1
|
Castiglioni VG, Olmo-Uceda MJ, Villena-Giménez A, Muñoz-Sánchez JC, Legarda EG, Elena SF. Story of an infection: Viral dynamics and host responses in the Caenorhabditis elegans-Orsay virus pathosystem. SCIENCE ADVANCES 2024; 10:eadn5945. [PMID: 39331715 PMCID: PMC11430451 DOI: 10.1126/sciadv.adn5945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Orsay virus (OrV) is the only known natural virus affecting Caenorhabditis elegans, with minimal impact on the animal's fitness due to its robust innate immune response. This study aimed to understand the interactions between C. elegans and OrV by tracking the infection's progression during larval development. Four distinct stages of infection were identified on the basis of viral load, with a peak in capsid-encoding RNA2 coinciding with the first signs of viral egression. Transcriptomic analysis revealed temporal changes in gene expression and functions induced by the infection. A specific set of up-regulated genes remained active throughout the infection, and genes correlated and anticorrelated with virus accumulation were identified. Responses to OrV mirrored reactions to other biotic stressors, distinguishing between virus-specific responses and broader immune responses. Moreover, mutants of early response genes and defense-related processes showed altered viral load progression, uncovering additional players in the antiviral defense response.
Collapse
Affiliation(s)
- Victoria G. Castiglioni
- Institute of Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, Paterna, 46980 Valencia, Spain
| | - María J. Olmo-Uceda
- Institute of Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, Paterna, 46980 Valencia, Spain
| | - Ana Villena-Giménez
- Institute of Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, Paterna, 46980 Valencia, Spain
| | - Juan C. Muñoz-Sánchez
- Institute of Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, Paterna, 46980 Valencia, Spain
| | - Esmeralda G. Legarda
- Institute of Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, Paterna, 46980 Valencia, Spain
| | - Santiago F. Elena
- Institute of Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, Paterna, 46980 Valencia, Spain
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
2
|
Fujii C, Wang D. Novel insights into virus-host interactions using the model organism C. elegans. Adv Virus Res 2023; 115:135-158. [PMID: 37173064 DOI: 10.1016/bs.aivir.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Viruses continue to pose a public health threat raising the need for effective management strategies. Currently existing antiviral therapeutics are often specific to only a single viral species, and resistance to the therapeutic can often arise, and therefore new therapeutics are needed. The C. elegans-Orsay virus system offers a powerful platform for studying RNA virus-host interactions that could ultimately lead to novel targets for antiviral therapy. The relative simplicity of C. elegans, the well-established experimental tools, and its extensive evolutionary conservation of genes and pathways with mammals are key features of this model. Orsay virus, a bisegmented positive sense RNA virus, is a natural pathogen of C. elegans. Orsay virus infection can be studied in a multicellular organismal context, overcoming some of the limitations inherent to tissue culture-based systems. Moreover, compared to mice, the rapid generation time of C. elegans enables robust and facile forward genetics. This review aims to summarize studies that have laid the foundation for the C. elegans-Orsay virus experimental system, experimental tools, and key examples of C. elegans host factors that impact Orsay virus infection that have evolutionarily conserved function in mammalian virus infection.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
3
|
Zhou M, Lantz C, Brown KA, Ge Y, Paša-Tolić L, Loo JA, Lermyte F. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem Sci 2020; 11:12918-12936. [PMID: 34094482 PMCID: PMC8163214 DOI: 10.1039/d0sc04392c] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
In biology, it can be argued that if the genome contains the script for a cell's life cycle, then the proteome constitutes an ensemble cast of actors that brings these instructions to life. Their interactions with each other, co-factors, ligands, substrates, and so on, are key to understanding nearly any biological process. Mass spectrometry is well established as the method of choice to determine protein primary structure and location of post-translational modifications. In recent years, top-down fragmentation of intact proteins has been increasingly combined with ionisation of noncovalent assemblies under non-denaturing conditions, i.e., native mass spectrometry. Sequence, post-translational modifications, ligand/metal binding, protein folding, and complex stoichiometry can thus all be probed directly. Here, we review recent developments in this new and exciting field of research. While this work is written primarily from a mass spectrometry perspective, it is targeted to all bioanalytical scientists who are interested in applying these methods to their own biochemistry and chemical biology research.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles Los Angeles CA 90095 USA
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Madison WI 53706 USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles Los Angeles CA 90095 USA
| | - Frederik Lermyte
- Department of Chemistry, Institute of Chemistry and Biochemistry, Technical University of Darmstadt 64287 Darmstadt Germany
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège 4000 Liège Belgium
- School of Engineering, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
4
|
Orsay Virus CP-δ Adopts a Novel β-Bracelet Structural Fold and Incorporates into Virions as a Head Fiber. J Virol 2020; 94:JVI.01560-20. [PMID: 32817218 PMCID: PMC7565637 DOI: 10.1128/jvi.01560-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 11/20/2022] Open
Abstract
Viruses often have extended fibers to mediate host cell recognition and entry, serving as promising targets for antiviral drug development. Unlike other known viral fibers, the δ proteins from the three recently discovered nematode viruses are incorporated into infectious particles as protruding fibers covalently linked to the capsid. Crystal structures of δ revealed novel pentameric folding repeats, which we term β-bracelets, in the intermediate shaft region. Based on sequence analysis, the β-bracelet motif of δ is conserved in all three nematode viruses and could account for ∼60% of the total length of the fiber. Our study indicated that δ plays important roles in cell attachment for this group of nematode viruses. In addition, the tightly knitted β-bracelet fold, which presumably allows δ to survive harsh environments in the worm gut, could be applicable to bioengineering applications given its potentially high stability. Fiber proteins are commonly found in eukaryotic and prokaryotic viruses, where they play important roles in mediating viral attachment and host cell entry. They typically form trimeric structures and are incorporated into virions via noncovalent interactions. Orsay virus, a small RNA virus which specifically infects the laboratory model nematode Caenorhabditis elegans, encodes a fibrous protein δ that can be expressed as a free protein and as a capsid protein-δ (CP-δ) fusion protein. Free δ has previously been demonstrated to facilitate viral exit following intracellular expression; however, the biological significance and prevalence of CP-δ remained relatively unknown. Here, we demonstrate that Orsay CP-δ is covalently incorporated into infectious particles, the first example of any attached viral fibers known to date. The crystal structure of δ(1–101) (a deletion mutant containing the first 101 amino acid [aa] residues of δ) reveals a pentameric, 145-Å long fiber with an N-terminal coiled coil followed by multiple β-bracelet repeats. Electron micrographs of infectious virions depict particle-associated CP-δ fibers with dimensions similar to free δ. The δ proteins from two other nematode viruses, Le Blanc and Santeuil, which both specifically infect Caenorhabditis briggsae, were also found to form fibrous molecules. Recombinant Le Blanc δ was able to block Orsay virus infection in worm culture and vice versa, suggesting these two viruses likely compete for the same cell receptor(s). Thus, we propose that while CP-δ likely mediates host cell attachment for all three nematode viruses, additional downstream factor(s) ultimately determine the host specificity and range of each virus. IMPORTANCE Viruses often have extended fibers to mediate host cell recognition and entry, serving as promising targets for antiviral drug development. Unlike other known viral fibers, the δ proteins from the three recently discovered nematode viruses are incorporated into infectious particles as protruding fibers covalently linked to the capsid. Crystal structures of δ revealed novel pentameric folding repeats, which we term β-bracelets, in the intermediate shaft region. Based on sequence analysis, the β-bracelet motif of δ is conserved in all three nematode viruses and could account for ∼60% of the total length of the fiber. Our study indicated that δ plays important roles in cell attachment for this group of nematode viruses. In addition, the tightly knitted β-bracelet fold, which presumably allows δ to survive harsh environments in the worm gut, could be applicable to bioengineering applications given its potentially high stability.
Collapse
|
5
|
Abstract
Caenorhabditis elegans has long been a laboratory model organism with no known natural pathogens. In the past ten years, however, natural viruses have been isolated from wild-caught C. elegans (Orsay virus) and its relative Caenorhabditis briggsae (Santeuil virus, Le Blanc virus, and Melnik virus). All are RNA positive-sense viruses related to Nodaviridae; they infect intestinal cells and are horizontally transmitted. The Orsay virus capsid structure has been determined and the virus can be reconstituted by transgenesis of the host. Recent use of the Orsay virus has enabled researchers to identify evolutionarily conserved proviral and antiviral genes that function in nematodes and mammals. These pathways include endocytosis through SID-3 and WASP; a uridylyltransferase that destabilizes viral RNAs by uridylation of their 3′ end; ubiquitin protein modifications and turnover; and the RNA interference pathway, which recognizes and degrades viral RNA.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Institute of Biology of the École Normale Supérieure, CNRS UMR8197, INSERM U1024, 75230 Paris CEDEX 05, France
| | - David Wang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| |
Collapse
|
6
|
Frézal L, Jung H, Tahan S, Wang D, Félix MA. Noda-Like RNA Viruses Infecting Caenorhabditis Nematodes: Sympatry, Diversity, and Reassortment. J Virol 2019; 93:e01170-19. [PMID: 31434736 PMCID: PMC6803290 DOI: 10.1128/jvi.01170-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
Three RNA viruses related to nodaviruses were previously described to naturally infect the nematode Caenorhabditis elegans and its relative, Caenorhabditis briggsae Here, we report on a collection of more than 50 viral variants from wild-caught Caenorhabditis. We describe the discovery of a new related virus, the Mělník virus, infecting C. briggsae, which similarly infects intestinal cells. In France, a frequent pattern of coinfection of C. briggsae by the Santeuil virus and Le Blanc virus was observed at the level of an individual nematode and even a single cell. We do not find evidence of reassortment between the RNA1 and RNA2 molecules of Santeuil and Le Blanc viruses. However, by studying patterns of evolution of each virus, reassortments of RNA1 and RNA2 among variants of each virus were identified. We develop assays to test the relative infectivity and competitive ability of the viral variants and detect an interaction between host genotype and Santeuil virus genotype, such that the result depends on the host strain.IMPORTANCE The roundworm Caenorhabditis elegans is a laboratory model organism in biology. We study natural populations of this small animal and its relative, C. briggsae, and the viruses that infect them. We previously discovered three RNA viruses related to nodaviruses and here describe a fourth one, called the Mělník virus. These viruses have a genome composed of two RNA molecules. We find that two viruses may infect the same animal and the same cell. The two RNA molecules may be exchanged between variants of a given viral species. We study the diversity of each viral species and devise an assay of their infectivity and competitive ability. Using this assay, we show that the outcome of the competition also depends on the host.
Collapse
Affiliation(s)
- Lise Frézal
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Hyeim Jung
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Stephen Tahan
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Marie-Anne Félix
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
7
|
Le Pen J, Jiang H, Di Domenico T, Kneuss E, Kosałka J, Leung C, Morgan M, Much C, Rudolph KLM, Enright AJ, O'Carroll D, Wang D, Miska EA. Terminal uridylyltransferases target RNA viruses as part of the innate immune system. Nat Struct Mol Biol 2018; 25:778-786. [PMID: 30104661 PMCID: PMC6130846 DOI: 10.1038/s41594-018-0106-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/29/2018] [Indexed: 02/02/2023]
Abstract
RNA viruses are a major threat to animals and plants. RNA interference (RNAi) and the interferon response provide innate antiviral defense against RNA viruses. Here, we performed a large-scale screen using Caenorhabditis elegans and its natural pathogen the Orsay virus (OrV), and we identified cde-1 as important for antiviral defense. CDE-1 is a homolog of the mammalian TUT4 and TUT7 terminal uridylyltransferases (collectively called TUT4(7)); its catalytic activity is required for its antiviral function. CDE-1 uridylates the 3' end of the OrV RNA genome and promotes its degradation in a manner independent of the RNAi pathway. Likewise, TUT4(7) enzymes uridylate influenza A virus (IAV) mRNAs in mammalian cells. Deletion of TUT4(7) leads to increased IAV mRNA and protein levels. Collectively, these data implicate 3'-terminal uridylation of viral RNAs as a conserved antiviral defense mechanism.
Collapse
Affiliation(s)
- Jérémie Le Pen
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Hongbing Jiang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Tomás Di Domenico
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Emma Kneuss
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joanna Kosałka
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Christian Leung
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Marcos Morgan
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo Scalo, Italy
| | - Christian Much
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo Scalo, Italy
| | - Konrad L M Rudolph
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | | | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo Scalo, Italy
| | - David Wang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Eric A Miska
- Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.
| |
Collapse
|
8
|
Yuan W, Zhou Y, Fan Y, Tao YJ, Zhong W. Orsay δ Protein Is Required for Nonlytic Viral Egress. J Virol 2018; 92:e00745-18. [PMID: 29743360 PMCID: PMC6026750 DOI: 10.1128/jvi.00745-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
Nonenveloped gastrointestinal viruses, such as human rotavirus, can exit infected cells from the apical surface without cell lysis. The mechanism of such nonlytic exit is poorly understood. The nonenveloped Orsay virus is an RNA virus infecting the intestine cells of the nematode Caenorhabditis elegans Dye staining results suggested that Orsay virus exits from the intestine of infected worms in a nonlytic manner. Therefore, the Orsay virus-C. elegans system provides an excellent in vivo model to study viral exit. The Orsay virus genome encodes three proteins: RNA-dependent RNA polymerase, capsid protein (CP), and a nonstructural protein, δ. δ can also be expressed as a structural CP-δ fusion. We generated an ATG-to-CTG mutant virus that had a normal CP-δ fusion but could not produce free δ due to the lack of the start codon. This mutant virus showed a viral exit defect without obvious phenotypes in other steps of viral infection, suggesting that δ is involved in viral exit. Ectopically expressed free δ localized near the apical membrane of intestine cells in C. elegans and colocalized with ACT-5, an intestine-specific actin that is a component of the terminal web. Orsay virus infection rearranged ACT-5 apical localization. Reduction of the ACT-5 level via RNA interference (RNAi) significantly exacerbated the viral exit defect of the δ mutant virus, suggesting that δ and ACT-5 functionally interact to promote Orsay virus exit. Together, these data support a model in which the viral δ protein interacts with the actin network at the apical side of host intestine cells to mediate the polarized, nonlytic egress of Orsay virus.IMPORTANCE An important step of the viral life cycle is how viruses exit from host cells to spread to other cells. Certain nonenveloped viruses can exit cultured cells in nonlytic ways; however, such nonlytic exit has not been demonstrated in vivo In addition, it is not clear how such nonlytic exit is achieved mechanistically in vivo Orsay virus is a nonenveloped RNA virus that infects the intestine cells of the nematode C. elegans It is currently the only virus known to naturally infect C. elegans Using this in vivo model, we show that the δ protein encoded by Orsay virus facilitates the nonlytic exit of the virus, possibly by interacting with host actin on the apical side of worm intestine cells.
Collapse
Affiliation(s)
- Wang Yuan
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Ying Zhou
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Yanlin Fan
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Yizhi J Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Weiwei Zhong
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
9
|
Abstract
Since 1999, Caenorhabditis elegans has been extensively used to study microbe-host interactions due to its simple culture, genetic tractability, and susceptibility to numerous bacterial and fungal pathogens. In contrast, virus studies have been hampered by a lack of convenient virus infection models in nematodes. The recent discovery of a natural viral pathogen of C. elegans and development of diverse artificial infection models are providing new opportunities to explore virus-host interplay in this powerful model organism.
Collapse
Affiliation(s)
- Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|