characterized viral suppressors of RNA silencing). Nearly all defined elements essential for the RSS activity of potyviral counterparts are not distinguished in macluraviral HCPros. Here, we demonstrated that aHCPro exhibits a similar anti-silencing activity with the potyviral counterpart. However, aHCPro fails to block both the local and systemic spreading of RNA silencing. In line, aHCPro interferes with the dsRNA synthesis, an upstream step in the RNA silencing pathway. Affinity-purification and NanoLC-MS/MS analysis revealed that aHCPro has no association with core components or their potential interactors involving in dsRNA synthesis from the protein layer. Instead, the ectopic expression of aHCPro significantly reduces the transcript abundance of RDR2, RDR6, SGS3, and SDE5. This study represents the first report on the anti-silencing function of Macluravirus-encoded HCPro and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Weiyao Hu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Peilan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Changhui Deng
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Zengping Li
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Hongguang Cui
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
15
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
16
|
A Zinc Finger Motif in the P1 N Terminus, Highly Conserved in a Subset of Potyviruses, Is Associated with the Host Range and Fitness of Telosma Mosaic Virus. J Virol 2023; 97:e0144422. [PMID: 36688651 PMCID: PMC9972955 DOI: 10.1128/jvi.01444-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.
Collapse
|
17
|
Hong SF, Fang RY, Wei WL, Jirawitchalert S, Pan ZJ, Hung YL, Pham TH, Chiu YH, Shen TL, Huang CK, Lin SS. Development of an assay system for the analysis of host RISC activity in the presence of a potyvirus RNA silencing suppressor, HC-Pro. Virol J 2023; 20:10. [PMID: 36650505 PMCID: PMC9844029 DOI: 10.1186/s12985-022-01956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/18/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND To investigate the mechanism of RNA silencing suppression, the genetic transformation of viral suppressors of RNA silencing (VSRs) in Arabidopsis integrates ectopic VSR expression at steady state, which overcomes the VSR variations caused by different virus infections or limitations of host range. Moreover, identifying the insertion of the transgenic VSR gene is necessary to establish a model transgenic plant for the functional study of VSR. METHODS Developing an endogenous AGO1-based in vitro RNA-inducing silencing complex (RISC) assay prompts further investigation into VSR-mediated suppression. Three P1/HC-Pro plants from turnip mosaic virus (TuMV) (P1/HC-ProTu), zucchini yellow mosaic virus (ZYMV) (P1/HC-ProZy), and tobacco etch virus (TEV) (P1/HC-ProTe) were identified by T-DNA Finder and used as materials for investigations of the RISC cleavage efficiency. RESULTS Our results indicated that the P1/HC-ProTu plant has slightly lower RISC activity than P1/HC-ProZy plants. In addition, the phenomena are consistent with those observed in TuMV-infected Arabidopsis plants, which implies that HC-ProTu could directly interfere with RISC activity. CONCLUSIONS In this study, we demonstrated the application of various plant materials in an in vitro RISC assay of VSR-mediated RNA silencing suppression.
Collapse
Affiliation(s)
- Syuan-Fei Hong
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Ru-Ying Fang
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Wei-Lun Wei
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Supidcha Jirawitchalert
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Zhao-Jun Pan
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Yu-Ling Hung
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Thanh Ha Pham
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Yen-Hsin Chiu
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan ,grid.453140.70000 0001 1957 0060Seed Improvement and Propagation Station, Council of Agriculture, Taichung, 427 Taiwan
| | - Tang-Long Shen
- grid.19188.390000 0004 0546 0241Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106 Taiwan ,grid.19188.390000 0004 0546 0241Center of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Chien-Kang Huang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 106, Taiwan.
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan. .,Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
18
|
Jiang C, Lei M, Luan H, Pan Y, Zhang L, Zhou S, Cai Y, Xu X, Shen H, Xu R, Feng Z, Zhang J, Yang P. Genomic and Pathogenic Diversity of Barley Yellow Mosaic Virus and Barley Mild Mosaic Virus Isolates in Fields of China and Their Compatibility with Resistance Genes of Cultivated Barley. PLANT DISEASE 2022; 106:2201-2210. [PMID: 35077235 DOI: 10.1094/pdis-11-21-2473-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant viruses transmitted by the soilborne plasmodiophorid Polymyxa graminis constantly threaten global production of cereal crops. Although the yellow mosaic virus disease of barley has been known to be present for a long time in China, the understanding of the diversity of the viral pathogens and their interactions with host resistance remains limited. In this study, we conducted a nationwide survey of P. graminis and the barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV) it transmits, followed by genomic and pathogenic diversity analyses of both viruses. BaYMV and BaMMV were found exclusively in the region downstream of the Yangtze River, despite the national distribution of its transmission vector P. graminis. Analysis of the genomic variations of BaYMV and BaMMV revealed an elevated rate of nonsynonymous substitutions in the viral genome-linked protein (VPg), in which most substitutions were located in its interaction surface with the host eukaryotic translation initiation factor 4E (eIF4E). VPg sequence diversity was associated with the divergence in virus pathogenicity that was identified through multiple field trials. The majority of the resistance genes, including the widely applied rym4 and rym5 (alleles of eIF4E), as well as the combination of rym1/11 and rym5, are not sufficient to protect cultivated barley against viruses in China. Collectively, these results provide insights into virulence specificity and interaction mode with host resistance in cultivated barley, which has significant implications in breeding for the broad-spectrum resistance barley varieties.
Collapse
Affiliation(s)
- Congcong Jiang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaomiao Lei
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Haiye Luan
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng 224002, China
| | - Yuhan Pan
- College of Agronomy, Yangzhou University, Yangzhou 225009, China
| | - Li Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shenghui Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Cai
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao Xu
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng 224002, China
| | - Huiquan Shen
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng 224002, China
| | - Rugen Xu
- College of Agronomy, Yangzhou University, Yangzhou 225009, China
| | - Zongyun Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Yang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
19
|
Hoffmann G, Mahboubi A, Bente H, Garcia D, Hanson J, Hafrén A. Arabidopsis RNA processing body components LSM1 and DCP5 aid in the evasion of translational repression during Cauliflower mosaic virus infection. THE PLANT CELL 2022; 34:3128-3147. [PMID: 35511183 PMCID: PMC9338796 DOI: 10.1093/plcell/koac132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Viral infections impose extraordinary RNA stress, triggering cellular RNA surveillance pathways such as RNA decapping, nonsense-mediated decay, and RNA silencing. Viruses need to maneuver among these pathways to establish infection and succeed in producing high amounts of viral proteins. Processing bodies (PBs) are integral to RNA triage in eukaryotic cells, with several distinct RNA quality control pathways converging for selective RNA regulation. In this study, we investigated the role of Arabidopsis thaliana PBs during Cauliflower mosaic virus (CaMV) infection. We found that several PB components are co-opted into viral factories that support virus multiplication. This pro-viral role was not associated with RNA decay pathways but instead, we established that PB components are helpers in viral RNA translation. While CaMV is normally resilient to RNA silencing, dysfunctions in PB components expose the virus to this pathway, which is similar to previous observations for transgenes. Transgenes, however, undergo RNA quality control-dependent RNA degradation and transcriptional silencing, whereas CaMV RNA remains stable but becomes translationally repressed through decreased ribosome association, revealing a unique dependence among PBs, RNA silencing, and translational repression. Together, our study shows that PB components are co-opted by the virus to maintain efficient translation, a mechanism not associated with canonical PB functions.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
- Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Amir Mahboubi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Heinrich Bente
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
- Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Damien Garcia
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Johannes Hanson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
20
|
Saha S, Lõhmus A, Dutta P, Pollari M, Mäkinen K. Interplay of HCPro and CP in the Regulation of Potato Virus A RNA Expression and Encapsidation. Viruses 2022; 14:1233. [PMID: 35746704 PMCID: PMC9227828 DOI: 10.3390/v14061233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 12/04/2022] Open
Abstract
Potyviral coat protein (CP) and helper component-proteinase (HCPro) play key roles in both the regulation of viral gene expression and the formation of viral particles. We investigated the interplay between CP and HCPro during these viral processes. While the endogenous HCPro and a heterologous viral suppressor of gene silencing both complemented HCPro-less potato virus A (PVA) expression, CP stabilization connected to particle formation could be complemented only by the cognate PVA HCPro. We found that HCPro relieves CP-mediated inhibition of PVA RNA expression likely by enabling HCPro-mediated sequestration of CPs to particles. We addressed the question about the role of replication in formation of PVA particles and gained evidence for encapsidation of non-replicating PVA RNA. The extreme instability of these particles substantiates the need for replication in the formation of stable particles. During replication, viral protein genome linked (VPg) becomes covalently attached to PVA RNA and can attract HCPro, cylindrical inclusion protein and host proteins. Based on the results of the current study and our previous findings we propose a model in which a large ribonucleoprotein complex formed around VPg at one end of PVA particles is essential for their integrity.
Collapse
Affiliation(s)
| | | | | | | | - Kristiina Mäkinen
- Department of Microbiology, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland; (S.S.); (A.L.); (P.D.); (M.P.)
| |
Collapse
|
21
|
Shukla A, Hoffmann G, Kushwaha NK, López-González S, Hofius D, Hafrén A. Salicylic acid and the viral virulence factor 2b regulate the divergent roles of autophagy during cucumber mosaic virus infection. Autophagy 2022; 18:1450-1462. [PMID: 34740306 PMCID: PMC9225522 DOI: 10.1080/15548627.2021.1987674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macroautophagy/autophagy is a conserved intracellular degradation pathway that has recently emerged as an integral part of plant responses to virus infection. The known mechanisms of autophagy range from the selective degradation of viral components to a more general attenuation of disease symptoms. In addition, several viruses are able to manipulate the autophagy machinery and counteract autophagy-dependent resistance. Despite these findings, the complex interplay of autophagy activities, viral pathogenicity factors, and host defense pathways in disease development remains poorly understood. In the current study, we analyzed the interaction between autophagy and cucumber mosaic virus (CMV) in Arabidopsis thaliana. We show that autophagy is induced during CMV infection and promotes the turnover of the major virulence protein and RNA silencing suppressor 2b. Intriguingly, autophagy induction is mediated by salicylic acid (SA) and dampened by the CMV virulence factor 2b. In accordance with 2b degradation, we found that autophagy provides resistance against CMV by reducing viral RNA accumulation in an RNA silencing-dependent manner. Moreover, autophagy and RNA silencing attenuate while SA promotes CMV disease symptoms, and epistasis analysis suggests that autophagy-dependent disease and resistance are uncoupled. We propose that autophagy counteracts CMV virulence via both 2b degradation and reduced SA-responses, thereby increasing plant fitness with the viral trade-off arising from increased RNA silencing-mediated resistance.
Collapse
Affiliation(s)
- Aayushi Shukla
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Nirbhay Kumar Kushwaha
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| |
Collapse
|
22
|
Wang W, Gu Y. The emerging role of biomolecular condensates in plant immunity. THE PLANT CELL 2022; 34:1568-1572. [PMID: 34599333 PMCID: PMC9048959 DOI: 10.1093/plcell/koab240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/22/2021] [Indexed: 05/29/2023]
Abstract
Biomolecular condensates are dynamic nonmembranous structures that seclude and concentrate molecules involved in related biochemical and molecular processes. Recent studies have revealed that a surprisingly large number of fundamentally important cellular processes are driven and regulated by this potentially ancient biophysical principle. Here, we summarize critical findings and new insights from condensate studies that are related to plant immunity. We discuss the role of stress granules and newly identified biomolecular condensates in coordinating plant immune responses and plant-microbe interactions.
Collapse
Affiliation(s)
- Wei Wang
- Author for correspondence: (W.W.), (Y.G.)
| | - Yangnan Gu
- Author for correspondence: (W.W.), (Y.G.)
| |
Collapse
|
23
|
Zuo Z, Roux M, Rodriguez E, Petersen M. mRNA Decapping Factors LSM1 and PAT Paralogs Are Involved in Turnip Mosaic Virus Viral Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:125-130. [PMID: 35100808 DOI: 10.1094/mpmi-09-21-0220-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Turnip mosaic virus is a devastating potyvirus infecting many economically important brassica crops. In response to this, the plant host engages its RNA silencing machinery, involving AGO proteins, as a prominent strategy to restrain turnip mosaic virus (TuMV) infection. It has also been shown that the mRNA decay components DCP2 and VCS partake in viral infection suppression. Here, we report that the mRNA decapping components LSM1, PAT1, PATH1, and PATH2 are essential for TuMV infection. More specifically, lsm1a/lsm1b double mutants and pat1/path1/path2 triple mutants in summ2 background exhibit resistance to TuMV. Concurrently, we observed that TuMV interferes with the decapping function of LSM1 and PAT proteins as the mRNA-decay target genes UGT87A2 and ASL9 accumulate during TuMV infection. Moreover, as TuMV coat protein can be specifically found in complexes with PAT proteins but not LSM1, this suggests that TuMV "hijacks" decapping components via PAT proteins to support viral infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Milena Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Abulfaraj AA, Hirt H, Rayapuram N. G3BPs in Plant Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:680710. [PMID: 34177995 PMCID: PMC8222905 DOI: 10.3389/fpls.2021.680710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/14/2021] [Indexed: 05/24/2023]
Abstract
The sessile nature of plants enforces highly adaptable strategies to adapt to different environmental stresses. Plants respond to these stresses by a massive reprogramming of mRNA metabolism. Balancing of mRNA fates, including translation, sequestration, and decay is essential for plants to not only coordinate growth and development but also to combat biotic and abiotic environmental stresses. RNA stress granules (SGs) and processing bodies (P bodies) synchronize mRNA metabolism for optimum functioning of an organism. SGs are evolutionarily conserved cytoplasmic localized RNA-protein storage sites that are formed in response to adverse conditions, harboring mostly but not always translationally inactive mRNAs. SGs disassemble and release mRNAs into a translationally active form upon stress relief. RasGAP SH3 domain binding proteins (G3BPs or Rasputins) are "scaffolds" for the assembly and stability of SGs, which coordinate receptor mediated signal transduction with RNA metabolism. The role of G3BPs in the formation of SGs is well established in mammals, but G3BPs in plants are poorly characterized. In this review, we discuss recent findings of the dynamics and functions of plant G3BPs in response to environmental stresses and speculate on possible mechanisms such as transcription and post-translational modifications that might regulate the function of this important family of proteins.
Collapse
Affiliation(s)
- Aala A. Abulfaraj
- Department of Biological Sciences, Science and Arts College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heribert Hirt
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Naganand Rayapuram
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
25
|
Changes in Subcellular Localization of Host Proteins Induced by Plant Viruses. Viruses 2021; 13:v13040677. [PMID: 33920930 PMCID: PMC8071230 DOI: 10.3390/v13040677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Viruses are dependent on host factors at all parts of the infection cycle, such as translation, genome replication, encapsidation, and cell-to-cell and systemic movement. RNA viruses replicate their genome in compartments associated with the endoplasmic reticulum, chloroplasts, and mitochondria or peroxisome membranes. In contrast, DNA viruses replicate in the nucleus. Viral infection causes changes in plant gene expression and in the subcellular localization of some host proteins. These changes may support or inhibit virus accumulation and spread. Here, we review host proteins that change their subcellular localization in the presence of a plant virus. The most frequent change is the movement of host cytoplasmic proteins into the sites of virus replication through interactions with viral proteins, and the protein contributes to essential viral processes. In contrast, only a small number of studies document changes in the subcellular localization of proteins with antiviral activity. Understanding the changes in the subcellular localization of host proteins during plant virus infection provides novel insights into the mechanisms of plant–virus interactions and may help the identification of targets for designing genetic resistance to plant viruses.
Collapse
|
26
|
Li Q, Liu N, Liu Q, Zheng X, Lu L, Gao W, Liu Y, Liu Y, Zhang S, Wang Q, Pan J, Chen C, Mi Y, Yang M, Cheng X, Ren G, Yuan YW, Zhang X. DEAD-box helicases modulate dicing body formation in Arabidopsis. SCIENCE ADVANCES 2021; 7:7/18/eabc6266. [PMID: 33910901 PMCID: PMC8081359 DOI: 10.1126/sciadv.abc6266] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/10/2021] [Indexed: 05/02/2023]
Abstract
Eukaryotic cells contain numerous membraneless organelles that are made from liquid droplets of proteins and nucleic acids and that provide spatiotemporal control of various cellular processes. However, the molecular mechanisms underlying the formation and rapid stress-induced alterations of these organelles are relatively uncharacterized. Here, we investigated the roles of DEAD-box helicases in the formation and alteration of membraneless nuclear dicing bodies (D-bodies) in Arabidopsis thaliana We uncovered that RNA helicase 6 (RH6), RH8, and RH12 are previously unidentified D-body components. These helicases interact with and promote the phase separation of SERRATE, a key component of D-bodies, and drive the formation of D-bodies through liquid-liquid phase separations (LLPSs). The accumulation of these helicases in the nuclei decreases upon Turnip mosaic virus infections, which couples with the decrease of D-bodies. Our results thus reveal the key roles of RH6, RH8, and RH12 in modulating D-body formation via LLPSs.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ningkun Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingguo Zheng
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Lu Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenrui Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shicheng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Pan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chen Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingjie Mi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Meiling Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Sánchez Pina MA, Gómez-Aix C, Méndez-López E, Gosalvez Bernal B, Aranda MA. Imaging Techniques to Study Plant Virus Replication and Vertical Transmission. Viruses 2021; 13:358. [PMID: 33668729 PMCID: PMC7996213 DOI: 10.3390/v13030358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Plant viruses are obligate parasites that need to usurp plant cell metabolism in order to infect their hosts. Imaging techniques have been used for quite a long time to study plant virus-host interactions, making it possible to have major advances in the knowledge of plant virus infection cycles. The imaging techniques used to study plant-virus interactions have included light microscopy, confocal laser scanning microscopy, and scanning and transmission electron microscopies. Here, we review the use of these techniques in plant virology, illustrating recent advances in the area with examples from plant virus replication and virus plant-to-plant vertical transmission processes.
Collapse
Affiliation(s)
- María Amelia Sánchez Pina
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| | - Cristina Gómez-Aix
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Murcia, Spain;
| | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| | - Blanca Gosalvez Bernal
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| |
Collapse
|
28
|
Reuper H, Amari K, Krenz B. Analyzing the G3BP-like gene family of Arabidopsis thaliana in early turnip mosaic virus infection. Sci Rep 2021; 11:2187. [PMID: 33500425 PMCID: PMC7838295 DOI: 10.1038/s41598-021-81276-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
The Arabidopsis thaliana genome encodes several genes that are known or predicted to participate in the formation of stress granules (SG). One family of genes encodes for Ras GTPase-activating protein-binding protein (G3BP)-like proteins. Seven genes were identified, of which one of the members was already shown to interact with plant virus proteins in a previous study. A phylogenetic and tissue-specific expression analysis, including laser-dissected phloem, by qRT-PCRs was performed and the sub-cellular localization of individual AtG3BP::EYFP fluorescent fusion proteins expressed in Nicotiana benthamiana epidermal cells was observed. Individual AtG3BP-protein interactions in planta were studied using the bimolecular fluorescence complementation approach in combination with confocal imaging in living cells. In addition, the early and late induction of G3BP-like expression upon Turnip mosaic virus infection was investigated by RNAseq and qRT-PCR. The results showed a high divergence of transcription frequency in the different plant tissues, promiscuous protein-protein interaction within the G3BP-like gene family, and a general induction by a viral infection with TuMV in A. thaliana. The information gained from these studies leads to a better understanding of stress granules, in particular their molecular mode of action in the plant and their role in plant virus infection.
Collapse
Affiliation(s)
- Hendrik Reuper
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7 B, 38124, Braunschweig, Germany
| | - Khalid Amari
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7 B, 38124, Braunschweig, Germany
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Björn Krenz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7 B, 38124, Braunschweig, Germany.
| |
Collapse
|
29
|
A Newly Identified Virus in the Family Potyviridae Encodes Two Leader Cysteine Proteases in Tandem That Evolved Contrasting RNA Silencing Suppression Functions. J Virol 2020; 95:JVI.01414-20. [PMID: 33055249 DOI: 10.1128/jvi.01414-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.IMPORTANCE The Potyviridae represent the largest group of known plant RNA viruses and account for more than half of the viral crop damage worldwide. The leader proteases of viruses within the family vary greatly in size and arrangement and play key roles during the infection. Here, we experimentally demonstrate the presence of a distinct pattern of leader proteases, HCPro1 and HCPro2 in tandem, in a newly identified member within the family. Moreover, HCPro1 and HCPro2, which are closely related and typically characterized with a short size, have evolved contrasting RNA silencing suppression activity and seem to function in a coordinated manner to maintain viral infectivity. Altogether, the new knowledge fills a missing piece in the evolutionary relationship history of potyvirids and improves our understanding of the diversification of potyvirid genomes.
Collapse
|
30
|
Brocca S, Grandori R, Longhi S, Uversky V. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions. Int J Mol Sci 2020; 21:E9045. [PMID: 33260713 PMCID: PMC7730420 DOI: 10.3390/ijms21239045] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are unable to adopt a unique 3D structure under physiological conditions and thus exist as highly dynamic conformational ensembles. IDPs are ubiquitous and widely spread in the protein realm. In the last decade, compelling experimental evidence has been gathered, pointing to the ability of IDPs and intrinsically disordered regions (IDRs) to undergo liquid-liquid phase separation (LLPS), a phenomenon driving the formation of membrane-less organelles (MLOs). These biological condensates play a critical role in the spatio-temporal organization of the cell, where they exert a multitude of key biological functions, ranging from transcriptional regulation and silencing to control of signal transduction networks. After introducing IDPs and LLPS, we herein survey available data on LLPS by IDPs/IDRs of viral origin and discuss their functional implications. We distinguish LLPS associated with viral replication and trafficking of viral components, from the LLPS-mediated interference of viruses with host cell functions. We discuss emerging evidence on the ability of plant virus proteins to interfere with the regulation of MLOs of the host and propose that bacteriophages can interfere with bacterial LLPS, as well. We conclude by discussing how LLPS could be targeted to treat phase separation-associated diseases, including viral infections.
Collapse
Affiliation(s)
- Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille University and CNRS, 13288 Marseille, France
| | - Vladimir Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33601, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
31
|
De S, Pollari M, Varjosalo M, Mäkinen K. Association of host protein VARICOSE with HCPro within a multiprotein complex is crucial for RNA silencing suppression, translation, encapsidation and systemic spread of potato virus A infection. PLoS Pathog 2020; 16:e1008956. [PMID: 33045020 PMCID: PMC7581364 DOI: 10.1371/journal.ppat.1008956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/22/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
In this study, we investigated the significance of a conserved five-amino acid motif 'AELPR' in the C-terminal region of helper component-proteinase (HCPro) for potato virus A (PVA; genus Potyvirus) infection. This motif is a putative interaction site for WD40 domain-containing proteins, including VARICOSE (VCS). We abolished the interaction site in HCPro by replacing glutamic acid (E) and arginine (R) with alanines (A) to generate HCProWD. These mutations partially eliminated HCPro-VCS co-localization in cells. We have earlier described potyvirus-induced RNA granules (PGs) in which HCPro and VCS co-localize and proposed that they have a role in RNA silencing suppression. We now demonstrate that the ability of HCProWD to induce PGs, introduce VCS into PGs, and suppress RNA silencing was impaired. Accordingly, PVA carrying HCProWD (PVAWD) infected Nicotiana benthamiana less efficiently than wild-type PVA (PVAWT) and HCProWD complemented the lack of HCPro in PVA gene expression only partially. HCPro was purified from PVA-infected leaves as part of high molecular weight (HMW) ribonucleoprotein (RNP) complexes. These complexes were more stable when associated with wild-type HCPro than with HCProWD. Moreover, VCS and two viral components of the HMW-complexes, viral protein genome-linked and cylindrical inclusion protein were specifically decreased in HCProWD-containing HMW-complexes. A VPg-mediated boost in translation of replication-deficient PVA (PVAΔGDD) was observed only if viral RNA expressed wild-type HCPro. The role of VCS-VPg-HCPro coordination in PVA translation was further supported by results from VCS silencing and overexpression experiments and by significantly elevated PVA-derived Renilla luciferase vs PVA RNA ratio upon VPg-VCS co-expression. Finally, we found that PVAWD was unable to form virus particles or to spread systemically in the infected plant. We highlight the role of HCPro-VCS containing multiprotein assemblies associated with PVA RNA in protecting it from degradation, ensuring efficient translation, formation of stable virions and establishment of systemic infection.
Collapse
Affiliation(s)
- Swarnalok De
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| | - Maija Pollari
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| | | | - Kristiina Mäkinen
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| |
Collapse
|
32
|
Pollari M, De S, Wang A, Mäkinen K. The potyviral silencing suppressor HCPro recruits and employs host ARGONAUTE1 in pro-viral functions. PLoS Pathog 2020; 16:e1008965. [PMID: 33031436 PMCID: PMC7575100 DOI: 10.1371/journal.ppat.1008965] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/20/2020] [Accepted: 09/04/2020] [Indexed: 11/19/2022] Open
Abstract
In this study, we demonstrate a novel pro-viral role for the Nicotiana benthamiana ARGONAUTE 1 (AGO1) in potyvirus infection. AGO1 strongly enhanced potato virus A (PVA) particle production and benefited the infection when supplied in excess. We subsequently identified the potyviral silencing suppressor, helper-component protease (HCPro), as the recruiter of host AGO1. After the identification of a conserved AGO1-binding GW/WG motif in potyviral HCPros, we used site-directed mutagenesis to introduce a tryptophan-to-alanine change into the HCPro (HCProAG) of PVA (PVAAG) and turnip mosaic virus (TuMVAG). AGO1 co-localization and co-immunoprecipitation with PVA HCPro was significantly reduced by the mutation suggesting the interaction was compromised. Although the mutation did not interfere with HCPro's complementation or silencing suppression capacity, it nevertheless impaired virus particle accumulation and the systemic spread of both PVA and TuMV. Furthermore, we found that the HCPro-AGO1 interaction was important for AGO1's association with the PVA coat protein. The coat protein was also more stable in wild type PVA infection than in PVAAG infection. Based on these findings we suggest that potyviral HCPro recruits host AGO1 through its WG motif and engages AGO1 in the production of stable virus particles, which are required for an efficient systemic infection.
Collapse
Affiliation(s)
- Maija Pollari
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| | - Swarnalok De
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Kristiina Mäkinen
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| |
Collapse
|
33
|
Pasin F, Shan H, García B, Müller M, San León D, Ludman M, Fresno DH, Fátyol K, Munné-Bosch S, Rodrigo G, García JA. Abscisic Acid Connects Phytohormone Signaling with RNA Metabolic Pathways and Promotes an Antiviral Response that Is Evaded by a Self-Controlled RNA Virus. PLANT COMMUNICATIONS 2020; 1:100099. [PMID: 32984814 PMCID: PMC7518510 DOI: 10.1016/j.xplc.2020.100099] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 05/13/2023]
Abstract
A complex network of cellular receptors, RNA targeting pathways, and small-molecule signaling provides robust plant immunity and tolerance to viruses. To maximize their fitness, viruses must evolve control mechanisms to balance host immune evasion and plant-damaging effects. The genus Potyvirus comprises plant viruses characterized by RNA genomes that encode large polyproteins led by the P1 protease. A P1 autoinhibitory domain controls polyprotein processing, the release of a downstream functional RNA-silencing suppressor, and viral replication. Here, we show that P1Pro, a plum pox virus clone that lacks the P1 autoinhibitory domain, triggers complex reprogramming of the host transcriptome and high levels of abscisic acid (ABA) accumulation. A meta-analysis highlighted ABA connections with host pathways known to control RNA stability, turnover, maturation, and translation. Transcriptomic changes triggered by P1Pro infection or ABA showed similarities in host RNA abundance and diversity. Genetic and hormone treatment assays showed that ABA promotes plant resistance to potyviral infection. Finally, quantitative mathematical modeling of viral replication in the presence of defense pathways supported self-control of polyprotein processing kinetics as a viral mechanism that attenuates the magnitude of the host antiviral response. Overall, our findings indicate that ABA is an active player in plant antiviral immunity, which is nonetheless evaded by a self-controlled RNA virus.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Hongying Shan
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Maren Müller
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - David San León
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, 2100 Gödöllő, Hungary
| | - David H. Fresno
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, 2100 Gödöllő, Hungary
| | - Sergi Munné-Bosch
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Paterna, Spain
| | | |
Collapse
|
34
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
35
|
Cheng G, Yang Z, Zhang H, Zhang J, Xu J. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. THE NEW PHYTOLOGIST 2020; 225:2122-2139. [PMID: 31657467 DOI: 10.1111/nph.16285] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Group 1 Remorins (REMs) are extensively involved in virus trafficking through plasmodesmata (PD). However, their roles in Potyvirus cell-to-cell movement are not known. The plasma membrane (PM)-associated Ca2+ binding protein 1 (PCaP1) interacts with the P3N-PIPO of Turnip mosaic virus (TuMV) and is required for TuMV cell-to-cell movement, but the underlying mechanism remains elusive. The mutant plants with overexpression or knockout of REM1.2 were used to investigate its role in TuMV cell-to-cell movement. Arabidopsis thaliana complementary mutants of pcap1 were used to investigate the role of PCaP1 in TuMV cell-to-cell movement. Yeast-two-hybrid, bimolecular fluorescence complementation, co-immunoprecipitation and RT-qPCR assays were employed to investigate the underlying molecular mechanism. The results show that TuMV-P3N-PIPO recruits PCaP1 to PD and the actin filament-severing activity of PCaP1 is required for TuMV intercellular movement. REM1.2 negatively regulates the cell-to-cell movement of TuMV via competition with PCaP1 for binding actin filaments. As a counteractive response, TuMV mediates REM1.2 degradation via both 26S ubiquitin-proteasome and autophagy pathways through the interaction of VPg with REM1.2 to establish systemic infection in Arabidopsis. This work unveils the actin cytoskeleton and PM nanodomain-associated molecular events underlying the cell-to-cell movement of potyviruses.
Collapse
Affiliation(s)
- Guangyuan Cheng
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Zongtao Yang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Hai Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jisen Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jingsheng Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| |
Collapse
|
36
|
Saha S, Mäkinen K. Insights into the Functions of eIF4E-Biding Motif of VPg in Potato Virus A Infection. Viruses 2020; 12:E197. [PMID: 32053987 PMCID: PMC7077193 DOI: 10.3390/v12020197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
The interaction between the viral protein genome-linked (VPg) and eukaryotic initiation factor 4E (eIF4E) or eIF(iso)4E of the host plays a crucial role in potyvirus infection. The VPg of potato virus A (PVA) contains the Tyr-X-X-X-X-Leu-phi (YXXXLΦ) binding motif for eIF(iso)4E. In order to investigate its role in PVA infection, we substituted the conserved tyrosine and leucine residues of the motif with alanine residues in the infectious cDNA of PVA (PVAVPgmut). PVAVPgmut RNA replicated in infiltrated leaves, but RNA accumulation remained low. Systemic infection occurred only if a reversion to wild type PVA occurred. VPg was able to stabilize PVA RNA and enhance the expression of Renilla luciferase (3'RLUC) from the 3' end of the PVA genome. VPgmut could not support either PVA RNA stabilization or enhanced 3'RLUC expression. The RNA silencing suppressor helper-component proteinase (HCPro) is responsible for the formation of PVA-induced RNA granules (PGs) during infection. While VPgmut increased the number of PG-like foci, the percentage of PVA RNA co-localization with PGs was reduced from 86% to 20%. A testable hypothesis for future studies based on these results is that the binding of eIF(iso)4E to PVA VPg via the YXXXLΦ motif is required for PVA RNA stabilization, as well as the transfer to the RNA silencing suppression pathway and, further, to polysomes for viral protein synthesis.
Collapse
Affiliation(s)
| | - Kristiina Mäkinen
- Department of Microbiology and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
37
|
Robles-Luna G, Furman N, Barbarich MF, Carlotto N, Attorresi A, García ML, Kobayashi K. Interplay between potato virus X and RNA granules in Nicotiana benthamiana. Virus Res 2020; 276:197823. [PMID: 31765690 DOI: 10.1016/j.virusres.2019.197823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 01/26/2023]
Abstract
Cytoplasmic RNA granules consist of microscopic agglomerates of mRNAs and proteins and occur when the translation is reversibly and temporally halted (stress granules, SGs) or mRNAs are targeted for decapping (processing bodies, PBs). The induction of RNA granules formation by virus infection is a common feature of mammalian cells. However, plant-virus systems still remain poorly characterized. In this work, the SG marker AtUBP1b was expressed in Nicotiana benthamiana plants to decipher how the virus infection of plant cells affects SG dynamics. We found that the hypoxia-induced SG assembly was substantially inhibited in Potato virus X (PVX)-infected cells. Furthermore, we determined that the expression of PVX movement protein TGBp1 by itself, mimics the inhibitory effect of PVX on SG formation under hypoxia. Importantly, overexpression of AtUBP1b showed inhibition of the PVX spreading, whereas the overexpression of the dominant negative AtUBP1brrm enhanced PVX spreding, indicating that AtUBP1b negatively affects PVX infection. Notably, PVX infection did not inhibit the formation of processing bodies (PBs), indicating PVX has distinct effects depending on the type of RNA granule. Our results suggest that SG inhibition could be part of the virus strategy to infect the plant.
Collapse
Affiliation(s)
- Gabriel Robles-Luna
- Instituto de Biotecnología y Biología Molecular (IBBM)-CONICET-UNLP, Calle 115 y 49 s/n (1900), Universidad Nacional de la Plata, Facultad de Ciencias Exactas, La Plata, Argentina.
| | - Nicolás Furman
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - María Florencia Barbarich
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Nicolás Carlotto
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Alejandra Attorresi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) -CONICET- Partner Institute of the Max Planck Society, Argentina.
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular (IBBM)-CONICET-UNLP, Calle 115 y 49 s/n (1900), Universidad Nacional de la Plata, Facultad de Ciencias Exactas, La Plata, Argentina.
| | - Ken Kobayashi
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Xu M, Mazur MJ, Tao X, Kormelink R. Cellular RNA Hubs: Friends and Foes of Plant Viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:40-54. [PMID: 31415225 DOI: 10.1094/mpmi-06-19-0161-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA granules are dynamic cellular foci that are widely spread in eukaryotic cells and play essential roles in cell growth and development, and immune and stress responses. Different types of granules can be distinguished, each with a specific function and playing a role in, for example, RNA transcription, modification, processing, decay, translation, and arrest. By means of communication and exchange of (shared) components, they form a large regulatory network in cells. Viruses have been reported to interact with one or more of these either cytoplasmic or nuclear granules, and act either proviral, to enable and support viral infection and facilitate viral movement, or antiviral, protecting or clearing hosts from viral infection. This review describes an overview and recent progress on cytoplasmic and nuclear RNA granules and their interplay with virus infection, first in animal systems and as a prelude to the status and current developments on plant viruses, which have been less well studied on this thus far.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Magdalena J Mazur
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
39
|
Ala-Poikela M, Rajamäki ML, Valkonen JP. A Novel Interaction Network Used by Potyviruses in Virus-Host Interactions at the Protein Level. Viruses 2019; 11:E1158. [PMID: 31847316 PMCID: PMC6950583 DOI: 10.3390/v11121158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/30/2022] Open
Abstract
Host proteins that are central to infection of potyviruses (genus Potyvirus; family Potyviridae) include the eukaryotic translation initiation factors eIF4E and eIF(iso)4E. The potyviral genome-linked protein (VPg) and the helper component proteinase (HCpro) interact with each other and with eIF4E and eIF(iso)4E and proteins are involved in the same functions during viral infection. VPg interacts with eIF4E/eIF(iso)4E via the 7-methylguanosine cap-binding region, whereas HCpro interacts with eIF4E/eIF(iso)4E via the 4E-binding motif YXXXXLΦ, similar to the motif in eIF4G. In this study, HCpro and VPg were found to interact in the nucleus, nucleolus, and cytoplasm in cells infected with the potyvirus potato virus A (PVA). In the cytoplasm, interactions between HCpro and VPg occurred in punctate bodies not associated with viral replication vesicles. In addition to HCpro, the 4E-binding motif was recognized in VPg of PVA. Mutations in the 4E-binding motif of VPg from PVA weakened interactions with eIF4E and heavily reduced PVA virulence. Furthermore, mutations in the 4G-binding domain of eIF4E reduced interactions with VPg and abolished interactions with HCpro. Thus, HCpro and VPg can both interact with eIF4E using the 4E-binding motif. Our results suggest a novel interaction network used by potyviruses to interact with host plants via translation initiation factors.
Collapse
Affiliation(s)
| | - Minna-Liisa Rajamäki
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland;
| | - Jari P.T. Valkonen
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland;
| |
Collapse
|
40
|
Saha S, Hafren A, Mäkinen K. Dynamics of Protein Accumulation from the 3' End of Viral RNA Are Different from Those in the Rest of the Genome in Potato Virus A Infection. J Virol 2019; 93:e00721-19. [PMID: 31341041 PMCID: PMC6744237 DOI: 10.1128/jvi.00721-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023] Open
Abstract
One large open reading frame (ORF) encodes 10 potyviral proteins. We compared the accumulation of cylindrical inclusion (CI) protein from the middle, coat protein (CP) from the 3'end, and Renilla luciferase (RLUC) from two distinct locations in potato virus A (PVA) RNA. 5' RLUC was expressed from an rluc gene inserted between the P1 and helper component proteinase (HCPro) cistrons, and 3' RLUC was expressed from the gene inserted between the RNA polymerase and CP cistrons. Viral protein and RNA accumulation were quantitated (i) when expressed from PVA RNA in the presence of ectopically expressed genome-linked viral protein (VPg) and auxiliary proteins and (ii) at different time points during natural infection. The rate and timing of 3' RLUC and CP accumulation were found to be different from those of 5' RLUC and CI. Ectopic expression of VPg boosted PVA RNA, 3' RLUC, and, together with HCPro, CP accumulation, whereas 5' RLUC and CI accumulation remained unaffected regardless of the increased viral RNA amount. In natural infection, the rate of the noteworthy minute early accumulation of 3' RLUC accelerated toward the end of infection. 5' RLUC accumulation, which was already pronounced at 2 days postinfection, increased moderately and stabilized to a constant level by day 5, whereas PVA RNA and CP levels continued to increase throughout the infection. We propose that these observations connect with the mechanisms by which potyvirus infection limits CP accumulation during early infection and specifically supports its accumulation late in infection, but follow-up studies are required to understand the mechanism of how this occurs.IMPORTANCE The results of this study suggest that the dynamics of potyviral protein accumulation are regulated differentially from the 3' end of viral RNA than from the rest of the genome, the significance of which would be to satisfy the needs of replication early and particle assembly late in infection.
Collapse
Affiliation(s)
- Shreya Saha
- Faculty of Agriculture and Forestry, Department of Microbiology, Viikki Plant Sciences Center, University of Helsinki, Helsinki, Finland
| | - Anders Hafren
- Faculty of Agriculture and Forestry, Department of Microbiology, Viikki Plant Sciences Center, University of Helsinki, Helsinki, Finland
| | - Kristiina Mäkinen
- Faculty of Agriculture and Forestry, Department of Microbiology, Viikki Plant Sciences Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Kushwaha NK, Hafrén A, Hofius D. Autophagy-virus interplay in plants: from antiviral recognition to proviral manipulation. MOLECULAR PLANT PATHOLOGY 2019; 20:1211-1216. [PMID: 31397085 PMCID: PMC6715616 DOI: 10.1111/mpp.12852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Autophagy is a conserved self-cleaning and renewal system required for cellular homeostasis and stress tolerance. Autophagic processes are also implicated in the response to 'non-self' such as viral pathogens, yet the functions and mechanisms of autophagy during plant virus infection have only recently started to be revealed. Compelling evidence now indicates that autophagy is an integral part of antiviral immunity in plants. It can promote the hypersensitive cell death response upon incompatible viral infections or mediate the selective elimination of entire particles and individual proteins from compatible viruses in a pathway similar to xenophagy in animals. Several viruses, however, have evolved measures to antagonize xenophagic degradation or utilize autophagy to suppress disease-associated cell death and other defence pathways like RNA silencing. Here, we highlight the current advances and gaps in our understanding of the complex autophagy-virus interplay and its consequences for host immunity and viral pathogenesis in plants.
Collapse
Affiliation(s)
- Nirbhay Kumar Kushwaha
- Department of Plant Biology, Uppsala BioCenterSwedish University of Agricultural Sciences and Linnean Center of Plant BiologySE‐75007UppsalaSweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenterSwedish University of Agricultural Sciences and Linnean Center of Plant BiologySE‐75007UppsalaSweden
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenterSwedish University of Agricultural Sciences and Linnean Center of Plant BiologySE‐75007UppsalaSweden
| |
Collapse
|
42
|
Shukla A, López-González S, Hoffmann G, Hafrén A. Diverse plant viruses: a toolbox for dissection of cellular pathways. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3029-3034. [PMID: 30882863 PMCID: PMC6598076 DOI: 10.1093/jxb/erz122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 05/12/2023]
Abstract
Research in virology has usually focused on one selected host-virus pathosystem to examine the mechanisms underlying a particular disease. However, as exemplified by the mechanistically versatile suppression of antiviral RNA silencing by plant viruses, there may be functionally convergent evolution. Assuming this is a widespread feature, we propose that effector proteins from diverse plant viruses can be a powerful resource for discovering new regulatory mechanisms of distinct cellular pathways. The efficiency of this approach will depend on how deeply and widely the studied pathway is integrated into viral infections. Beyond this, comparative studies using broad virus diversity should increase our global understanding of plant-virus interactions.
Collapse
Affiliation(s)
- Aayushi Shukla
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
43
|
Eskelin K, Varjosalo M, Ravantti J, Mäkinen K. Ribosome profiles and riboproteomes of healthy and Potato virus A- and Agrobacterium-infected Nicotiana benthamiana plants. MOLECULAR PLANT PATHOLOGY 2019; 20:392-409. [PMID: 30375150 PMCID: PMC6637900 DOI: 10.1111/mpp.12764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nicotiana benthamiana is an important model plant for plant-microbe interaction studies. Here, we compared ribosome profiles and riboproteomes of healthy and infected N. benthamiana plants. We affinity purified ribosomes from transgenic leaves expressing a FLAG-tagged ribosomal large subunit protein RPL18B of Arabidopsis thaliana. Purifications were prepared from healthy plants and plants that had been infiltrated with Agrobacterium tumefaciens carrying infectious cDNA of Potato virus A (PVA) or firefly luciferase gene, referred to here as PVA- or Agrobacterium-infected plants, respectively. Plants encode a number of paralogous ribosomal proteins (r-proteins). The N. benthamiana riboproteome revealed approximately 6600 r-protein hits representing 424 distinct r-proteins that were members of 71 of the expected 81 r-protein families. Data are available via ProteomeXchange with identifier PXD011602. The data indicated that N. benthamiana ribosomes are heterogeneous in their r-protein composition. In PVA-infected plants, the number of identified r-protein paralogues was lower than in Agrobacterium-infected or healthy plants. A. tumefaciens proteins did not associate with ribosomes, whereas ribosomes from PVA-infected plants co-purified with viral cylindrical inclusion protein and helper component proteinase, reinforcing their possible role in protein synthesis during virus infection. In addition, viral NIa protease-VPg, RNA polymerase NIb and coat protein were occasionally detected. Infection did not affect the proportions of ribosomal subunits or the monosome to polysome ratio, suggesting that no overall alteration in translational activity took place on infection with these pathogens. The riboproteomic data of healthy and pathogen-infected N. benthamiana will be useful for studies on the specific use of r-protein paralogues to control translation in infected plants.
Collapse
Affiliation(s)
- Katri Eskelin
- Department of Microbiology, Faculty of Agriculture and ForestryUniversity of HelsinkiPO Box 56FI‐00014Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiPO Box 56FI‐00014Finland
| | - Markku Varjosalo
- Institute of BiotechnologyUniversity of HelsinkiPO Box 65FI‐00014Finland
| | - Janne Ravantti
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiPO Box 56FI‐00014Finland
| | - Kristiina Mäkinen
- Department of Microbiology, Faculty of Agriculture and ForestryUniversity of HelsinkiPO Box 56FI‐00014Finland
| |
Collapse
|
44
|
The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019; 11:v11030203. [PMID: 30823402 PMCID: PMC6466000 DOI: 10.3390/v11030203] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.
Collapse
|
45
|
Cervera H, Ambrós S, Bernet GP, Rodrigo G, Elena SF. Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study. Mol Biol Evol 2018; 35:1599-1615. [PMID: 29562354 PMCID: PMC5995217 DOI: 10.1093/molbev/msy038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts.
Collapse
Affiliation(s)
- Héctor Cervera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
| | - Silvia Ambrós
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
| | - Guillermo P Bernet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
| | - Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, Paterna, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, NM
| |
Collapse
|
46
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
47
|
De S, Chavez‐Calvillo G, Wahlsten M, Mäkinen K. Disruption of the methionine cycle and reduced cellular gluthathione levels underlie potex-potyvirus synergism in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2018; 19:1820-1835. [PMID: 29363853 PMCID: PMC6638099 DOI: 10.1111/mpp.12661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 05/21/2023]
Abstract
Infection caused by the synergistic interaction of two plant viruses is typically manifested by severe symptoms and increased accumulation of either virus. In potex-potyviral synergism, the potyviral RNA silencing suppressor helper component proteinase (HCPro) is known to enhance the pathogenicity of the potexvirus counterpart. In line with this, Potato virus X (PVX; genus Potexvirus) genomic RNA (gRNA) accumulation and gene expression from subgenomic RNA (sgRNA) are increased in Nicotiana benthamiana by Potato virus A (PVA; genus Potyvirus) HCPro expression. Recently, we have demonstrated that PVA HCPro interferes with the host cell methionine cycle by interacting with its key enzymes S-adenosyl-l-methionine synthetase (SAMS) and S-adenosyl-l-homocysteine hydrolase (SAHH). To study the involvement of methionine cycle enzymes in PVX infection, we knocked down SAMS and SAHH. Increased PVX sgRNA expression between 3 and 9 days post-infiltration (dpi) and upregulation of (-)-strand gRNA accumulation at 9 dpi were observed in the SAHH-silenced background. We found that SAMS and SAHH silencing also caused a significant reduction in glutathione (GSH) concentration, specifically in PVX-infected plants between 2 and 9 dpi. Interestingly, HCPro expression in PVX-infected plants caused an even stronger reduction in GSH levels than did SAMS + SAHH silencing and a similar level of reduction was also achieved by knocking down GSH synthetase. PVX sgRNA expression was increased in the GSH synthetase-silenced background. GSH is a major antioxidant of plant cells and therefore GSH shortage may explain the strong oxidative stress and severe symptoms observed during potex-potyvirus mixed infection.
Collapse
Affiliation(s)
- Swarnalok De
- Department of Food and Environmental Sciences, Viikki Plant Sciences CentreUniversity of HelsinkiHelsinki 00014Finland
| | - Gabriela Chavez‐Calvillo
- Department of Food and Environmental Sciences, Viikki Plant Sciences CentreUniversity of HelsinkiHelsinki 00014Finland
- Present address:
Department of Entomology and Plant PathologyAuburn UniversityAuburn36849, ALUSA
| | - Matti Wahlsten
- Department of Food and Environmental Sciences, Viikki Plant Sciences CentreUniversity of HelsinkiHelsinki 00014Finland
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, Viikki Plant Sciences CentreUniversity of HelsinkiHelsinki 00014Finland
| |
Collapse
|
48
|
The uL10 protein, a component of the ribosomal P-stalk, is released from the ribosome in nucleolar stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:34-47. [DOI: 10.1016/j.bbamcr.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
|
49
|
Hafrén A, Üstün S, Hochmuth A, Svenning S, Johansen T, Hofius D. Turnip Mosaic Virus Counteracts Selective Autophagy of the Viral Silencing Suppressor HCpro. PLANT PHYSIOLOGY 2018; 176:649-662. [PMID: 29133371 PMCID: PMC5761789 DOI: 10.1104/pp.17.01198] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/10/2017] [Indexed: 05/19/2023]
Abstract
Autophagy is a conserved intracellular degradation pathway and has emerged as a key mechanism of antiviral immunity in metazoans, including the selective elimination of viral components. In turn, some animal viruses are able to escape and modulate autophagy for enhanced pathogenicity. Whether host autophagic responses and viral countermeasures play similar roles in plant-virus interactions is not well understood. Here, we have identified selective autophagy as antiviral pathway during plant infection with turnip mosaic virus (TuMV), a positive-stranded RNA potyvirus. We show that the autophagy cargo receptor NBR1 suppresses viral accumulation by targeting the viral RNA silencing suppressor helper-component proteinase (HCpro), presumably in association with virus-induced RNA granules. Intriguingly, TuMV seems to antagonize NBR1-dependent autophagy during infection by the activity of distinct viral proteins, thereby limiting its antiviral capacity. We also found that NBR1-independent bulk autophagy prevents premature plant death, thus extending the lifespan of virus reservoirs and particle production. Together, our study highlights a conserved role of selective autophagy in antiviral immunity and suggests the evolvement of viral protein functions to inhibit autophagy processes, despite a potential trade-off in host survival.
Collapse
Affiliation(s)
- Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU) and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Suayib Üstün
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU) and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Anton Hochmuth
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU) and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Steingrim Svenning
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU) and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| |
Collapse
|
50
|
Chen L, Yan Z, Xia Z, Cheng Y, Jiao Z, Sun B, Zhou T, Fan Z. A Violaxanthin Deepoxidase Interacts with a Viral Suppressor of RNA Silencing to Inhibit Virus Amplification. PLANT PHYSIOLOGY 2017; 175:1774-1794. [PMID: 29021224 PMCID: PMC5717725 DOI: 10.1104/pp.17.00638] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/06/2017] [Indexed: 05/22/2023]
Abstract
RNA silencing plays a critical role against viral infection. To counteract this antiviral silencing, viruses have evolved various RNA silencing suppressors. Meanwhile, plants have evolved counter-counter defense strategies against RNA silencing suppression (RSS). In this study, the violaxanthin deepoxidase protein of maize (Zea mays), ZmVDE, was shown to interact specifically with the helper component-proteinase (HC-Pro; a viral RNA silencing suppressor) of Sugarcane mosaic virus (SCMV) via its mature protein region by yeast two-hybrid assay, which was confirmed by coimmunoprecipitation in Nicotiana benthamiana cells. It was demonstrated that amino acids 101 to 460 in HC-Pro and the amino acid glutamine-292 in ZmVDE mature protein were essential for this interaction. The mRNA levels of ZmVDE were down-regulated 75% to 65% at an early stage of SCMV infection. Interestingly, ZmVDE, which normally localized in the chloroplasts and cytoplasm, could relocalize to HC-Pro-containing aggregate bodies in the presence of HC-Pro alone or SCMV infection. In addition, ZmVDE could attenuate the RSS activity of HC-Pro in a specific protein interaction-dependent manner. Subsequently, transient silencing of the ZmVDE gene facilitated SCMV RNA and coat protein accumulation. Taken together, our results suggest that ZmVDE interacts with SCMV HC-Pro and attenuates its RSS activity, contributing to decreased SCMV accumulation. This study demonstrates that a host factor can be involved in secondary defense responses against viral infection in monocot plants.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Zhaoling Yan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Zihao Xia
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Yuqin Cheng
- Department of Pomology/Laboratory of Stress Physiology and Molecular Biology for Tree Fruits-Key Laboratory of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Jiao
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Biao Sun
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Tao Zhou
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Zaifeng Fan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| |
Collapse
|