1
|
McAuliffe B, Falk P, Chen J, Chen Y, Sit SY, Swidorski J, Hartz RA, Xu L, Venables B, Sin N, Meanwell NA, Regueiro-Ren A, Wensel D, Hanumegowda U, Krystal M. Preclinical Profile of the HIV-1 Maturation Inhibitor VH3739937. Viruses 2024; 16:1508. [PMID: 39459843 PMCID: PMC11512352 DOI: 10.3390/v16101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
The HIV-1 maturation inhibitor (MI) VH3739937 (VH-937) inhibits cleavage between capsid and spacer peptide 1 and exhibits an oral half-life in humans compatible with once-weekly dosing. Here, the antiviral properties of VH-937 are described. VH-937 exhibited potent antiviral activity against all HIV-1 laboratory strains, clinical isolates, and recombinant viruses examined, with half-maximal effective concentration (EC50) values ≤ 5.0 nM. In multiple-cycle assays, viruses less susceptible to other MIs, including A364V, were inhibited at EC50 values ≤ 8.0 nM and maximal percent inhibition (MPI) values ≥ 92%. However, VH-937 was less potent against A364V in single-cycle assays (EC50, 32.0 nM; MPI, 57%) and A364V emerged in one of four resistance selection cultures. Other substitutions were selected by VH-937, although re-engineered viruses with these sequences were non-functional in multiple-cycle assays. Measured dissociation rates from wild-type and A364V-containing VLPs help explain resistance to the A364V mutation. Overall, the in vitro antiviral activity of VH-937 supports its continued development as a treatment for HIV-1.
Collapse
Affiliation(s)
- Brian McAuliffe
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA; (B.M.); (P.F.); (D.W.); (U.H.)
| | - Paul Falk
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA; (B.M.); (P.F.); (D.W.); (U.H.)
| | - Jie Chen
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Yan Chen
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Sing-Yuen Sit
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Jacob Swidorski
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Richard A. Hartz
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Li Xu
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Brian Venables
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Ny Sin
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Nicholas A. Meanwell
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Alicia Regueiro-Ren
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - David Wensel
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA; (B.M.); (P.F.); (D.W.); (U.H.)
| | - Umesh Hanumegowda
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA; (B.M.); (P.F.); (D.W.); (U.H.)
| | - Mark Krystal
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA; (B.M.); (P.F.); (D.W.); (U.H.)
| |
Collapse
|
2
|
Smith RA, Raugi DN, Nixon RS, Song J, Seydi M, Gottlieb GS. Intrinsic resistance of HIV-2 and SIV to the maturation inhibitor GSK2838232. PLoS One 2023; 18:e0280568. [PMID: 36652466 PMCID: PMC9847912 DOI: 10.1371/journal.pone.0280568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
GSK2838232 (GSK232) is a novel maturation inhibitor that blocks the proteolytic cleavage of HIV-1 Gag at the junction of capsid and spacer peptide 1 (CA/SP1), rendering newly-formed virions non-infectious. To our knowledge, GSK232 has not been tested against HIV-2, and there are limited data regarding the susceptibility of HIV-2 to other HIV-1 maturation inhibitors. To assess the potential utility of GSK232 as an option for HIV-2 treatment, we determined the activity of the compound against a panel of HIV-1, HIV-2, and SIV isolates in culture. GSK232 was highly active against HIV-1 isolates from group M subtypes A, B, C, D, F, and group O, with IC50 values ranging from 0.25-0.92 nM in spreading (multi-cycle) assays and 1.5-2.8 nM in a single cycle of infection. In contrast, HIV-2 isolates from groups A, B, and CRF01_AB, and SIV isolates SIVmac239, SIVmac251, and SIVagm.sab-2, were highly resistant to GSK232. To determine the role of CA/SP1 in the observed phenotypes, we constructed a mutant of HIV-2ROD9 in which the sequence of CA/SP1 was modified to match the corresponding sequence found in HIV-1. The resulting variant was fully susceptible to GSK232 in the single-cycle assay (IC50 = 1.8 nM). Collectively, our data indicate that the HIV-2 and SIV isolates tested in our study are intrinsically resistant to GSK232, and that the determinants of resistance map to CA/SP1. The molecular mechanism(s) responsible for the differential susceptibility of HIV-1 and HIV-2/SIV to GSK232 require further investigation.
Collapse
Affiliation(s)
- Robert A. Smith
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Dana N. Raugi
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Robert S. Nixon
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Jennifer Song
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Moussa Seydi
- Service des Maladies Infectieuses et Tropicales, CHNU de Fann, Dakar, Senegal
| | - Geoffrey S. Gottlieb
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | | |
Collapse
|
3
|
Regueiro-Ren A, Sit SY, Chen Y, Chen J, Swidorski JJ, Liu Z, Venables BL, Sin N, Hartz RA, Protack T, Lin Z, Zhang S, Li Z, Wu DR, Li P, Kempson J, Hou X, Gupta A, Rampulla R, Mathur A, Park H, Sarjeant A, Benitex Y, Rahematpura S, Parker D, Phillips T, Haskell R, Jenkins S, Santone KS, Cockett M, Hanumegowda U, Dicker I, Meanwell NA, Krystal M. The Discovery of GSK3640254, a Next-Generation Inhibitor of HIV-1 Maturation. J Med Chem 2022; 65:11927-11948. [PMID: 36044257 DOI: 10.1021/acs.jmedchem.2c00879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the para-substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CH2F moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties. The approach to the design of GSK3640254, the development of a synthetic route and its preclinical profile are discussed. GSK3640254 is currently in phase IIb clinical trials after demonstrating a dose-related reduction in HIV-1 viral load over 7-10 days of dosing to HIV-1-infected subjects.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Sing-Yuen Sit
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Yan Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jie Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jacob J Swidorski
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zheng Liu
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Brian L Venables
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ny Sin
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Richard A Hartz
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Tricia Protack
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zeyu Lin
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sharon Zhang
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zhufang Li
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Peng Li
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - James Kempson
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Xiaoping Hou
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis; Bristol Myers Squibb Research and Early Development, Bangalore 560099, India
| | - Richard Rampulla
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Hyunsoo Park
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Amy Sarjeant
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Yulia Benitex
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sandhya Rahematpura
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dawn Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Thomas Phillips
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Roy Haskell
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Kenneth S Santone
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Mark Cockett
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ira Dicker
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| |
Collapse
|
4
|
Lerner G, Weaver N, Anokhin B, Spearman P. Advances in HIV-1 Assembly. Viruses 2022; 14:v14030478. [PMID: 35336885 PMCID: PMC8952333 DOI: 10.3390/v14030478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The assembly of HIV-1 particles is a concerted and dynamic process that takes place on the plasma membrane of infected cells. An abundance of recent discoveries has advanced our understanding of the complex sequence of events leading to HIV-1 particle assembly, budding, and release. Structural studies have illuminated key features of assembly and maturation, including the dramatic structural transition that occurs between the immature Gag lattice and the formation of the mature viral capsid core. The critical role of inositol hexakisphosphate (IP6) in the assembly of both the immature and mature Gag lattice has been elucidated. The structural basis for selective packaging of genomic RNA into virions has been revealed. This review will provide an overview of the HIV-1 assembly process, with a focus on recent advances in the field, and will point out areas where questions remain that can benefit from future investigation.
Collapse
|
5
|
Dicker I, Jeffrey JL, Protack T, Lin Z, Cockett M, Chen Y, Sit SY, Gartland M, Meanwell NA, Regueiro-Ren A, Drexler D, Cantone J, McAuliffe B, Krystal M. GSK3640254 Is a Novel HIV-1 Maturation Inhibitor with an Optimized Virology Profile. Antimicrob Agents Chemother 2022; 66:e0187621. [PMID: 34780263 PMCID: PMC8765437 DOI: 10.1128/aac.01876-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
HIV-1 maturation inhibitors (MIs) offer a novel mechanism of action and potential for use in HIV-1 treatment. Prior MIs displayed clinical efficacy but were associated with the emergence of resistance and some gastrointestinal tolerability events. Treatment with the potentially safer next-generation MI GSK3640254 (GSK'254) resulted in up to a 2-log10 viral load reduction in a phase IIa proof-of-concept study. In vitro experiments have defined the antiviral and resistance profiles for GSK'254. The compound displayed strong antiviral activity against a library of subtype B and C chimeric viruses containing Gag polymorphisms and site-directed mutants previously shown to affect potency of earlier-generation MIs, with a mean protein-binding adjusted 90% effective concentration (EC90) of 33 nM. Furthermore, GSK'254 exhibited robust antiviral activity against a panel of HIV-1 clinical isolates, with a mean EC50 of 9 nM. Mechanistic studies established that bound GSK'254 dissociated on average 7.1-fold more slowly from wild-type Gag virus-like particles (VLPs) than a previous-generation MI. In resistance studies, the previously identified A364V Gag region mutation was selected under MI pressure in cell culture and during the phase IIa clinical study. As expected, GSK'254 inhibited cleavage of p25 in a range of polymorphic HIV-1 Gag VLPs. Virus-like particles containing the A364V mutation exhibited a p25 cleavage rate 9.3 times higher than wild-type particles, providing a possible mechanism for MI resistance. The findings demonstrate that GSK'254 potently inhibits a broad range of HIV-1 strains expressing Gag polymorphisms.
Collapse
Affiliation(s)
- Ira Dicker
- ViiV Healthcare, Branford, Connecticut, USA
| | | | | | - Zeyu Lin
- Bristol Myers Squibb, Wallingford, Connecticut, USA
| | | | - Yan Chen
- Bristol Myers Squibb, Wallingford, Connecticut, USA
| | | | - Martin Gartland
- ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Pak AJ, Purdy MD, Yeager M, Voth GA. Preservation of HIV-1 Gag Helical Bundle Symmetry by Bevirimat Is Central to Maturation Inhibition. J Am Chem Soc 2021; 143:19137-19148. [PMID: 34739240 DOI: 10.1021/jacs.1c08922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The assembly and maturation of human immunodeficiency virus type 1 (HIV-1) require proteolytic cleavage of the Gag polyprotein. The rate-limiting step resides at the junction between the capsid protein CA and spacer peptide 1, which assembles as a six-helix bundle (6HB). Bevirimat (BVM), the first-in-class maturation inhibitor drug, targets the 6HB and impedes proteolytic cleavage, yet the molecular mechanisms of its activity, and relatedly, the escape mechanisms of mutant viruses, remain unclear. Here, we employed extensive molecular dynamics (MD) simulations and free energy calculations to quantitatively investigate molecular structure-activity relationships, comparing wild-type and mutant viruses in the presence and absence of BVM and inositol hexakisphosphate (IP6), an assembly cofactor. Our analysis shows that the efficacy of BVM is directly correlated with preservation of 6-fold symmetry in the 6HB, which exists as an ensemble of structural states. We identified two primary escape mechanisms, and both lead to loss of symmetry, thereby facilitating helix uncoiling to aid access of protease. Our findings also highlight specific interactions that can be targeted for improved inhibitor activity and support the use of MD simulations for future inhibitor design.
Collapse
Affiliation(s)
- Alexander J Pak
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Michael D Purdy
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.,Center for Membrane Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.,Department of Medicine, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Ghimire D, Kc Y, Timilsina U, Goel K, Nitz TJ, Wild CT, Gaur R. A single G10T polymorphism in HIV-1 subtype C Gag-SP1 regulates sensitivity to maturation inhibitors. Retrovirology 2021; 18:9. [PMID: 33836787 PMCID: PMC8033686 DOI: 10.1186/s12977-021-00553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Maturation inhibitors (MIs) potently block HIV-1 maturation by inhibiting the cleavage of the capsid protein and spacer peptide 1 (CA-SP1). Bevirimat (BVM), a highly efficacious first-in-class MI against HIV-1 subtype B isolates, elicited sub-optimal efficacy in clinical trials due to polymorphisms in the CA-SP1 region of the Gag protein (SP1:V7A). HIV-1 subtype C inherently contains this polymorphism thus conferring BVM resistance, however it displayed sensitivity to second generation BVM analogs. RESULTS In this study, we have assessed the efficacy of three novel second-generation MIs (BVM analogs: CV-8611, CV-8612, CV-8613) against HIV-1 subtype B and C isolates. The BVM analogs were potent inhibitors of both HIV-1 subtype B (NL4-3) and subtype C (K3016) viruses. Serial passaging of the subtype C, K3016 virus strain in the presence of BVM analogs led to identification of two mutant viruses-Gag SP1:A1V and CA:I201V. While the SP1:A1V mutant was resistant to the MIs, the CA:I120V mutant displayed partial resistance and a MI-dependent phenotype. Further analysis of the activity of the BVM analogs against two additional HIV-1 subtype C strains, IndieC1 and ZM247 revealed that they had reduced sensitivity as compared to K3016. Sequence analysis of the three viruses identified two polymorphisms at SP1 residues 9 and 10 (K3016: N9, G10; IndieC1/ZM247: S9, T10). The N9S and S9N mutants had no change in MI-sensitivity. On the other hand, replacing glycine at residue 10 with threonine in K3016 reduced its MI sensitivity whereas introducing glycine at SP1 10 in place of threonine in IndieC1 and ZM247 significantly enhanced their MI sensitivity. Thus, the specific glycine residue 10 of SP1 in the HIV-1 subtype C viruses determined sensitivity towards BVM analogs. CONCLUSIONS We have identified an association of a specific glycine at position 10 of Gag-SP1 with an MI susceptible phenotype of HIV-1 subtype C viruses. Our findings have highlighted that HIV-1 subtype C viruses, which were inherently resistant to BVM, may also be similarly predisposed to exhibit a significant degree of resistance to second-generation BVM analogs. Our work has strongly suggested that genetic differences between HIV-1 subtypes may produce variable MI sensitivity that needs to be considered in the development of novel, potent, broadly-active MIs.
Collapse
Affiliation(s)
- Dibya Ghimire
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Yuvraj Kc
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.,Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Kriti Goel
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - T J Nitz
- DFH Pharma, Gaithersburg, MD, 20886, USA
| | | | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.
| |
Collapse
|
8
|
Cui RT, He HH, Yu DA, Li Z, Jiang CH, Liu DF, Ou-Yang T, Xie N, Yan SS. Single- and repeated-dose toxicity studies on the novel HIV maturation inhibitor QF-036 in Sprague-Dawley rats. Toxicol Lett 2020; 329:26-30. [PMID: 32380124 DOI: 10.1016/j.toxlet.2020.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/23/2020] [Accepted: 04/22/2020] [Indexed: 11/17/2022]
Abstract
QF-036 is a novel human immunodeficiency virus (HIV) maturation inhibitor that is a lupine triterpenoid derivative. The objective of this study was to evaluate the safety of QF-036. A single oral toxicity and a 4-week repeated oral toxicity were investigated in Sprague-Dawley (SD) rats. The single oral toxicity study of QF-036 in SD rats showed that no mortality or visible pathological changes were noted at doses of 100, 300, and 1000 mg/kg. QF-036 exhibited a non-linear toxicokinetic profile over the dose range of 100-1000 mg/kg in the single dose study, and a saturation trend appeared at doses of 100 and 300 mg/kg. In the 4-week oral toxicity and toxicokinetic study, SD rats were given 0, 50, 100, and 200 mg/kg QF-036 once daily for 4 weeks, followed by a 4-week recovery period. No mortality or significant effects on food consumption, body weight, or behavior were observed. In addition, there were no test article-related changes in hematology, clinical biochemistry and histopathology. The no observed adverse effect level (NOAEL) was 200 mg/kg. The toxicokinetic study demonstrated a dose-dependent increase in the systemic exposure to QF-036 after 4 weeks of oral administration. There were no marked sex differences or drug accumulation observed for repeated doses of QF-036.
Collapse
Affiliation(s)
- Rong-Tian Cui
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China; Jiangsu Mabwell Health Pharmaceutical R&D Co., Ltd., Taizhou, Jiangsu, China
| | - Hong-Hong He
- Shanghai Qingrun Pharmaceutical Technology Co., Ltd., Shanghai, China
| | - Dong-An Yu
- Jiangsu Mabwell Health Pharmaceutical R&D Co., Ltd., Taizhou, Jiangsu, China
| | - Zhao Li
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China; Shanghai Qingrun Pharmaceutical Technology Co., Ltd., Shanghai, China
| | - Chun-Hong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China
| | - Di-Fa Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China
| | - Ting Ou-Yang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China
| | - Shou-Sheng Yan
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China; Shanghai Qingrun Pharmaceutical Technology Co., Ltd., Shanghai, China.
| |
Collapse
|
9
|
Blanch-Lombarte O, Santos JR, Peña R, Jiménez-Moyano E, Clotet B, Paredes R, Prado JG. HIV-1 Gag mutations alone are sufficient to reduce darunavir susceptibility during virological failure to boosted PI therapy. J Antimicrob Chemother 2020; 75:2535-2546. [PMID: 32556165 PMCID: PMC7443716 DOI: 10.1093/jac/dkaa228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Virological failure (VF) to boosted PIs with a high genetic barrier is not usually linked to the development of resistance-associated mutations in the protease gene. METHODS From a cohort of 520 HIV-infected subjects treated with lopinavir/ritonavir or darunavir/ritonavir monotherapy, we retrospectively identified nine patients with VF. We sequenced the HIV-1 Gag-protease region and generated clonal virus from plasma samples. We characterized phenotypically clonal variants in terms of replicative capacity and susceptibility to PIs. Also, we used VESPA to identify signature mutations and 3D molecular modelling information to detect conformational changes in the Gag region. RESULTS All subjects analysed harboured Gag-associated polymorphisms in the absence of resistance mutations in the protease gene. Most Gag changes occurred outside Gag cleavage sites. VESPA analyses identified K95R and R286K (P < 0.01) as signature mutations in Gag present at VF. In one out of four patients with clonal analysis available, we identified clonal variants with high replicative capacity and 8- to 13-fold reduction in darunavir susceptibility. These clonal variants harboured K95R, R286K and additional mutations in Gag. Low susceptibility to darunavir was dependent on the Gag sequence context. All other clonal variants analysed preserved drug susceptibility and virus replicative capacity. CONCLUSIONS Gag mutations may reduce darunavir susceptibility in the absence of protease mutations while preserving viral fitness. This effect is Gag-sequence context dependent and may occur during boosted PI failure.
Collapse
Affiliation(s)
- Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain and Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José R Santos
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Ruth Peña
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | | | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain and Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
10
|
Kleinpeter AB, Freed EO. HIV-1 Maturation: Lessons Learned from Inhibitors. Viruses 2020; 12:E940. [PMID: 32858867 PMCID: PMC7552077 DOI: 10.3390/v12090940] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Since the emergence of HIV and AIDS in the early 1980s, the development of safe and effective therapies has accompanied a massive increase in our understanding of the fundamental processes that drive HIV biology. As basic HIV research has informed the development of novel therapies, HIV inhibitors have been used as probes for investigating basic mechanisms of HIV-1 replication, transmission, and pathogenesis. This positive feedback cycle has led to the development of highly effective combination antiretroviral therapy (cART), which has helped stall the progression to AIDS, prolong lives, and reduce transmission of the virus. However, to combat the growing rates of virologic failure and toxicity associated with long-term therapy, it is important to diversify our repertoire of HIV-1 treatments by identifying compounds that block additional steps not targeted by current drugs. Most of the available therapeutics disrupt early events in the replication cycle, with the exception of the protease (PR) inhibitors, which act at the virus maturation step. HIV-1 maturation consists of a series of biochemical changes that facilitate the conversion of an immature, noninfectious particle to a mature infectious virion. These changes include proteolytic processing of the Gag polyprotein by the viral protease (PR), structural rearrangement of the capsid (CA) protein, and assembly of individual CA monomers into hexamers and pentamers that ultimately form the capsid. Here, we review the development and therapeutic potential of maturation inhibitors (MIs), an experimental class of anti-HIV-1 compounds with mechanisms of action distinct from those of the PR inhibitors. We emphasize the key insights into HIV-1 biology and structure that the study of MIs has provided. We will focus on three distinct groups of inhibitors that block HIV-1 maturation: (1) compounds that block the processing of the CA-spacer peptide 1 (SP1) cleavage intermediate, the original class of compounds to which the term MI was applied; (2) CA-binding inhibitors that disrupt capsid condensation; and (3) allosteric integrase inhibitors (ALLINIs) that block the packaging of the viral RNA genome into the condensing capsid during maturation. Although these three classes of compounds have distinct structures and mechanisms of action, they share the ability to block the formation of the condensed conical capsid, thereby blocking particle infectivity.
Collapse
Affiliation(s)
| | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| |
Collapse
|
11
|
Dicker I, Zhang S, Ray N, Beno BR, Regueiro-Ren A, Joshi S, Cockett M, Krystal M, Lataillade M. Resistance profile of the HIV-1 maturation inhibitor GSK3532795 in vitro and in a clinical study. PLoS One 2019; 14:e0224076. [PMID: 31622432 PMCID: PMC6797179 DOI: 10.1371/journal.pone.0224076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022] Open
Abstract
GSK3532795 (formerly BMS955176) is a second-generation maturation inhibitor (MI) that progressed through a Phase 2b study for treatment of HIV-1 infection. Resistance development to GSK3532795 was evaluated through in vitro methods and was correlated with information obtained in a Phase 2a proof-of-concept study in HIV-1 infected participants. Both low and high concentrations of GSK3532795 were used for selections in vitro, and reduced susceptibility to GSK3532795 mapped specifically to amino acids near the capsid/ spacer peptide 1 (SP1) junction, the cleavage of which is blocked by MIs. Two key substitutions, A364V or V362I, were selected, the latter requiring secondary substitutions to reduce susceptibility to GSK3532795. Three main types of secondary substitutions were observed, none of which reduced GSK3532795 susceptibility in isolation. The first type was in the capsid C-terminal domain and downstream SP1 region (including (Gag numbering) R286K, A326T, T332S/N, I333V and V370A/M). The second, was an R41G substitution in viral protease that occurred with V362I. The third was seen in the capsid N-terminal domain, within the cyclophilin A binding domain (V218A/M, H219Q and G221E). H219Q increased viral replication capacity and reduced susceptibility of poorly growing viruses. In the Phase 2a study, a subset of these substitutions was also observed at baseline and some were selected following GSK35323795 treatment in HIV-1-infected participants.
Collapse
Affiliation(s)
- Ira Dicker
- Department of HIV Discovery, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Sharon Zhang
- Department of HIV Discovery, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Neelanjana Ray
- Department of Early Development, Bristol-Myers Squibb Research and Development, Princeton, New Jersey, United States of America
| | - Brett R. Beno
- Department of Molecular Discovery Technologies, Bristol-Myers Squibb Research and Development, Wallingford, Connecticut, United States of America
| | - Alicia Regueiro-Ren
- Department of Chemistry Bristol-Myers Squibb Research and Development, Wallingford Connecticut, United States of America
| | - Samit Joshi
- Department of Early Development, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Mark Cockett
- Department of HIV Discovery, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Mark Krystal
- Department of HIV Discovery, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Max Lataillade
- Department of Early Development, ViiV Healthcare, Branford, Connecticut, United States of America
| |
Collapse
|
12
|
Urano E, Timilsina U, Kaplan JA, Ablan S, Ghimire D, Pham P, Kuruppu N, Mandt R, Durell SR, Nitz TJ, Martin DE, Wild CT, Gaur R, Freed EO. Resistance to Second-Generation HIV-1 Maturation Inhibitors. J Virol 2019; 93:e02017-18. [PMID: 30567982 PMCID: PMC6401422 DOI: 10.1128/jvi.02017-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
A betulinic acid-based compound, bevirimat (BVM), inhibits HIV-1 maturation by blocking a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. Previous studies showed that mutations conferring resistance to BVM cluster around the CA-SP1 cleavage site. Single amino acid polymorphisms in the SP1 region of Gag and the C terminus of CA reduced HIV-1 susceptibility to BVM, leading to the discontinuation of BVM's clinical development. We recently reported a series of "second-generation" BVM analogs that display markedly improved potency and breadth of activity relative to the parent molecule. Here, we demonstrate that viral clones bearing BVM resistance mutations near the C terminus of CA are potently inhibited by second-generation BVM analogs. We performed de novo selection experiments to identify mutations that confer resistance to these novel compounds. Selection experiments with subtype B HIV-1 identified an Ala-to-Val mutation at SP1 residue 1 and a Pro-to-Ala mutation at CA residue 157 within the major homology region (MHR). In selection experiments with subtype C HIV-1, we identified mutations at CA residue 230 (CA-V230M) and SP1 residue 1 (SP1-A1V), residue 5 (SP1-S5N), and residue 10 (SP1-G10R). The positions at which resistance mutations arose are highly conserved across multiple subtypes of HIV-1. We demonstrate that the mutations confer modest to high-level maturation inhibitor resistance. In most cases, resistance was not associated with a detectable increase in the kinetics of CA-SP1 processing. These results identify mutations that confer resistance to second-generation maturation inhibitors and provide novel insights into the mechanism of resistance.IMPORTANCE HIV-1 maturation inhibitors are a class of small-molecule compounds that block a late step in the viral protease-mediated processing of the Gag polyprotein precursor, the viral protein responsible for the formation of virus particles. The first-in-class HIV-1 maturation inhibitor bevirimat was highly effective in blocking HIV-1 replication, but its activity was compromised by naturally occurring sequence polymorphisms within Gag. Recently developed bevirimat analogs, referred to as "second-generation" maturation inhibitors, overcome this issue. To understand more about how these second-generation compounds block HIV-1 maturation, here we selected for HIV-1 mutants that are resistant to these compounds. Selections were performed in the context of two different subtypes of HIV-1. We identified a small set of mutations at highly conserved positions within the capsid and spacer peptide 1 domains of Gag that confer resistance. Identification and analysis of these maturation inhibitor-resistant mutants provide insights into the mechanisms of resistance to these compounds.
Collapse
Affiliation(s)
- Emiko Urano
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Justin A Kaplan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Sherimay Ablan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Dibya Ghimire
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Phuong Pham
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Nishani Kuruppu
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Rebecca Mandt
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
13
|
Regueiro-Ren A, Dicker IB, Hanumegowda U, Meanwell NA. Second Generation Inhibitors of HIV-1 Maturation. ACS Med Chem Lett 2019; 10:287-294. [PMID: 30891128 DOI: 10.1021/acsmedchemlett.8b00656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
The strategy and tactics subtending the discovery and development of the second generation HIV-1 maturation inhibitor GSK-3532795/BMS-955176, a compound that exhibits a broader spectrum of antiviral effect in vitro and in clinical studies than the prototypical maturation inhibitor bevirimat, are described.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Department of Discovery Chemistry and Molecular Technologies Bristol-Myers Squibb Research and Development, 350 Carter Road, Room 126, Hopewell, New Jersey 08540, United States
| | - Ira B. Dicker
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Umesh Hanumegowda
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Nicholas A. Meanwell
- Department of Discovery Chemistry and Molecular Technologies Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
14
|
Regueiro-Ren A, Swidorski JJ, Liu Z, Chen Y, Sin N, Sit SY, Chen J, Venables BL, Zhu J, Nowicka-Sans B, Protack T, Lin Z, Terry B, Samanta H, Zhang S, Li Z, Easter J, Beno BR, Arora V, Huang XS, Rahematpura S, Parker DD, Haskell R, Santone KS, Cockett MI, Krystal M, Meanwell NA, Jenkins S, Hanumegowda U, Dicker IB. Design, Synthesis, and SAR of C-3 Benzoic Acid, C-17 Triterpenoid Derivatives. Identification of the HIV-1 Maturation Inhibitor 4-((1 R,3a S,5a R,5b R,7a R,11a S,11b R,13a R,13b R)-3a-((2-(1,1-Dioxidothiomorpholino)ethyl)amino)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-2,3,3a,4,5,5a,5b,6,7,7a,8,11,11a,11b,12,13,13a,13b-octadecahydro-1 H-cyclopenta[ a]chrysen-9-yl)benzoic Acid (GSK3532795, BMS-955176). J Med Chem 2018; 61:7289-7313. [PMID: 30067361 DOI: 10.1021/acs.jmedchem.8b00854] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GSK3532795, formerly known as BMS-955176 (1), is a potent, orally active, second-generation HIV-1 maturation inhibitor (MI) that advanced through phase IIb clinical trials. The careful design, selection, and evaluation of substituents appended to the C-3 and C-17 positions of the natural product betulinic acid (3) was critical in attaining a molecule with the desired virological and pharmacokinetic profile. Herein, we highlight the key insights made in the discovery program and detail the evolution of the structure-activity relationships (SARs) that led to the design of the specific C-17 amine moiety in 1. These modifications ultimately enabled the discovery of 1 as a second-generation MI that combines broad coverage of polymorphic viruses (EC50 <15 nM toward a panel of common polymorphisms representative of 96.5% HIV-1 subtype B virus) with a favorable pharmacokinetic profile in preclinical species.
Collapse
|
15
|
Bedoya LM, Beltrán M, García-Pérez J, Obregón-Calderón P, Callies O, Jímenez IA, Bazzocchi IL, Alcamí J. Promiscuous, Multi-Target Lupane-Type Triterpenoids Inhibits Wild Type and Drug Resistant HIV-1 Replication Through the Interference With Several Targets. Front Pharmacol 2018; 9:358. [PMID: 29720939 PMCID: PMC5915803 DOI: 10.3389/fphar.2018.00358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Current research on antiretroviral therapy is mainly focused in the development of new formulations or combinations of drugs belonging to already known targets. However, HIV-1 infection is not cured by current therapy and thus, new approaches are needed. Bevirimat was developed by chemical modification of betulinic acid, a lupane-type pentacyclic triterpenoid (LPT), as a first-in-class HIV-1 maturation inhibitor. However, in clinical trials, bevirimat showed less activity than expected because of the presence of a natural mutation in Gag protein that conferred resistance to a high proportion of HIV-1 strains. In this work, three HIV-1 inhibitors selected from a set of previously screened LPTs were investigated for their targets in the HIV-1 replication cycle, including their maturation inhibitor effect. LPTs were found to inhibit HIV-1 infection acting as promiscuous compounds with several targets in the HIV-1 replication cycle. LPT12 inhibited HIV-1 infection mainly through reverse transcription, integration, viral transcription, viral proteins (Gag) production and maturation inhibition. LPT38 did it through integration, viral transcription or Gag production inhibition and finally, LPT42 inhibited reverse transcription, viral transcription or Gag production. The three LPTs inhibited HIV-1 infection of human primary lymphocytes and infections with protease inhibitors and bevirimat resistant HIV-1 variants with similar values of IC50. Therefore, we show that the LPTs tested inhibited HIV-1 infection through acting on different targets depending on their chemical structure and the activities of the different LPTs vary with slight structural alterations. For example, of the three LPTs under study, we found that only LPT12 inhibited infectivity of newly-formed viral particles, suggesting a direct action on the maturation process. Thus, the multi-target behavior gives a potential advantage to these compounds since HIV-1 resistance can be overcome by modulating more than one target.
Collapse
Affiliation(s)
- Luis M Bedoya
- Retrovirus Laboratory, Department of AIDS Immunopathogenesis, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.,Department of Pharmacology, Pharmacy Faculty, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuela Beltrán
- Retrovirus Laboratory, Department of AIDS Immunopathogenesis, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier García-Pérez
- Retrovirus Laboratory, Department of AIDS Immunopathogenesis, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Obregón-Calderón
- Retrovirus Laboratory, Department of AIDS Immunopathogenesis, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Callies
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ignacio A Jímenez
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Isabel L Bazzocchi
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - José Alcamí
- Retrovirus Laboratory, Department of AIDS Immunopathogenesis, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Chen Y, Sit SY, Chen J, Swidorski JJ, Liu Z, Sin N, Venables BL, Parker DD, Nowicka-Sans B, Lin Z, Li Z, Terry BJ, Protack T, Rahematpura S, Hanumegowda U, Jenkins S, Krystal M, Dicker ID, Meanwell NA, Regueiro-Ren A. The design, synthesis and structure-activity relationships associated with C28 amine-based betulinic acid derivatives as inhibitors of HIV-1 maturation. Bioorg Med Chem Lett 2018; 28:1550-1557. [DOI: 10.1016/j.bmcl.2018.03.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/17/2018] [Accepted: 03/23/2018] [Indexed: 01/22/2023]
|
17
|
Hwang C, Schürmann D, Sobotha C, Boffito M, Sevinsky H, Ray N, Ravindran P, Xiao H, Keicher C, Hüser A, Krystal M, Dicker IB, Grasela D, Lataillade M. Antiviral Activity, Safety, and Exposure-Response Relationships of GSK3532795, a Second-Generation Human Immunodeficiency Virus Type 1 Maturation Inhibitor, Administered as Monotherapy or in Combination With Atazanavir With or Without Ritonavir in a Phase 2a Randomized, Dose-Ranging, Controlled Trial (AI468002). Clin Infect Dis 2018; 65:442-452. [PMID: 28369211 PMCID: PMC5848258 DOI: 10.1093/cid/cix239] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/16/2017] [Indexed: 11/24/2022] Open
Abstract
Background. GSK3532795 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor that targets HIV-1 Gag, inhibiting the final protease cleavage between capsid protein p24 and spacer protein-1, producing immature, noninfectious virions. Methods. This was a phase 2a, randomized, dose-ranging multipart trial. In part A, subtype B-infected subjects received 5–120 mg GSK3532795 (or placebo) once daily for 10 days. In part B, subtype B-infected subjects received 40 mg or 80 mg GSK3532795 once daily with atazanavir (ATV) with or without (±) ritonavir (RTV) or standard of care (SOC) (tenofovir disoproxil fumarate 300 mg, emtricitabine 200 mg, and ATV/RTV 300 mg/100 mg) for 28 days. In part C, subtype C-infected subjects received 40 mg or 120 mg GSK3532795 once daily (or placebo) for 10 days. Endpoints included change in HIV-1 RNA from baseline on day 11 (parts A/C) or day 29 (part B). Results. A >1 log10 median decline in HIV-1 RNA was achieved by day 11 in parts A and C and day 29 in part B at GSK3532795 doses ≥40 mg; part B subjects receiving GSK3532795 and ATV ± RTV achieved similar declines to those receiving SOC. Median of the maximum declines in HIV-1 RNA were similar for the 40–120 mg once-daily dose groups regardless of baseline Gag polymorphisms. There were no deaths, adverse events leading to discontinuation, or serious adverse events. Conclusions. GSK3532795 demonstrated potent antiviral activity against subtype B (monotherapy or with ATV ± RTV) and subtype C, and was generally well tolerated, which supported continued development of GSK3532795 in subjects with HIV-1 subtype B or subtype C. Clinical Trials Registration. NCT01803074.
Collapse
Affiliation(s)
- Carey Hwang
- Research and Development, Bristol-Myers Squibb, Princeton, New Jersey
| | - Dirk Schürmann
- Charité Research Organisation GmbH.,Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Germany
| | | | - Marta Boffito
- St Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | - Heather Sevinsky
- Research and Development, Bristol-Myers Squibb, Princeton, New Jersey
| | - Neelanjana Ray
- Research and Development, Bristol-Myers Squibb, Princeton, New Jersey
| | | | - Hong Xiao
- Research and Development, Bristol-Myers Squibb, Princeton, New Jersey
| | | | | | - Mark Krystal
- Research and Development, Bristol-Myers Squibb, Wallingford, Connecticut
| | - Ira B Dicker
- Research and Development, Bristol-Myers Squibb, Wallingford, Connecticut
| | - Dennis Grasela
- Research and Development, Bristol-Myers Squibb, Princeton, New Jersey
| | - Max Lataillade
- Research and Development, Bristol-Myers Squibb, Wallingford, Connecticut
| |
Collapse
|