1
|
Preite NW, Kaminski VDL, Borges BM, Dos Santos BV, Calich VLG, Loures FV. Specific Depletion of Myeloid-Derived Suppressor Cells by the Chemotherapy Agent 5-Fluorouracil Enhances Protective Immune Response in Paracoccidioidomycosis. J Infect Dis 2024; 230:1279-1290. [PMID: 38990787 DOI: 10.1093/infdis/jiae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Paracoccidioidomycosis (PCM) is regulated by suppressive mechanisms mediated by plasmacytoid-dendritic cells, regulatory T cells and myeloid-derived suppressor cells (MDSCs). MDSC suppressive activity on Th1/Th17 immunity was shown to be mediated by inhibitory effect of IL-10, IDO-1, and PD-L1. Studies revealed the 5-fluorouracil (5-FU) as a selective MDSC apoptosis-inducing agent, but its in vivo effect on infectious processes remains poorly investigated. METHODS MDSCs and other leukocytes were evaluated in the lungs of 5-FU-treated mice after 4, 6, and 8 weeks of Paracoccidioides brasiliensis infection. Disease severity and immunological response were evaluated in MDSCs-depleted mice. RESULTS 5-FU treatment caused a reduction of pulmonary MDSCs and fungal loads. The specific depletion of MDSCs reduced all pulmonary CD4+ T-cell populations resulting in improved tissue pathology and increased survival. This reduction was concomitant with increased frequencies of Th1/Th17 cells and the increased levels of Th1/Th2/Th17 cytokines in the lungs and liver of treated mice, suggesting an early and efficient protective effect of these cells. Furthermore, the immune protection conferred by the 5-FU treatment could be reversed by the MDSC-adoptive transfer. CONCLUSIONS 5-FU depletes MDSCs of P. brasiliensis-infected mice, resulting in enhanced immunity. This protective effect can be viewed as a potential immunotherapeutic tool for PCM.
Collapse
Affiliation(s)
- Nycolas Willian Preite
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Bianca Vieira Dos Santos
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| |
Collapse
|
2
|
Kulkarni NA, Nanjappa SG. Advances in Dendritic-Cell-Based Vaccines against Respiratory Fungal Infections. Vaccines (Basel) 2024; 12:981. [PMID: 39340013 PMCID: PMC11435842 DOI: 10.3390/vaccines12090981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Ever since the discovery of dendritic cells by Ralph Steinman and Zanvil Cohn in 1973, it is increasingly evident that dendritic cells are integral for adaptive immune responses, and there is an undeniable focus on them for vaccines development. Fungal infections, often thought to be innocuous, are becoming significant threats due to an increased immunocompromised or immune-suppressed population and climate change. Further, the recent COVID-19 pandemic unraveled the wrath of fungal infections and devastating outcomes. Invasive fungal infections cause significant case fatality rates ranging from 20% to 90%. Regrettably, no licensed fungal vaccines exist, and there is an urgent need for preventive and therapeutic purposes. In this review, we discuss the ontogeny, subsets, tissue distribution, and functions of lung dendritic cells. In the latter part, we summarize and discuss the studies on the DC-based vaccines against pulmonary fungal infections. Finally, we highlight some emerging potential avenues that can be incorporated for DC-based vaccines against fungal infections.
Collapse
Affiliation(s)
| | - Som G. Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
3
|
Monti M, Ferrari G, Gazzurelli L, Bugatti M, Facchetti F, Vermi W. Plasmacytoid dendritic cells at the forefront of anti-cancer immunity: rewiring strategies for tumor microenvironment remodeling. J Exp Clin Cancer Res 2024; 43:196. [PMID: 39020402 PMCID: PMC11253500 DOI: 10.1186/s13046-024-03121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells executing various innate immunological functions. Their first line of defence consists in type I interferons (I-IFN) production upon nucleic acids sensing through endosomal Toll-like receptor (TLR) 7- and 9-dependent signalling pathways. Type I IFNs are a class of proinflammatory cytokines that have context-dependent functions on cancer immunosurveillance and immunoediting. In the last few years, different studies have reported that pDCs are also able to sense cytosolic DNA through cGAS-STING (stimulator of interferon genes) pathway eliciting a potent I-IFN production independently of TLR7/9. Human pDCs are also endowed with direct effector functions via the upregulation of TRAIL and production of granzyme B, the latter modulated by cytokines abundant in cancer tissues. pDCs have been detected in a wide variety of human malignant neoplasms, including virus-associated cancers, recruited by chemotactic stimuli. Although the role of pDCs in cancer immune surveillance is still uncompletely understood, their spontaneous activation has been rarely documented; moreover, their presence in the tumor microenvironment (TME) has been associated with a tolerogenic phenotype induced by immunosuppressive cytokines or oncometabolites. Currently tested treatment options can lead to pDCs activation and disruption of the immunosuppressive TME, providing a relevant clinical benefit. On the contrary, the antibody-drug conjugates targeting BDCA-2 on immunosuppressive tumor-associated pDCs (TA-pDCs) could be proposed as novel immunomodulatory therapies to achieve disease control in patients with advance stage hematologic malignancies or solid tumors. This Review integrate recent evidence on the biology of pDCs and their pharmacological modulation, suggesting their relevant role at the forefront of cancer immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Luisa Gazzurelli
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
4
|
Kaminski VL, Borges BM, Santos BV, Preite NW, Calich VLG, Loures FV. MDSCs use a complex molecular network to suppress T-cell immunity in a pulmonary model of fungal infection. Front Cell Infect Microbiol 2024; 14:1392744. [PMID: 39035356 PMCID: PMC11257977 DOI: 10.3389/fcimb.2024.1392744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Background Paracoccidioidomycosis (PCM) is a systemic endemic fungal disease prevalent in Latin America. Previous studies revealed that host immunity against PCM is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), regulatory T-cells (Tregs), and through the recruitment and activation of myeloid-derived suppressor cells (MDSCs). We have recently shown that Dectin-1, TLR2, and TLR4 signaling influence the IDO-1-mediated suppression caused by MDSCs. However, the contribution of these receptors in the production of important immunosuppressive molecules used by MDSCs has not yet been explored in pulmonary PCM. Methods We evaluated the expression of PD-L1, IL-10, as well as nitrotyrosine by MDSCs after anti-Dectin-1, anti-TLR2, and anti-TLR4 antibody treatment followed by P. brasiliensis yeasts challenge in vitro. We also investigated the influence of PD-L1, IL-10, and nitrotyrosine in the suppressive activity of lung-infiltrating MDSCs of C57BL/6-WT, Dectin-1KO, TLR2KO, and TLR4KO mice after in vivo fungal infection. The suppressive activity of MDSCs was evaluated in cocultures of isolated MDSCs with activated T-cells. Results A reduced expression of IL-10 and nitrotyrosine was observed after in vitro anti-Dectin-1 treatment of MDSCs challenged with fungal cells. This finding was further confirmed in vitro and in vivo by using Dectin-1KO mice. Furthermore, MDSCs derived from Dectin-1KO mice showed a significantly reduced immunosuppressive activity on the proliferation of CD4+ and CD8+ T lymphocytes. Blocking of TLR2 and TLR4 by mAbs and using MDSCs from TLR2KO and TLR4KO mice also reduced the production of suppressive molecules induced by fungal challenge. In vitro, MDSCs from TLR4KO mice presented a reduced suppressive capacity over the proliferation of CD4+ T-cells. Conclusion We showed that the pathogen recognition receptors (PRRs) Dectin-1, TLR2, and TLR4 contribute to the suppressive activity of MDSCs by inducing the expression of several immunosuppressive molecules such as PD-L1, IL-10, and nitrotyrosine. This is the first demonstration of a complex network of PRRs signaling in the induction of several suppressive molecules by MDSCs and its contribution to the immunosuppressive mechanisms that control immunity and severity of pulmonary PCM.
Collapse
MESH Headings
- Animals
- Mice
- Interleukin-10/metabolism
- Toll-Like Receptor 2/metabolism
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/immunology
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Toll-Like Receptor 4/metabolism
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Disease Models, Animal
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/genetics
- Mice, Inbred C57BL
- Paracoccidioidomycosis/immunology
- Paracoccidioides/immunology
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
- T-Lymphocytes, Regulatory/immunology
- Lung/immunology
- Lung/microbiology
- Signal Transduction
- Male
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Mice, Knockout
Collapse
Affiliation(s)
- Valéria Lima Kaminski
- Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| | - Bianca Vieira Santos
- Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| | - Vera Lucia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo – USP, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| |
Collapse
|
5
|
Pamart G, Gosset P, Le Rouzic O, Pichavant M, Poulain-Godefroy O. Kynurenine Pathway in Respiratory Diseases. Int J Tryptophan Res 2024; 17:11786469241232871. [PMID: 38495475 PMCID: PMC10943758 DOI: 10.1177/11786469241232871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/28/2024] [Indexed: 03/19/2024] Open
Abstract
The kynurenine pathway is the primary route for tryptophan catabolism and has received increasing attention as its association with inflammation and the immune system has become more apparent. This review provides a broad overview of the kynurenine pathway in respiratory diseases, from the initial observations to the characterization of the different cell types involved in the synthesis of kynurenine metabolites and the underlying immunoregulatory mechanisms. With a focus on respiratory infections, the various attempts to characterize the kynurenine/tryptophan (K/T) ratio as an inflammatory marker are reviewed. Its implication in chronic lung inflammation and its exacerbation by respiratory pathogens is also discussed. The emergence of preclinical interventional studies targeting the kynurenine pathway opens the way for the future development of new therapies.
Collapse
Affiliation(s)
- Guillaume Pamart
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Philippe Gosset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Olivier Le Rouzic
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Muriel Pichavant
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Odile Poulain-Godefroy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
6
|
Preite NW, Borges BM, Kaminski VDL, Ayupe MC, Gonçalves LM, dos Santos BV, Fonseca DLM, Filgueiras IS, Salgado CL, Muxel SM, Cabral-Marques O, da Fonseca DM, Loures FV, Calich VLG. Blocking the CTLA-4 and PD-1 pathways during pulmonary paracoccidioidomycosis improves immunity, reduces disease severity, and increases the survival of infected mice. Front Immunol 2024; 15:1347318. [PMID: 38500881 PMCID: PMC10945025 DOI: 10.3389/fimmu.2024.1347318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Immune checkpoint pathways, i.e., coinhibitory pathways expressed as feedback following immune activation, are crucial for controlling an excessive immune response. Cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) are the central classical checkpoint inhibitory (CPI) molecules used for the control of neoplasms and some infectious diseases, including some fungal infections. As the immunosuppression of severe paracoccidioidomycosis (PCM), a chronic granulomatous fungal disease, was shown to be associated with the expression of coinhibitory molecules, we hypothesized that the inhibition of CTLA-4 and PD-1 could have a beneficial effect on pulmonary PCM. To this end, C57BL/6 mice were infected with Paracoccidioides brasiliensis yeasts and treated with monoclonal antibodies (mAbs) α-CTLA-4, α-PD-1, control IgG, or PBS. We verified that blockade of CTLA-4 and PD-1 reduced the fungal load in the lungs and fungal dissemination to the liver and spleen and decreased the size of pulmonary lesions, resulting in increased survival of mice. Compared with PBS-treated infected mice, significantly increased levels of many pro- and anti-inflammatory cytokines were observed in the lungs of α-CTLA-4-treated mice, but a drastic reduction in the liver was observed following PD-1 blockade. In the lungs of α-CPI and IgG-treated mice, there were no changes in the frequency of inflammatory leukocytes, but a significant reduction in the total number of these cells was observed. Compared with PBS-treated controls, α-CPI- and IgG-treated mice exhibited reduced pulmonary infiltration of several myeloid cell subpopulations and decreased expression of costimulatory molecules. In addition, a decreased number of CD4+ and CD8+ T cells but sustained numbers of Th1, Th2, and Th17 T cells were detected. An expressive reduction in several Treg subpopulations and their maturation and suppressive molecules, in addition to reduced numbers of Treg, TCD4+, and TCD8+ cells expressing costimulatory and coinhibitory molecules of immunity, were also detected. The novel cellular and humoral profiles established in the lungs of α-CTLA-4 and α-PD-1-treated mice but not in control IgG-treated mice were more efficient at controlling fungal growth and dissemination without causing increased tissue pathology due to excessive inflammation. This is the first study demonstrating the efficacy of CPI blockade in the treatment of pulmonary PCM, and further studies combining the use of immunotherapy with antifungal drugs are encouraged.
Collapse
Affiliation(s)
| | | | | | - Marina Caçador Ayupe
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Leonardo Mandu Gonçalves
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | | | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Caio Loureiro Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Sandra Marcia Muxel
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine (USP), São Paulo, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
7
|
Monti M, Ferrari G, Grosso V, Missale F, Bugatti M, Cancila V, Zini S, Segala A, La Via L, Consoli F, Orlandi M, Valerio A, Tripodo C, Rossato M, Vermi W. Impaired activation of plasmacytoid dendritic cells via toll-like receptor 7/9 and STING is mediated by melanoma-derived immunosuppressive cytokines and metabolic drift. Front Immunol 2024; 14:1227648. [PMID: 38239354 PMCID: PMC10795195 DOI: 10.3389/fimmu.2023.1227648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Plasmacytoid dendritic cells (pDCs) infiltrate a large set of human cancers. Interferon alpha (IFN-α) produced by pDCs induces growth arrest and apoptosis in tumor cells and modulates innate and adaptive immune cells involved in anti-cancer immunity. Moreover, effector molecules exert tumor cell killing. However, the activation state and clinical relevance of pDCs infiltration in cancer is still largely controversial. In Primary Cutaneous Melanoma (PCM), pDCs density decreases over disease progression and collapses in metastatic melanoma (MM). Moreover, the residual circulating pDC compartment is defective in IFN-α production. Methods The activation of tumor-associated pDCs was evaluated by in silico and microscopic analysis. The expression of human myxovirus resistant protein 1 (MxA), as surrogate of IFN-α production, and proximity ligation assay (PLA) to test dsDNA-cGAS activation were performed on human melanoma biopsies. Moreover, IFN-α and CXCL10 production by in vitro stimulated (i.e. with R848, CpG-A, ADU-S100) pDCs exposed to melanoma cell lines supernatants (SN-mel) was tested by intracellular flow cytometry and ELISA. We also performed a bulk RNA-sequencing on SN-mel-exposed pDCs, resting or stimulated with R848. Glycolytic rate assay was performed on SN-mel-exposed pDCs using the Seahorse XFe24 Extracellular Flux Analyzer. Results Based on a set of microscopic, functional and in silico analyses, we demonstrated that the melanoma milieu directly impairs IFN-α and CXCL10 production by pDCs via TLR-7/9 and cGAS-STING signaling pathways. Melanoma-derived immunosuppressive cytokines and a metabolic drift represent relevant mechanisms enforcing pDC-mediated melanoma escape. Discussion These findings propose a new window of intervention for novel immunotherapy approaches to amplify the antitumor innate immune response in cutaneous melanoma (CM).
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Grosso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Nederlands Kanker Instituut, Amsterdam, Netherlands
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Stefania Zini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Consoli
- Oncology Unit, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Matteo Orlandi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
8
|
Kaminski VDL, Preite NW, Borges BM, Dos Santos BV, Calich VLG, Loures FV. The immunosuppressive activity of myeloid-derived suppressor cells in murine Paracoccidioidomycosis relies on Indoleamine 2,3-dioxygenase activity and Dectin-1 and TLRs signaling. Sci Rep 2023; 13:12391. [PMID: 37524886 PMCID: PMC10390561 DOI: 10.1038/s41598-023-39262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis with a high incidence in Latin America. Prior studies have demonstrated the significance of the enzyme Indoleamine 2,3-dioxygenase (IDO-1) in the immune regulation of PCM as well as the vital role of myeloid-derived suppressor cells (MDSCs) in moderating PCM severity. Additionally, Dectin-1 and Toll-Like Receptors (TLRs) signaling in cancer, infection, and autoimmune diseases have been shown to impact MDSC-IDO-1+ activity. To expand our understanding of MDSCs and the role of IDO-1 and pattern recognition receptors (PRRs) signaling in PCM, we generated MDSCs in vitro and administered an IDO-1 inhibitor before challenging the cells with Paracoccidioides brasiliensis yeasts. By co-culturing MDSCs with lymphocytes, we assessed T-cell proliferation to examine the influence of IDO-1 on MDSC activity. Moreover, we utilized specific antibodies and MDSCs from Dectin-1, TLR4, and TLR2 knockout mice to evaluate the effect of these PRRs on IDO-1 production by MDSCs. We confirmed the importance of these in vitro findings by assessing MDSC-IDO-1+ in the lungs of mice following the fungal infection. Taken together, our data show that IDO-1 expression by MDSCs is crucial for the control of T-cell proliferation, and the production of this enzyme is partially dependent on Dectin-1, TLR2, and TLR4 signaling during murine PCM.
Collapse
Affiliation(s)
- Valéria de Lima Kaminski
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - Bianca Vieira Dos Santos
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - Vera Lucia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil.
| |
Collapse
|
9
|
Adeyemi OD, Tian Y, Khwatenge CN, Grayfer L, Sang Y. Molecular diversity and functional implication of amphibian interferon complex: Remarking immune adaptation in vertebrate evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104624. [PMID: 36586430 DOI: 10.1016/j.dci.2022.104624] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Cross-species comparison of vertebrate genomes has unraveled previously unknown complexities of interferon (IFN) systems in amphibian species. Recent genomic curation revealed that amphibian species have evolved expanded repertoires of four types of intron-containing IFN genes akin to those seen in jawed fish, intronless type I IFNs and intron-containing type III IFNs akin to those seen in amniotes, as well as uniquely intronless type III IFNs. This appears to be the case with at least ten analyzed amphibian species; with distinct species encoding diverse repertoires of these respective IFN gene subsets. Amphibians represent a key stage in vertebrate evolution, and in this context offer a unique perspective into the divergent and converged pathways leading to the emergence of distinct IFN families and groups. Recent studies have begun to unravel the roles of amphibian IFNs during these animals' immune responses in general and during their antiviral responses, in particular. However, the pleiotropic potentials of these highly expanded amphibian IFN repertoires warrant further studies. Based on recent reports and our omics analyses using Xenopus models, we posit that amphibian IFN complex may have evolved novel functions, as indicated by their extensive molecular diversity. Here, we provide an overview and an update of the present understanding of the amphibian IFN complex in the context of the evolution of vertebrate immune systems. A greater understanding of the amphibian IFN complex will grant new perspectives on the evolution of vertebrate immunity and may yield new measures by which to counteract the global amphibian declines.
Collapse
Affiliation(s)
- Oluwaseun D Adeyemi
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN, USA
| | - Yun Tian
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN, USA
| | - Collins N Khwatenge
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN, USA.
| |
Collapse
|
10
|
Preite NW, Kaminski VDL, Borges BM, Calich VLG, Loures FV. Myeloid-derived suppressor cells are associated with impaired Th1 and Th17 responses and severe pulmonary paracoccidioidomycosis which is reversed by anti-Gr1 therapy. Front Immunol 2023; 14:1039244. [PMID: 36776848 PMCID: PMC9909482 DOI: 10.3389/fimmu.2023.1039244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Previous studies on paracoccidioidomycosis (PCM), the most prevalent systemic mycosis in Latin America, revealed that host immunity is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), and regulatory T-cells (Tregs). IDO-1 orchestrates local and systemic immunosuppressive effects through the recruitment and activation of myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid cells possessing a potent ability to suppress T-cell responses. However, the involvement of MDSCs in PCM remains uninvestigated. The presence, phenotype, and immunosuppressive activity of MDSCs were evaluated at 96 h, 2 weeks, and 8 weeks of pulmonary infection in C57BL/6 mice. Disease severity and immune responses were assessed in MDSC-depleted and nondepleted mice using an anti-Gr1 antibody. Both monocytic-like MDSCs (M-MDSCs) and polymorphonuclear-like MDSCs (PMN-MDSCs) massively infiltrated the lungs during Paracoccidioides brasiliensis infection. Partial reduction of MDSC frequency led to a robust Th1/Th17 lymphocyte response, resulting in regressive disease with a reduced fungal burden on target organs, diminishing lung pathology, and reducing mortality ratio compared with control IgG2b-treated mice. The suppressive activity of MDSCs on CD4 and CD8 T-lymphocytes and Th1/Th17 cells was also demonstrated in vitro using coculture experiments. Conversely, adoptive transfer of MDSCs to recipient P. brasiliensis-infected mice resulted in a more severe disease. Taken together, our data showed that the increased influx of MDSCs into the lungs was linked to more severe disease and impaired Th1 and Th17 protective responses. However, protective immunity was rescued by anti-Gr1 treatment, resulting in a less severe disease and controlled tissue pathology. In conclusion, MDSCs have emerged as potential target cells for the adjuvant therapy of PCM.
Collapse
Affiliation(s)
- Nycolas Willian Preite
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil,*Correspondence: Flávio Vieira Loures,
| |
Collapse
|
11
|
Kobayashi S, Wannakul T, Sekino K, Takahashi Y, Kagawa Y, Miyazaki H, Umaru BA, Yang S, Yamamoto Y, Owada Y. Fatty acid-binding protein 5 limits the generation of Foxp3 + regulatory T cells through regulating plasmacytoid dendritic cell function in the tumor microenvironment. Int J Cancer 2022; 150:152-163. [PMID: 34449874 DOI: 10.1002/ijc.33777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 01/28/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) promote viral elimination by producing large amounts of Type I interferon. Recent studies have shown that pDCs regulate the pathogenesis of diverse inflammatory diseases, such as cancer. Fatty acid-binding protein 5 (FABP5) is a cellular chaperone of long-chain fatty acids that induce biological responses. Although the effects of FABP-mediated lipid metabolism are well studied in various immune cells, its role in pDCs remains unclear. This study, which compares wild-type and Fabp5-/- mice, provides the first evidence that FABP5-mediated lipid metabolism regulates the commitment of pDCs to inflammatory vs tolerogenic gene expression patterns in the tumor microenvironment and in response to toll-like receptor stimulation. Additionally, we demonstrated that FABP5 deficiency in pDCs affects the surrounding cellular environment, and that FABP5 expression in pDCs supports the appropriate generation of regulatory T cells (Tregs). Collectively, our findings reveal that pDC FABP5 acts as an important regulator of tumor immunity by controlling lipid metabolism.
Collapse
Affiliation(s)
- Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tunyanat Wannakul
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaname Sekino
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Takahashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Shuhan Yang
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
de Araújo EF, Loures FV, Preite NW, Feriotti C, Galdino NA, Costa TA, Calich VLG. AhR Ligands Modulate the Differentiation of Innate Lymphoid Cells and T Helper Cell Subsets That Control the Severity of a Pulmonary Fungal Infection. Front Immunol 2021; 12:630938. [PMID: 33936043 PMCID: PMC8085362 DOI: 10.3389/fimmu.2021.630938] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
In agreement with other fungal infections, immunoprotection in pulmonary paracoccidioidomycosis (PCM) is mediated by Th1/Th17 cells whereas disease progression by prevalent Th2/Th9 immunity. Treg cells play a dual role, suppressing immunity but also controlling excessive tissue inflammation. Our recent studies have demonstrated that the enzyme indoleamine 2,3 dioxygenase (IDO) and the transcription factor aryl hydrocarbon receptor (AhR) play an important role in the immunoregulation of PCM. To further evaluate the immunomodulatory activity of AhR in this fungal infection, Paracoccidioides brasiliensis infected mice were treated with two different AhR agonists, L-Kynurenin (L-Kyn) or 6-formylindole [3,2-b] carbazole (FICZ), and one AhR specific antagonist (CH223191). The disease severity and immune response of treated and untreated mice were assessed 96 hours and 2 weeks after infection. Some similar effects on host response were shared by FICZ and L-Kyn, such as the reduced fungal loads, decreased numbers of CD11c+ lung myeloid cells expressing activation markers (IA, CD40, CD80, CD86), and early increased expression of IDO and AhR. In contrast, the AhR antagonist CH223191 induced increased fungal loads, increased number of pulmonary CD11c+ leukocytes expressing activation markers, and a reduction in AhR and IDO production. While FICZ treatment promoted large increases in ILC3, L-Kyn and CH223191 significantly reduced this cell population. Each of these AhR ligands induced a characteristic adaptive immunity. The large expansion of FICZ-induced myeloid, lymphoid, and plasmacytoid dendritic cells (DCs) led to the increased expansion of all CD4+ T cell subpopulations (Th1, Th2, Th17, Th22, and Treg), but with a clear predominance of Th17 and Th22 subsets. On the other hand, L-Kyn, that preferentially activated plasmacytoid DCs, reduced Th1/Th22 development but caused a robust expansion of Treg cells. The AhR antagonist CH223191 induced a preferential expansion of myeloid DCs, reduced the number of Th1, Th22, and Treg cells, but increased Th17 differentiation. In conclusion, the present study showed that the pathogen loads and the immune response in pulmonary PCM can be modulated by AhR ligands. However, further studies are needed to define the possible use of these compounds as adjuvant therapy for this fungal infection.
Collapse
Affiliation(s)
- Eliseu F de Araújo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávio V Loures
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nycolas W Preite
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cláudia Feriotti
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nayane Al Galdino
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tânia A Costa
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vera L G Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Li Y, Cao L, Qian Z, Guo Q, Niu X, Huang L. Mifepristone regulates Tregs function mediated by dendritic cells through suppressing the expression of TGF-β. Immunopharmacol Immunotoxicol 2021; 43:85-93. [PMID: 33406939 DOI: 10.1080/08923973.2020.1867998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies have demonstrated that mifepristone in the daily low-dose affects the function of endometrium. These researches also implied an alteration of endometrium immune balance, which might be involved in regulating endometrial function. However, the detailed mechanisms remain to be further explored. METHODS In this study, the expressions of CD80, CD86, and ICAM-1 in dendritic cells (DCs), which were stimulated with different concentrations of mifepristone (20, 65, and 200 nM), were detected by FACS. After that, we further evaluated the expression of Forkhead box P3 (FOXP3) and IL-10 in Tregs, which co-cultured with mifepristone treated DCs. In mechanism, we compared the indoleamine 2,3-dioxygenase (IDO) and TGF-β expression with enzyme-linked immunosorbent assay (ELISA). RESULTS The results indicated that mifepristone promoted the expressions of CD80, CD86, and ICAM-1 in a dosage dependent manner. Reversely, FOXP3 and IL-10 expression levels in Tregs co-cultured with mifepristone-treated DCs were significantly decreased compared with those co-cultured with nontreated DC. Furthermore, a significant reduce in IDO and TGF-β expression was observed in DCs treated with mifepristone. By using the IDO inhibitor (1-methyl tryptophan, 1-MT) or TGF-b supplement, we confirmed that TGF-β, but not IDO could rescue the downregulation of FOXP3 and IL-10 in Tregs co-cultured with mifepristone treated DCs. All of these results suggest that mifepristone may regulate DC function by decreasing TGF-β expression, which further results in the downregulations of FOXP3 and IL-10 in Tregs. CONCLUSION Therefore, our research provides a theoretical basis for a potentially clinical application of mifepristone as a novel contraceptive.
Collapse
Affiliation(s)
- Yinghua Li
- Hangzhou Women's Hospital, Hangzhou, China.,Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Cao
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhida Qian
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingyun Guo
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocen Niu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Huang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Lung CD103 + Dendritic cells of mice infected with Paracoccidioides brasiliensis contribute to Treg differentiation. Microb Pathog 2020; 150:104696. [PMID: 33359357 DOI: 10.1016/j.micpath.2020.104696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023]
Abstract
The DC subsets that express αE integrin (CD103) have been described to exert antagonistic functions, driving T cells towards either an inflammatory (Th1/Th17) or immunosuppressive phenotype (regulatory T cells - Treg). These functions depend on the tissue they reside and microenvironment factors or stimuli that this Antigen-presenting cell (APC) subpopulation receive. In this regard, immunoregulatory phenotype has been described in small subsets of CD103+ DCs from lung and intestinal mucosa. The function of this APC subpopulation in pulmonary Paracoccidioides brasiliensis infection is poorly described. Here, we showed that lung CD103+ DCs contribute to Treg differentiation in a pulmonary P. brasiliensis infection model, which was attributed to downregulation of costimulatory molecules analyzed in these APC subtypes 21 days post-infection. Overall, this data suggests that P. brasiliensis infection caused an immunosuppression that has also been observed in patients with the most severe form of Paracoccidioidomycosis (PCM) - a sickness caused by this fungus genus. Furthermore, these results open new perspectives for knowledge of the mechanisms that underlie the higher percentage of Treg cells found in peripheral blood of PCM patients.
Collapse
|
15
|
de-Souza-Silva CM, Hurtado FA, Tavares AH, de Oliveira GP, Raiol T, Nishibe C, Agustinho DP, Almeida NF, Walter MEMT, Nicola AM, Bocca AL, Albuquerque P, Silva-Pereira I. Transcriptional Remodeling Patterns in Murine Dendritic Cells Infected with Paracoccidioides brasiliensis: More Is Not Necessarily Better. J Fungi (Basel) 2020; 6:jof6040311. [PMID: 33255176 PMCID: PMC7712260 DOI: 10.3390/jof6040311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Most people infected with the fungus Paracoccidioides spp. do not get sick, but approximately 5% develop paracoccidioidomycosis. Understanding how host immunity determinants influence disease development could lead to novel preventative or therapeutic strategies; hence, we used two mouse strains that are resistant (A/J) or susceptible (B10.A) to P. brasiliensis to study how dendritic cells (DCs) respond to the infection. RNA sequencing analysis showed that the susceptible strain DCs remodeled their transcriptomes much more intensely than those from the resistant strain, agreeing with a previous model of more intense innate immunity response in the susceptible strain. Contrastingly, these cells also repress genes/processes involved in antigen processing and presentation, such as lysosomal activity and autophagy. After the interaction with P. brasiliensis, both DCs and macrophages from the susceptible mouse reduced the autophagy marker LC3-II recruitment to the fungal phagosome compared to the resistant strain cells, confirming this pathway’s repression. These results suggest that impairment in antigen processing and presentation processes might be partially responsible for the inefficient activation of the adaptive immune response in this model.
Collapse
Affiliation(s)
- Calliandra M. de-Souza-Silva
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil; (C.M.d.-S.-S.); (F.A.H.); (I.S.-P.)
| | - Fabián Andrés Hurtado
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil; (C.M.d.-S.-S.); (F.A.H.); (I.S.-P.)
- Molecular Pathology Post-Graduation Program, University of Brasília Medical School, Brasília, DF 70910-900, Brazil
| | | | - Getúlio P. de Oliveira
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Taina Raiol
- Fiocruz Brasília, Oswaldo Cruz Foundation, Brasília, DF 70904-130, Brazil;
| | - Christiane Nishibe
- Faculty of Computing, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (C.N.); (N.F.A.)
| | - Daniel Paiva Agustinho
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1093, USA;
| | - Nalvo Franco Almeida
- Faculty of Computing, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (C.N.); (N.F.A.)
| | | | - André Moraes Nicola
- Faculty of Medicine, University of Brasília, Brasília, DF 70910-900, Brazil;
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil;
| | - Patrícia Albuquerque
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil; (C.M.d.-S.-S.); (F.A.H.); (I.S.-P.)
- Faculty of Ceilândia, University of Brasília, Brasília, DF 72220-275, Brazil;
- Correspondence: ; Tel.: +55-61-985830129
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil; (C.M.d.-S.-S.); (F.A.H.); (I.S.-P.)
- Molecular Pathology Post-Graduation Program, University of Brasília Medical School, Brasília, DF 70910-900, Brazil
| |
Collapse
|
16
|
Unraveling the susceptibility of paracoccidioidomycosis: Insights towards the pathogen-immune interplay and immunogenetics. INFECTION GENETICS AND EVOLUTION 2020; 86:104586. [PMID: 33039601 DOI: 10.1016/j.meegid.2020.104586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic mycosis caused by Paracoccidioides spp. This disease comprises three clinical forms: symptomatic acute and chronic forms (PCM disease) and PCM infection, a latent form without clinical symptoms. PCM disease differs markedly according to severity, clinical manifestations, and host immune response. Fungal virulence factors and adhesion molecules are determinants for entry, latency, immune escape and invasion, and dissemination in the host. Neutrophils and macrophages play a paramount role in first-line defense against the fungus through the recognition of antigens by pattern recognition receptors (PRRs), activating their microbicidal machinery. Furthermore, the clinical outcome of the PCM is strongly associated with the variability of cytokines and immunoglobulins produced by T and B cells. While the mechanisms that mediate susceptibility or resistance to infection are dictated by the immune system, some genetic factors may alter gene expression and its final products and, hence, modulate how the organism responds to infection and injury. This review outlines the main findings relative to this topic, addressing the complexity of the immune response triggered by Paracoccidioides spp. infection from preclinical investigations to studies in humans. Here, we focus on mechanisms of fungal pathogenesis, the patterns of innate and adaptive immunity, and the genetic and molecular basis related to immune response and susceptibility to the development of the PCM and its clinical forms. Immunogenetic features such as HLA system, cytokines/cytokines receptors genes and other immune-related genes, and miRNAs are likewise discussed. Finally, we point out the occurrence of PCM in patients with primary immunodeficiencies and call attention to the research gaps and challenges faced by the PCM field.
Collapse
|
17
|
Peron G, Oliveira J, Thomaz LDL, Bonfanti AP, Thomé R, Rapôso C, Cardoso Verinaud LM. Paracoccidioides brasiliensis infection increases regulatory T cell counts in female C57BL/6 mice infected via two distinct routes. Immunobiology 2020; 225:151963. [PMID: 32747019 DOI: 10.1016/j.imbio.2020.151963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/06/2020] [Accepted: 05/18/2020] [Indexed: 01/24/2023]
Abstract
Studies that show an overview of the peripheral immune response in a model of Paracoccidioides brasiliensis (Pb) infection in females are scarce in the literature. We sought to characterize the innate and adaptive immune responses in female C57BL/6 mice infected with Pb through two distinct routes of administration, intranasal and intravenous. In addition to the lung, P. brasiliensis yeast cells were observed in liver and brain tissues of females infected intravenously. To our knowledge, our study is the first to prove the presence of this pathogenic fungus in the cerebral cortex of female mice. During the initial stages of infection, augmented expression of both MHCII and CD86 was observed on the surface of CD11c+ pulmonary antigen-presenting cells (APCs) in intranasally and intravenously infected females. However, CD40 expression was downregulated in these cells. Concomitantly with increasing serum IL-10 levels, we noted that splenic dendritic cells (DCs) from both intravenously- and intranasally-infected female mice had acquired an immature phenotype. Further, increased T regulatory cell counts were observed in female mice infected via both routes, along with an increase in the infiltration of IL-10-producing CD8+ T cells into the lungs. Moreover, we noted that P. brasiliensis infection resulted in enhanced IL-10 production - by CD11c+ APCs in the lung tissue - and induction of Th17 polarization. Taken together, our results suggest that P. brasiliensis could modulates the immune response in female mice by influencing the balance between regulatory T cells (Tregs) and Th17 polarization.
Collapse
Affiliation(s)
- Gabriela Peron
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil.
| | - Janine Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Livia de Lima Thomaz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Rodolfo Thomé
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Liana M Cardoso Verinaud
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
18
|
Pulmonary paracoccidioidomycosis in AhR deficient hosts is severe and associated with defective Treg and Th22 responses. Sci Rep 2020; 10:11312. [PMID: 32647342 PMCID: PMC7347857 DOI: 10.1038/s41598-020-68322-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
AhR is a ligand-activated transcription factor that plays an important role in the innate and adaptive immune responses. In infection models, it has been associated with host responses that promote or inhibit disease progression. In pulmonary paracoccidioidomycosis, a primary fungal infection endemic in Latin America, immune protection is mediated by Th1/Th17 cells and disease severity with predominant Th2/Th9/Treg responses. Because of its important role at epithelial barriers, we evaluate the role of AhR in the outcome of a pulmonary model of paracoccidioidomycosis. AhR−/− mice show increased fungal burdens, enhanced tissue pathology and mortality. During the infection, AhR−/− mice have more pulmonary myeloid cells with activated phenotype and reduced numbers expressing indoleamine 2,3 dioxygenase 1. AhR-deficient lungs have altered production of cytokines and reduced numbers of innate lymphoid cells (NK, ILC3 and NCR IL-22). The lungs of AhR−/− mice showed increased presence Th17 cells concomitant with reduced numbers of Th1, Th22 and Foxp3+ Treg cells. Furthermore, treatment of infected WT mice with an AhR-specific antagonist (CH223191) reproduced the main findings obtained in AhR−/− mice. Collectively our data demonstrate that in pulmonary paracoccidioidomycosis AhR controls fungal burden and excessive tissue inflammation and is a possible target for antifungal therapy.
Collapse
|
19
|
Peters M, Peters K, Bufe A. Regulation of lung immunity by dendritic cells: Implications for asthma, chronic obstructive pulmonary disease and infectious disease. Innate Immun 2020; 25:326-336. [PMID: 31291810 PMCID: PMC7103613 DOI: 10.1177/1753425918821732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Since the first description of dendritic cells by Steinman and Cohn in 1973, this
important cell type has gained increasing attention. Over 4000 papers have been
published on this topic annually during the last few years. At the beginning,
dendritic cells were recognized for their immune stimulatory properties and
their importance in initiating an adaptive immune response. Later, it was found
that dendritic cells do not only initiate but also regulate immune responses.
This attribute makes the so-called regulatory dendritic cells highly important
for the prevention of exaggerated immune responses. Immune cells make contact
with different Ags every day and must be tightly controlled to prevent excessive
inflammation and subsequent organ destruction, particularly in organs such as
the gut and lungs. Here, we give a brief overview of our current knowledge on
how immune responses are controlled by dendritic cells, highlighting how they
are involved in the induction of peripheral tolerance. We focus on what is known
about these processes in the lung, with a closer look at their role in the
induction and control of diseases such as bronchial asthma, chronic obstructive
pulmonary disease and lung infections. Finally, we summarize some current
approaches to modulate the behavior of dendritic cells that may hopefully lead
to future therapeutics to control exaggerated immune responses.
Collapse
Affiliation(s)
- Marcus Peters
- Department of Experimental Pneumology, Ruhr-University Bochum, Germany
| | - Karin Peters
- Department of Experimental Pneumology, Ruhr-University Bochum, Germany
| | - Albrecht Bufe
- Department of Experimental Pneumology, Ruhr-University Bochum, Germany
| |
Collapse
|
20
|
Monti M, Consoli F, Vescovi R, Bugatti M, Vermi W. Human Plasmacytoid Dendritic Cells and Cutaneous Melanoma. Cells 2020; 9:E417. [PMID: 32054102 PMCID: PMC7072514 DOI: 10.3390/cells9020417] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The prognosis of metastatic melanoma (MM) patients has remained poor for a long time. However, the recent introduction of effective target therapies (BRAF and MEK inhibitors for BRAFV600-mutated MM) and immunotherapies (anti-CTLA-4 and anti-PD-1) has significantly improved the survival of MM patients. Notably, all these responses are highly dependent on the fitness of the host immune system, including the innate compartment. Among immune cells involved in cancer immunity, properly activated plasmacytoid dendritic cells (pDCs) exert an important role, bridging the innate and adaptive immune responses and directly eliminating cancer cells. A distinctive feature of pDCs is the production of high amount of type I Interferon (I-IFN), through the Toll-like receptor (TLR) 7 and 9 signaling pathway activation. However, published data indicate that melanoma-associated escape mechanisms are in place to hijack pDC functions. We have recently reported that pDC recruitment is recurrent in the early phases of melanoma, but the entire pDC compartment collapses over melanoma progression. Here, we summarize recent advances on pDC biology and function within the context of melanoma immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Francesca Consoli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Medical Oncology, University of Brescia at ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Calich VLG, Mamoni RL, Loures FV. Regulatory T cells in paracoccidioidomycosis. Virulence 2019; 10:810-821. [PMID: 30067137 PMCID: PMC6779406 DOI: 10.1080/21505594.2018.1483674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/26/2018] [Indexed: 12/24/2022] Open
Abstract
This review addresses the role of regulatory T cells (Tregs), which are essential for maintaining peripheral tolerance and controlling pathogen immunity, in the host response against Paracoccidioides brasiliensis, a primary fungal pathogen. A brief introduction on the general features of Treg cells summarizes their main functions, subpopulations, mechanisms of suppression and plasticity. The main aspects of immunity in the diverse forms of the P. brasiliensis infection are presented, as are the few extant studies on the relevance of Treg cells in the control of severity of the human disease. Finally, the influence of Toll-like receptors, Dectin-1, NOD-like receptor P3 (NLRP3), Myeloid differentiation factor-88 (MyD88), as well as the enzyme indoleamine 2,3 dioxygenase (IDO) on the expansion and function of Treg cells in a murine model of pulmonary paracoccidioidomycosis (PCM) is also discussed. It is demonstrated that some of these components are involved in the negative control of Treg cell expansion, whereas others positively trigger the proliferation and activity of these cells. Finally, the studies here summarized highlight the dual role of Treg cells in PCM, which can be protective by controlling excessive immunity and tissue pathology but also deleterious by inhibiting the anti-fungal immunity necessary to control fungal growth and dissemination.
Collapse
Affiliation(s)
- Vera L. G. Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ronei L. Mamoni
- Department of Morphology and Basic Pathology, Faculty of Medicine of Jundiai (FMJ), Jundiai, Brazil
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Flávio V. Loures
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP) at São José dos Campos, São Paulo, Brazil
| |
Collapse
|
22
|
Rahmatpanah F, Agrawal S, Jaiswal N, Nguyen HM, McClelland M, Agrawal A. Airway epithelial cells prime plasmacytoid dendritic cells to respond to pathogens via secretion of growth factors. Mucosal Immunol 2019; 12:77-84. [PMID: 30279511 PMCID: PMC6301110 DOI: 10.1038/s41385-018-0097-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
Plasmacytoid dendritic cells (PDCs) are critical for defense against respiratory viruses because of their propensity to secrete high levels of type I interferons (IFN). The functions of PDCs in the lung can be influenced by airway epithelial cells. We examined the effect of human primary bronchial epithelial cells (PBECs) on PDC functions by performing RNA-sequencing of PDCs after co-culture with air liquid interface differentiated PBECs. Functional analysis revealed that PDCs co-cultured with PBECs displayed upregulation of type I IFN production and response genes. Upregulated transcripts included those encoding cytosolic sensors of DNA, ZBP-1,IRF-3, and NFkB as well as genes involved in amplification of the IFN response, such as IFNAR1, JAK/STAT, ISG15. In keeping with the RNA-seq data, we observe increased secretion of type I IFN and other cytokines in response to influenza in PDCs co-cultured with PBECs. The PDCs also primed Th1 responses in T cells. The enhanced response of PDCs co-cultured with PBECs was due to the action of growth factors, GMCSF, GCSF, and VEGF, which were secreted by PBECs on differentiation. These data highlight possible mechanisms to enhance the production of type-I IFN in the airways, which is critical for host defense against respiratory infections.
Collapse
Affiliation(s)
- Farah Rahmatpanah
- 0000 0001 0668 7243grid.266093.8Department of pathology, University of California, Irvine, CA 92697 USA
| | - Sudhanshu Agrawal
- 0000 0001 0668 7243grid.266093.8Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697 USA
| | - Natasha Jaiswal
- 0000 0001 0668 7243grid.266093.8Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697 USA
| | - Hannah M. Nguyen
- 0000 0001 0668 7243grid.266093.8Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697 USA
| | - Michael McClelland
- 0000 0001 0668 7243grid.266093.8Microbiology & Molecular Genetics, University of California, Irvine, CA 92697 USA
| | - Anshu Agrawal
- 0000 0001 0668 7243grid.266093.8Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697 USA
| |
Collapse
|
23
|
Mitchell D, Chintala S, Dey M. Plasmacytoid dendritic cell in immunity and cancer. J Neuroimmunol 2018; 322:63-73. [PMID: 30049538 DOI: 10.1016/j.jneuroim.2018.06.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/29/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) comprise a subset of dendritic cells characterized by their ability to produce large amount of type I interferon (IFN-I/α). Originally recognized for their role in modulating immune responses to viral stimulation, growing interest has been directed toward their contribution to tumorigenesis. Under normal conditions, Toll-like receptor (TLR)-activated pDCs exhibit robust IFN-α production and promote both innate and adaptive immune responses. In cancer, however, pDCs demonstrate an impaired response to TLR7/9 activation, decreased or absent IFN-α production and contribute to the establishment of an immunosuppressive tumor microenvironment. In addition to IFN-α production, pDCs can also act as antigen presenting cells (APCs) and regulate immune responses to various antigens. The significant role played by pDCs in regulating both the innate and adaptive components of the immune system makes them a critical player in cancer immunology. In this review, we discuss the development and function of pDCs as well as their role in innate and adaptive immunity. Finally, we summarize pDC contribution to cancer pathogenesis, with a special focus on primary malignant brain tumor, their significance in the era of immunotherapy and suggest potential strategies for pDC-targeted therapy.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Neurosurgery, IU Simon Cancer Center, Indiana University, Indiana, USA
| | - Sreenivasulu Chintala
- Department of Neurosurgery, IU Simon Cancer Center, Indiana University, Indiana, USA
| | - Mahua Dey
- Department of Neurosurgery, IU Simon Cancer Center, Indiana University, Indiana, USA.
| |
Collapse
|
24
|
Salazar F, Brown GD. Antifungal Innate Immunity: A Perspective from the Last 10 Years. J Innate Immun 2018; 10:373-397. [PMID: 29768268 DOI: 10.1159/000488539] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/11/2018] [Indexed: 01/02/2023] Open
Abstract
Fungal pathogens can rarely cause diseases in immunocompetent individuals. However, commensal and normally nonpathogenic environmental fungi can cause life-threatening infections in immunocompromised individuals. Over the last few decades, there has been a huge increase in the incidence of invasive opportunistic fungal infections along with a worrying increase in antifungal drug resistance. As a consequence, research focused on understanding the molecular and cellular basis of antifungal immunity has expanded tremendously in the last few years. This review will provide an overview of the most exciting recent advances in innate antifungal immunity, discoveries that are helping to pave the way for the development of new strategies that are desperately needed to combat these devastating diseases.
Collapse
|
25
|
Preite NW, Feriotti C, Souza de Lima D, da Silva BB, Condino-Neto A, Pontillo A, Calich VLG, Loures FV. The Syk-Coupled C-Type Lectin Receptors Dectin-2 and Dectin-3 Are Involved in Paracoccidioides brasiliensis Recognition by Human Plasmacytoid Dendritic Cells. Front Immunol 2018; 9:464. [PMID: 29616019 PMCID: PMC5869931 DOI: 10.3389/fimmu.2018.00464] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/21/2018] [Indexed: 01/22/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs), which have been extensively studied in the context of the immune response to viruses, have recently been implicated in host defense mechanisms against fungal infections. Nevertheless, the involvement of human pDCs during paracoccidioidomycosis (PCM), a fungal infection endemic to Latin America, has been scarcely studied. However, pDCs were found in the cutaneous lesions of PCM patients, and in pulmonary model of murine PCM these cells were shown to control disease severity. These findings led us to investigate the role of human pDCs in the innate phase of PCM. Moreover, considering our previous data on the engagement of diverse Toll-like receptors and C-type lectin receptors receptors in Paracoccidioides brasiliensis recognition, we decided to characterize the innate immune receptors involved in the interaction between human pDCs and yeast cells. Purified pDCs were obtained from peripheral blood mononuclear cells from healthy donors and they were stimulated with P. brasiliensis with or without blocking antibodies to innate immune receptors. Here we demonstrated that P. brasiliensis stimulation activates human pDCs that inhibit fungal growth and secrete pro-inflammatory cytokines and type I IFNs. Surprisingly, P. brasiliensis-stimulated pDCs produce mature IL-1β and activate caspase 1, possibly via inflammasome activation, which is a phenomenon not yet described during pDC engagement by microorganisms. Importantly, we also demonstrate that dectin-2 and dectin-3 are expressed on pDCs and appear to be involved (via Syk signaling) in the pDC-P. brasiliensis interaction. Moreover, P. brasiliensis-stimulated pDCs exhibited an efficient antigen presentation and were able to effectively activate CD4+ and CD8+ T cells. In conclusion, our study demonstrated for the first time that human pDCs are involved in P. brasiliensis recognition and may play an important role in the innate and adaptive immunity against this fungal pathogen.
Collapse
Affiliation(s)
- Nycolas Willian Preite
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudia Feriotti
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Dhêmerson Souza de Lima
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Borges da Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Antônio Condino-Neto
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alessandra Pontillo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Choera T, Zelante T, Romani L, Keller NP. A Multifaceted Role of Tryptophan Metabolism and Indoleamine 2,3-Dioxygenase Activity in Aspergillus fumigatus-Host Interactions. Front Immunol 2018; 8:1996. [PMID: 29403477 PMCID: PMC5786828 DOI: 10.3389/fimmu.2017.01996] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Aspergillus fumigatus is the most prevalent filamentous fungal pathogen of humans, causing either severe allergic bronchopulmonary aspergillosis or often fatal invasive pulmonary aspergillosis (IPA) in individuals with hyper- or hypo-immune deficiencies, respectively. Disease is primarily initiated upon the inhalation of the ubiquitous airborne conidia—the initial inoculum produced by A. fumigatus—which are complete developmental units with an ability to exploit diverse environments, ranging from agricultural composts to animal lungs. Upon infection, conidia initially rely on their own metabolic processes for survival in the host’s lungs, a nutritionally limiting environment. One such nutritional limitation is the availability of aromatic amino acids (AAAs) as animals lack the enzymes to synthesize tryptophan (Trp) and phenylalanine and only produce tyrosine from dietary phenylalanine. However, A. fumigatus produces all three AAAs through the shikimate–chorismate pathway, where they play a critical role in fungal growth and development and in yielding many downstream metabolites. The downstream metabolites of Trp in A. fumigatus include the immunomodulatory kynurenine derived from indoleamine 2,3-dioxygenase (IDO) and toxins such as fumiquinazolines, gliotoxin, and fumitremorgins. Host IDO activity and/or host/microbe-derived kynurenines are increasingly correlated with many Aspergillus diseases including IPA and infections of chronic granulomatous disease patients. In this review, we will describe the potential metabolic cross talk between the host and the pathogen, specifically focusing on Trp metabolism, the implications for therapeutics, and the recent studies on the coevolution of host and microbe IDO activation in regulating inflammation, while controlling infection.
Collapse
Affiliation(s)
- Tsokyi Choera
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
27
|
Lionakis MS, Levitz SM. Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annu Rev Immunol 2017; 36:157-191. [PMID: 29237128 DOI: 10.1146/annurev-immunol-042617-053318] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last few decades, the AIDS pandemic and the significant advances in the medical management of individuals with neoplastic and inflammatory conditions have resulted in a dramatic increase in the population of immunosuppressed patients with opportunistic, life-threatening fungal infections. The parallel development of clinically relevant mouse models of fungal disease and the discovery and characterization of several inborn errors of immune-related genes that underlie inherited human susceptibility to opportunistic mycoses have significantly expanded our understanding of the innate and adaptive immune mechanisms that protect against ubiquitous fungal exposures. This review synthesizes immunological knowledge derived from basic mouse studies and from human cohorts and provides an overview of mammalian antifungal host defenses that show promise for informing therapeutic and vaccination strategies for vulnerable patients.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| |
Collapse
|
28
|
de Araújo EF, Loures FV, Feriotti C, Costa T, Vacca C, Puccetti P, Romani L, Calich VLG. Disease Tolerance Mediated by Phosphorylated Indoleamine-2,3 Dioxygenase Confers Resistance to a Primary Fungal Pathogen. Front Immunol 2017; 8:1522. [PMID: 29181001 PMCID: PMC5693877 DOI: 10.3389/fimmu.2017.01522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022] Open
Abstract
Resistance to primary fungal pathogens is usually attributed to the proinflammatory mechanisms of immunity conferred by interferon-γ activation of phagocytes that control microbial growth, whereas susceptibility is attributed to anti-inflammatory responses that deactivate immunity. This study challenges this paradigm by demonstrating that resistance to a primary fungal pathogen such as Paracoccidiodes brasiliensis can be mediated by disease tolerance, a mechanism that preserves host fitness instead of pathogen clearance. Among the mechanisms of disease tolerance described, a crucial role has been ascribed to the enzyme indoleamine-2,3 dioxygenase (IDO) that concomitantly controls pathogen growth by limiting tryptophan availability and reduces tissue damage by decreasing the inflammatory process. Here, we demonstrated in a pulmonary model of paracoccidioidomycosis that IDO exerts a dual function depending on the resistant pattern of hosts. IDO activity is predominantly enzymatic and induced by IFN-γ signaling in the pulmonary dendritic cells (DCs) from infected susceptible (B10.A) mice, whereas phosphorylated IDO (pIDO) triggered by TGF-β activation of DCs functions as a signaling molecule in resistant mice. IFN-γ signaling activates the canonical pathway of NF-κB that promotes a proinflammatory phenotype in B10.A DCs that control fungal growth but ultimately suppress T cell responses. In contrast, in A/J DCs IDO promotes a tolerogenic phenotype that conditions a sustained synthesis of TGF-β and expansion of regulatory T cells that avoid excessive inflammation and tissue damage contributing to host fitness. Therefore, susceptibility is unexpectedly mediated by mechanisms of proinflammatory immunity that are usually associated with resistance, whereas genetic resistance is based on mechanisms of disease tolerance mediated by pIDO, a phenomenon never described in the protective immunity against primary fungal pathogens.
Collapse
Affiliation(s)
- Eliseu Frank de Araújo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cláudia Feriotti
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tania Costa
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
de Araújo EF, Feriotti C, Galdino NADL, Preite NW, Calich VLG, Loures FV. The IDO-AhR Axis Controls Th17/Treg Immunity in a Pulmonary Model of Fungal Infection. Front Immunol 2017; 8:880. [PMID: 28791025 PMCID: PMC5523665 DOI: 10.3389/fimmu.2017.00880] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
In infectious diseases, the enzyme indoleamine 2,3 dioxygenase-1 (IDO1) that catalyzes the tryptophan (Trp) degradation along the kynurenines (Kyn) pathway has two main functions, the control of pathogen growth by reducing available Trp and immune regulation mediated by the Kyn-mediated expansion of regulatory T (Treg) cells via aryl hydrocarbon receptor (AhR). In pulmonary paracoccidioidomycosis (PCM) caused by the dimorphic fungus Paracoccidioides brasiliensis, IDO1 was shown to control the disease severity of both resistant and susceptible mice to the infection; however, only in resistant mice, IDO1 is induced by TGF-β signaling that confers a stable tolerogenic phenotype to dendritic cells (DCs). In addition, in pulmonary PCM, the tolerogenic function of plasmacytoid dendritic cells was linked to the IDO1 activity. To further evaluate the function of IDO1 in pulmonary PCM, IDO1-deficient (IDO1-/-) C57BL/6 mice were intratracheally infected with P. brasiliensis yeasts and the infection analyzed at three postinfection periods regarding several parameters of disease severity and immune response. The fungal loads and tissue pathology of IDO1-/- mice were higher than their wild-type controls resulting in increased mortality rates. The evaluation of innate lymphoid cells showed an upregulated differentiation of the innate lymphoid cell 3 phenotype accompanied by a decreased expansion of ILC1 and NK cells in the lungs of infected IDO1-/- mice. DCs from these mice expressed elevated levels of costimulatory molecules and cytokine IL-6 associated with reduced production of IL-12, TNF-α, IL-1β, TGF-β, and IL-10. This response was concomitant with a marked reduction in AhR production. The absence of IDO1 expression caused an increased influx of activated Th17 cells to the lungs with a simultaneous reduction in Th1 and Treg cells. Accordingly, the suppressive cytokines IL-10, TGF-β, IL-27, and IL-35 appeared in reduced levels in the lungs of IDO1-/- mice. In conclusion, the immunological balance mediated by the axis IDO/AhR is fundamental to determine the balance between Th17/Treg cells and control the severity of pulmonary PCM.
Collapse
Affiliation(s)
- Eliseu Frank de Araújo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudia Feriotti
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Nycolas Willian Preite
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Hill LJ, Williams AC. Meat Intake and the Dose of Vitamin B 3 - Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures? Int J Tryptophan Res 2017; 10:1178646917704662. [PMID: 28579801 PMCID: PMC5419340 DOI: 10.1177/1178646917704662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/26/2022] Open
Abstract
Meat and vitamin B3 - nicotinamide - intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by 'welcoming' gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive 'meat transitions'. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic 'old friends' compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress.
Collapse
Affiliation(s)
- Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|