1
|
Hu CW, Wang K, Jiang J. The non-catalytic domains of O-GlcNAc cycling enzymes present new opportunities for function-specific control. Curr Opin Chem Biol 2024; 81:102476. [PMID: 38861851 PMCID: PMC11323188 DOI: 10.1016/j.cbpa.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024]
Abstract
O-GlcNAcylation is an essential protein glycosylation governed by two O-GlcNAc cycling enzymes: O-GlcNAc transferase (OGT) installs a single sugar moiety N-acetylglucosamine (GlcNAc) on protein serine and threonine residues, and O-GlcNAcase (OGA) removes them. Aberrant O-GlcNAcylation has been implicated in various diseases. However, the large repertoire of more than 1000 O-GlcNAcylated proteins and the elusive mechanisms of OGT/OGA in substrate recognition present significant challenges in targeting the dysregulated O-GlcNAcylation for therapeutic development. Recently, emerging evidence suggested that the non-catalytic domains play critical roles in regulating the functional specificity of OGT/OGA via modulating their protein interactions and substrate recognition. Here, we discuss recent studies on the structures, mechanisms, and related tools of the OGT/OGA non-catalytic domains, highlighting new opportunities for function-specific control.
Collapse
Affiliation(s)
- Chia-Wei Hu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA
| | - Ke Wang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA
| | - Jiaoyang Jiang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
2
|
Ming A, Zhao J, Liu Y, Wang Y, Wang X, Li J, Zhang L. O-glycosylation in viruses: A sweet tango. MLIFE 2024; 3:57-73. [PMID: 38827513 PMCID: PMC11139210 DOI: 10.1002/mlf2.12105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 06/04/2024]
Abstract
O-glycosylation is an ancient yet underappreciated protein posttranslational modification, on which many bacteria and viruses heavily rely to perform critical biological functions involved in numerous infectious diseases or even cancer. But due to the innate complexity of O-glycosylation, research techniques have been limited to study its exact role in viral attachment and entry, assembly and exit, spreading in the host cells, and the innate and adaptive immunity of the host. Recently, the advent of many newly developed methodologies (e.g., mass spectrometry, chemical biology tools, and molecular dynamics simulations) has renewed and rekindled the interest in viral-related O-glycosylation in both viral proteins and host cells, which is further fueled by the COVID-19 pandemic. In this review, we summarize recent advances in viral-related O-glycosylation, with a particular emphasis on the mucin-type O-linked α-N-acetylgalactosamine (O-GalNAc) on viral proteins and the intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modifications on host proteins. We hope to provide valuable insights into the development of antiviral reagents or vaccines for better prevention or treatment of infectious diseases.
Collapse
Affiliation(s)
- Annan Ming
- Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Jianxin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life SciencesCapital Normal UniversityBeijingChina
| | - Yihan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yibo Wang
- Laboratory of Chemical BiologyChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina
| | - Xiaohui Wang
- Laboratory of Chemical BiologyChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiChina
- Beijing National Laboratory for Molecular SciencesBeijingChina
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life SciencesCapital Normal UniversityBeijingChina
| | - Leiliang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
3
|
Ye L, Ding W, Xiao D, Jia Y, Zhao Z, Ao X, Wang J. O-GlcNAcylation: cellular physiology and therapeutic target for human diseases. MedComm (Beijing) 2023; 4:e456. [PMID: 38116061 PMCID: PMC10728774 DOI: 10.1002/mco2.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAcylation) is a distinctive posttranslational protein modification involving the coordinated action of O-GlcNAc transferase and O-GlcNAcase, primarily targeting serine or threonine residues in various proteins. This modification impacts protein functionality, influencing stability, protein-protein interactions, and localization. Its interaction with other modifications such as phosphorylation and ubiquitination is becoming increasingly evident. Dysregulation of O-GlcNAcylation is associated with numerous human diseases, including diabetes, nervous system degeneration, and cancers. This review extensively explores the regulatory mechanisms of O-GlcNAcylation, its effects on cellular physiology, and its role in the pathogenesis of diseases. It examines the implications of aberrant O-GlcNAcylation in diabetes and tumorigenesis, highlighting novel insights into its potential role in cardiovascular diseases. The review also discusses the interplay of O-GlcNAcylation with other protein modifications and its impact on cell growth and metabolism. By synthesizing current research, this review elucidates the multifaceted roles of O-GlcNAcylation, providing a comprehensive reference for future studies. It underscores the potential of targeting the O-GlcNAcylation cycle in developing novel therapeutic strategies for various pathologies.
Collapse
Affiliation(s)
- Lin Ye
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- The Affiliated Hospital of Qingdao UniversityQingdao Medical CollegeQingdao UniversityQingdaoChina
| | - Dandan Xiao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yi Jia
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Zhonghao Zhao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
4
|
Yang Y, Yan Y, Yin J, Tang N, Wang K, Huang L, Hu J, Feng Z, Gao Q, Huang A. O-GlcNAcylation of YTHDF2 promotes HBV-related hepatocellular carcinoma progression in an N 6-methyladenosine-dependent manner. Signal Transduct Target Ther 2023; 8:63. [PMID: 36765030 PMCID: PMC9918532 DOI: 10.1038/s41392-023-01316-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 02/12/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC), but its pathogenic mechanism remains to be explored. The RNA N6-methyladenosine (m6A) reader, YTH (YT521-B homology) domain 2 (YTHDF2), plays a critical role in the HCC progression. However, the function and regulatory mechanisms of YTHDF2 in HBV-related HCC remain largely elusive. Here, we discovered that YTHDF2 O-GlcNAcylation was markedly increased upon HBV infection. O-GlcNAc transferase (OGT)-mediated O-GlcNAcylation of YTHDF2 on serine 263 enhanced its protein stability and oncogenic activity by inhibiting its ubiquitination. Mechanistically, YTHDF2 stabilized minichromosome maintenance protein 2 (MCM2) and MCM5 transcripts in an m6A-dependent manner, thus promoting cell cycle progression and HBV-related HCC tumorigenesis. Moreover, targeting YTHDF2 O-GlcNAcylation by the OGT inhibitor OSMI-1 significantly suppressed HCC progression. Taken together, our findings reveal a new regulatory mechanism for YTHDF2 and highlight an essential role of YTHDF2 O-GlcNAcylation in RNA m6A methylation and HCC progression. Further description of the molecular pathway has the potential to yield therapeutic targets for suppression of HCC progression due to HBV infection.
Collapse
Affiliation(s)
- Yang Yang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yu Yan
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jiaxin Yin
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Luyi Huang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Hu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhongqi Feng
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qingzhu Gao
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Protein O-GlcNAcylation and the regulation of energy homeostasis: lessons from knock-out mouse models. J Biomed Sci 2022; 29:64. [PMID: 36058931 PMCID: PMC9443036 DOI: 10.1186/s12929-022-00851-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
O-GlcNAcylation corresponds to the addition of N-Acetylglucosamine (GlcNAc) on serine or threonine residues of cytosolic, nuclear and mitochondrial proteins. This reversible modification is catalysed by a unique couple of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT uses UDP-GlcNAc produced in the hexosamine biosynthesis pathway, to modify proteins. UDP-GlcNAc is at the cross-roads of several cellular metabolisms, including glucose, amino acids and fatty acids. Therefore, OGT is considered as a metabolic sensor that post-translationally modifies proteins according to nutrient availability. O-GlcNAcylation can modulate protein–protein interactions and regulate protein enzymatic activities, stability or subcellular localization. In addition, it can compete with phosphorylation on the same serine or threonine residues, or regulate positively or negatively the phosphorylation of adjacent residues. As such, O-GlcNAcylation is a major actor in the regulation of cell signaling and has been implicated in numerous physiological and pathological processes. A large body of evidence have indicated that increased O-GlcNAcylation participates in the deleterious effects of glucose (glucotoxicity) in metabolic diseases. However, recent studies using mice models with OGT or OGA knock-out in different tissues have shown that O-GlcNAcylation protects against various cellular stresses, and indicate that both increase and decrease in O-GlcNAcylation have deleterious effects on the regulation of energy homeostasis.
Collapse
|
6
|
Dynamic changes in O-GlcNAcylation regulate osteoclast differentiation and bone loss via nucleoporin 153. Bone Res 2022; 10:51. [PMID: 35879285 PMCID: PMC9314416 DOI: 10.1038/s41413-022-00218-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Bone mass is maintained by the balance between osteoclast-induced bone resorption and osteoblast-triggered bone formation. In inflammatory arthritis such as rheumatoid arthritis (RA), however, increased osteoclast differentiation and activity skew this balance resulting in progressive bone loss. O-GlcNAcylation is a posttranslational modification with attachment of a single O-linked β-D-N-acetylglucosamine (O-GlcNAc) residue to serine or threonine residues of target proteins. Although O-GlcNAcylation is one of the most common protein modifications, its role in bone homeostasis has not been systematically investigated. We demonstrate that dynamic changes in O-GlcNAcylation are required for osteoclastogenesis. Increased O-GlcNAcylation promotes osteoclast differentiation during the early stages, whereas its downregulation is required for osteoclast maturation. At the molecular level, O-GlcNAcylation affects several pathways including oxidative phosphorylation and cell-cell fusion. TNFα fosters the dynamic regulation of O-GlcNAcylation to promote osteoclastogenesis in inflammatory arthritis. Targeted pharmaceutical or genetic inhibition of O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) arrests osteoclast differentiation during early stages of differentiation and during later maturation, respectively, and ameliorates bone loss in experimental arthritis. Knockdown of NUP153, an O-GlcNAcylation target, has similar effects as OGT inhibition and inhibits osteoclastogenesis. These findings highlight an important role of O-GlcNAcylation in osteoclastogenesis and may offer the potential to therapeutically interfere with pathologic bone resorption.
Collapse
|
7
|
Short O-GlcNAcase Is Targeted to the Mitochondria and Regulates Mitochondrial Reactive Oxygen Species Level. Cells 2022; 11:cells11111827. [PMID: 35681522 PMCID: PMC9180253 DOI: 10.3390/cells11111827] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
O-GlcNAcylation is a reversible post-translational modification involved in the regulation of cytosolic, nuclear, and mitochondrial proteins. Only two enzymes, OGT (O-GlcNAc transferase) and OGA (O-GlcNAcase), control the attachment and removal of O-GlcNAc on proteins, respectively. Whereas a variant OGT (mOGT) has been proposed as the main isoform that O-GlcNAcylates proteins in mitochondria, identification of a mitochondrial OGA has not been performed yet. Two splice variants of OGA (short and long isoforms) have been described previously. In this work, using cell fractionation experiments, we show that short-OGA is preferentially recovered in mitochondria-enriched fractions from HEK-293T cells and RAW 264.7 cells, as well as mouse embryonic fibroblasts. Moreover, fluorescent microscopy imaging confirmed that GFP-tagged short-OGA is addressed to mitochondria. In addition, using a Bioluminescence Resonance Energy Transfer (BRET)-based mitochondrial O-GlcNAcylation biosensor, we show that co-transfection of short-OGA markedly reduced O-GlcNAcylation of the biosensor, whereas long-OGA had no significant effect. Finally, using genetically encoded or chemical fluorescent mitochondrial probes, we show that short-OGA overexpression increases mitochondrial ROS levels, whereas long-OGA has no significant effect. Together, our work reveals that the short-OGA isoform is targeted to the mitochondria where it regulates ROS homoeostasis.
Collapse
|
8
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
9
|
Jiménez-Castillo V, Illescas-Barbosa D, Zenteno E, Ávila-Curiel BX, Castañeda-Patlán MC, Robles-Flores M, De Oca DMM, Pérez-Campos E, Torres-Rivera A, Bouaboud A, Pagesy P, Solórzano-Mata CJ, Issad T. Increased O-GlcNAcylation promotes IGF-1 receptor/PhosphatidyI Inositol-3 kinase/Akt pathway in cervical cancer cells. Sci Rep 2022; 12:4464. [PMID: 35296731 PMCID: PMC8927345 DOI: 10.1038/s41598-022-08445-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/04/2022] [Indexed: 12/28/2022] Open
Abstract
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification on serine and threonine residues of cytosolic, nuclear and mitochondrial proteins. O-GlcNAcylation level is regulated by OGT (O-GlcNAc transferase), which adds GlcNAc on proteins, and OGA (O-GlcNAcase), which removes it. Abnormal level of protein O-GlcNAcylation has been observed in numerous cancer cell types, including cervical cancer cells. In the present study, we have evaluated the effect of increasing protein O-GlcNAcylation on cervical cancer-derived CaSki cells. We observed that pharmacological enhancement of protein O-GlcNAcylation by Thiamet G (an inhibitor of OGA) and glucosamine (which provides UDP-GlcNAc substrate to OGT) increases CaSki cells proliferation, migration and survival. Moreover, we showed that increased O-GlcNAcylation promotes IGF-1 receptor (IGF1R) autophosphorylation, possibly through inhibition of protein tyrosine-phosphatase 1B activity. This was associated with increased IGF-1-induced phosphatidyl-Inositol 3-phosphate production at the plasma membrane and increased Akt activation in CaSki cells. Finally, we showed that protein O-GlcNAcylation and Akt phosphorylation levels were higher in human cervical cancer samples compared to healthy cervix tissues, and a highly positive correlation was observed between O-GlcNAcylation level and Akt phosphorylation in theses tissues. Together, our results indicate that increased O-GlcNAcylation, by activating IGF1R/ Phosphatidyl inositol 3-Kinase (PI-3K)/Akt signaling, may participate in cervical cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Victoria Jiménez-Castillo
- National Technology of Mexico/IT.Oaxaca, Oaxaca, Mexico
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Daniela Illescas-Barbosa
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Beatriz Xóchitl Ávila-Curiel
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | | | | | - Patrick Pagesy
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Carlos Josué Solórzano-Mata
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.
| | - Tarik Issad
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| |
Collapse
|
10
|
Sun L, Lv S, Song T. O-GlcNAcylation links oncogenic signals and cancer epigenetics. Discov Oncol 2021; 12:54. [PMID: 35201498 PMCID: PMC8777512 DOI: 10.1007/s12672-021-00450-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Prevalent dysregulation of epigenetic modifications plays a pivotal role in cancer. Targeting epigenetic abnormality is a new strategy for cancer therapy. Understanding how conventional oncogenic factors cause epigenetic abnormality is of great basic and translational value. O-GlcNAcylation is a protein modification which affects physiology and pathophysiology. In mammals, O-GlcNAcylation is catalyzed by one single enzyme OGT and removed by one single enzyme OGA. O-GlcNAcylation is affected by the availability of the donor, UDP-GlcNAc, generated by the serial enzymatic reactions in the hexoamine biogenesis pathway (HBP). O-GlcNAcylation regulates a wide spectrum of substrates including many proteins involved in epigenetic modification. Like epigenetic modifications, abnormality of O-GlcNAcylation is also common in cancer. Studies have revealed substantial impact on HBP enzymes and OGT/OGA by oncogenic signals. In this review, we will first summarize how oncogenic signals regulate HBP enzymes, OGT and OGA in cancer. We will then integrate this knowledge with the up to date understanding how O-GlcNAcylation regulates epigenetic machinery. With this, we propose a signal axis from oncogenic signals through O-GlcNAcylation dysregulation to epigenetic abnormality in cancer. Further elucidation of this axis will not only advance our understanding of cancer biology but also provide new revenues towards cancer therapy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
11
|
Stephen HM, Praissman JL, Wells L. Generation of an Interactome for the Tetratricopeptide Repeat Domain of O-GlcNAc Transferase Indicates a Role for the Enzyme in Intellectual Disability. J Proteome Res 2021; 20:1229-1242. [PMID: 33356293 PMCID: PMC8577549 DOI: 10.1021/acs.jproteome.0c00604] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The O-GlcNAc transferase (OGT) modifies nuclear and cytoplasmic proteins with β-N-acetyl-glucosamine (O-GlcNAc). With thousands of O-GlcNAc-modified proteins but only one OGT encoded in the mammalian genome, a prevailing question is how OGT selects its substrates. Prior work has indicated that the tetratricopeptide repeat (TPR) domain of OGT is involved in substrate selection. Furthermore, several variants of OGT causal for X-linked intellectual disability (XLID) occur in the TPR domain. Therefore, we adapted the BioID labeling method to identify interactors of a TPR-BirA* fusion protein in HeLa cells. We identified 115 interactors representing known and novel O-GlcNAc-modified proteins and OGT interactors (raw data deposited in MassIVE, Dataset ID MSV000085626). The interactors are enriched in known OGT processes (e.g., chromatin remodeling) as well as processes in which OGT has yet to be implicated (e.g., pre-mRNA processing). Importantly, the identified TPR interactors are linked to several disease states but most notably are enriched in pathologies featuring intellectual disability that may underlie the mechanism by which mutations in OGT lead to XLID. This interactome for the TPR domain of OGT serves as a jumping-off point for future research exploring the role of OGT, the TPR domain, and its protein interactors in multiple cellular processes and disease mechanisms, including intellectual disability.
Collapse
Affiliation(s)
- Hannah M. Stephen
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| | - Jeremy L. Praissman
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| |
Collapse
|
12
|
Stephen HM, Adams TM, Wells L. Regulating the Regulators: Mechanisms of Substrate Selection of the O-GlcNAc Cycling Enzymes OGT and OGA. Glycobiology 2021; 31:724-733. [PMID: 33498085 DOI: 10.1093/glycob/cwab005] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Thousands of nuclear and cytosolic proteins are modified with a single β-N-acetylglucosamine on serine and threonine residues in mammals, a modification termed O-GlcNAc. This modification is essential for normal development and plays important roles in virtually all intracellular processes. Additionally, O-GlcNAc is involved in many disease states, including cancer, diabetes, and X-linked intellectual disability. Given the myriad of functions of the O-GlcNAc modification, it is therefore somewhat surprising that O-GlcNAc cycling is mediated by only two enzymes: the O-GlcNAc transferase (OGT), which adds O-GlcNAc, and the O-GlcNAcase (OGA), which removes it. A significant outstanding question in the O-GlcNAc field is how do only two enzymes mediate such an abundant and dynamic modification. In this review, we explore the current understanding of mechanisms for substrate selection for the O-GlcNAc cycling enzymes. These mechanisms include direct substrate interaction with specific domains of OGT or OGA, selection of interactors via partner proteins, posttranslational modification of OGT or OGA, nutrient sensing, and localization alteration. Altogether, current research paints a picture of an exquisitely regulated and complex system by which OGT and OGA select substrates. We also make recommendations for future work, toward the goal of identifying interaction mechanisms for specific substrates that may be able to be exploited for various research and medical treatment goals.
Collapse
Affiliation(s)
- Hannah M Stephen
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens 30602, GA, USA
| | - Trevor M Adams
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens 30602, GA, USA
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens 30602, GA, USA
| |
Collapse
|
13
|
Al-Mukh H, Baudoin L, Bouaboud A, Sanchez-Salgado JL, Maraqa N, Khair M, Pagesy P, Bismuth G, Niedergang F, Issad T. Lipopolysaccharide Induces GFAT2 Expression to Promote O-Linked β- N-Acetylglucosaminylation and Attenuate Inflammation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 205:2499-2510. [PMID: 32978282 DOI: 10.4049/jimmunol.2000345] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
Abstract
Glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a reversible posttranslational modification that regulates the activity of intracellular proteins according to glucose availability and its metabolism through the hexosamine biosynthesis pathway. This modification has been involved in the regulation of various immune cell types, including macrophages. However, little is known concerning the mechanisms that regulate the protein O-GlcNAcylation level in these cells. In the present work, we demonstrate that LPS treatment induces a marked increase in protein O-GlcNAcylation in RAW264.7 cells, bone marrow-derived and peritoneal mouse macrophages, as well as human monocyte-derived macrophages. Targeted deletion of OGT in macrophages resulted in an increased effect of LPS on NOS2 expression and cytokine production, suggesting that O-GlcNAcylation may restrain inflammatory processes induced by LPS. The effect of LPS on protein O-GlcNAcylation in macrophages was associated with an increased expression and activity of glutamine fructose 6-phosphate amidotransferase (GFAT), the enzyme that catalyzes the rate-limiting step of the hexosamine biosynthesis pathway. More specifically, we observed that LPS potently stimulated GFAT2 isoform mRNA and protein expression. Genetic or pharmacological inhibition of FoxO1 impaired the LPS effect on GFAT2 expression, suggesting a FoxO1-dependent mechanism. We conclude that GFAT2 should be considered a new LPS-inducible gene involved in regulation of protein O-GlcNAcylation, which permits limited exacerbation of inflammation upon macrophage activation.
Collapse
Affiliation(s)
- Hasanain Al-Mukh
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Léa Baudoin
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | | | | | - Nabih Maraqa
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Mostafa Khair
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Patrick Pagesy
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Georges Bismuth
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | | | - Tarik Issad
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| |
Collapse
|
14
|
Quik M, Hokke CH, Everts B. The role of O-GlcNAcylation in immunity against infections. Immunology 2020; 161:175-185. [PMID: 32740921 PMCID: PMC7576884 DOI: 10.1111/imm.13245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Mounting an effective immune response is crucial for the host to protect itself against invading pathogens. It is now well appreciated that reprogramming of core metabolic pathways in immune cells is a key requirement for their activation and function during infections. The role of several ancillary metabolic pathways in shaping immune cell function is less well understood. One such pathway, for which interest has recently been growing, is the hexosamine biosynthesis pathway (HBP) that generates uridine diphosphate N‐acetylglucosamine (UDP‐GlcNAc), the donor substrate for a specific form of glycosylation termed O‐GlcNAcylation. O‐GlcNAc is an intracellular post‐translational modification that alters the functional properties of the modified proteins, in particular transcription factors and epigenetic regulators. An increasing number of studies suggest a central role for the HBP and O‐GlcNAcylation in dictating immune cell function, including the response to different pathogens. We here discuss the most recent insights regarding O‐GlcNAcylation and immunity, and explore whether targeting of O‐GlcNAcylation could hold promise as a therapeutic approach to modulate immune responses to infections.
Collapse
Affiliation(s)
- Marjolein Quik
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
15
|
Hervás M, Ciordia S, Navajas R, García JA, Martínez-Turiño S. Common and Strain-Specific Post-Translational Modifications of the Potyvirus Plum pox virus Coat Protein in Different Hosts. Viruses 2020; 12:E308. [PMID: 32178365 PMCID: PMC7150786 DOI: 10.3390/v12030308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/04/2023] Open
Abstract
Phosphorylation and O-GlcNAcylation are widespread post-translational modifications (PTMs), often sharing protein targets. Numerous studies have reported the phosphorylation of plant viral proteins. In plants, research on O-GlcNAcylation lags behind that of other eukaryotes, and information about O-GlcNAcylated plant viral proteins is extremely scarce. The potyvirus Plum pox virus (PPV) causes sharka disease in Prunus trees and also infects a wide range of experimental hosts. Capsid protein (CP) from virions of PPV-R isolate purified from herbaceous plants can be extensively modified by O-GlcNAcylation and phosphorylation. In this study, a combination of proteomics and biochemical approaches was employed to broaden knowledge of PPV CP PTMs. CP proved to be modified regardless of whether or not it was assembled into mature particles. PTMs of CP occurred in the natural host Prunus persica, similarly to what happens in herbaceous plants. Additionally, we observed that O-GlcNAcylation and phosphorylation were general features of different PPV strains, suggesting that these modifications contribute to general strategies deployed during plant-virus interactions. Interestingly, phosphorylation at a casein kinase II motif conserved among potyviral CPs exhibited strain specificity in PPV; however, it did not display the critical role attributed to the same modification in the CP of another potyvirus, Potato virus A.
Collapse
Affiliation(s)
- Marta Hervás
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Sergio Ciordia
- Proteomics Unit, Centro Nacional de Biotecnología (CNB-CSIC), ProteoRed ISCIII, 28049 Madrid, Spain; (S.C.); (R.N.)
| | - Rosana Navajas
- Proteomics Unit, Centro Nacional de Biotecnología (CNB-CSIC), ProteoRed ISCIII, 28049 Madrid, Spain; (S.C.); (R.N.)
| | - Juan Antonio García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Sandra Martínez-Turiño
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
16
|
Herzog K, Bandiera S, Pernot S, Fauvelle C, Jühling F, Weiss A, Bull A, Durand SC, Chane-Woon-Ming B, Pfeffer S, Mercey M, Lerat H, Meunier JC, Raffelsberger W, Brino L, Baumert TF, Zeisel MB. Functional microRNA screen uncovers O-linked N-acetylglucosamine transferase as a host factor modulating hepatitis C virus morphogenesis and infectivity. Gut 2020; 69:380-392. [PMID: 31076402 PMCID: PMC7613422 DOI: 10.1136/gutjnl-2018-317423] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Infection of human hepatocytes by the hepatitis C virus (HCV) is a multistep process involving both viral and host factors. microRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Given that miRNAs were indicated to regulate between 30% and 75% of all human genes, we aimed to investigate the functional and regulatory role of miRNAs for the HCV life cycle. DESIGN To systematically reveal human miRNAs affecting the HCV life cycle, we performed a two-step functional high-throughput miRNA mimic screen in Huh7.5.1 cells infected with recombinant cell culture-derived HCV. miRNA targeting was then assessed using a combination of computational and functional approaches. RESULTS We uncovered miR-501-3p and miR-619-3p as novel modulators of HCV assembly/release. We discovered that these miRNAs regulate O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) protein expression and identified OGT and O-GlcNAcylation as regulators of HCV morphogenesis and infectivity. Furthermore, increased OGT expression in patient-derived liver tissue was associated with HCV-induced liver disease and cancer. CONCLUSION miR-501-3p and miR-619-3p and their target OGT are previously undiscovered regulatory host factors for HCV assembly and infectivity. In addition to its effect on HCV morphogenesis, OGT may play a role in HCV-induced liver disease and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Katharina Herzog
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Simonetta Bandiera
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Sophie Pernot
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Catherine Fauvelle
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Frank Jühling
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Amélie Weiss
- Université de Strasbourg, Strasbourg, France,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,CNRS, UMR7104, Illkirch, France,Inserm, U1258, Illkirch, France
| | - Anne Bull
- Inserm U1259, Faculté de Médecine, Université François Rabelais and CHRU de Tours, Tours, France
| | - Sarah C. Durand
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Béatrice Chane-Woon-Ming
- Université de Strasbourg, Strasbourg, France,Architecture et Réactivité de l’ARN – UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Strasbourg, France,Architecture et Réactivité de l’ARN – UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Marion Mercey
- Institute for Applied Biosciences, Centre de Recherche UGA - Inserm U1209 - CNRS 5309, Grenoble, France
| | - Hervé Lerat
- Institute for Applied Biosciences, Centre de Recherche UGA - Inserm U1209 - CNRS 5309, Grenoble, France
| | - Jean-Christophe Meunier
- Inserm U1259, Faculté de Médecine, Université François Rabelais and CHRU de Tours, Tours, France
| | - Wolfgang Raffelsberger
- Université de Strasbourg, Strasbourg, France,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,CNRS, UMR7104, Illkirch, France,Inserm, U1258, Illkirch, France
| | - Laurent Brino
- Université de Strasbourg, Strasbourg, France,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,CNRS, UMR7104, Illkirch, France,Inserm, U1258, Illkirch, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France,Corresponding authors. Dr. Mirjam B. Zeisel, Inserm U1052 – CRCL, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France, Phone: +33472681970, Fax: +33472681971, and Prof. Thomas F. Baumert, Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 rue Koeberlé, 67000 Strasbourg, France, Phone: +33368853703, Fax: +33368853724,
| | - Mirjam B. Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Inserm, U1052, CNRS UMR 5286, Centre Léon Bérard (CLB), Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France,Corresponding authors. Dr. Mirjam B. Zeisel, Inserm U1052 – CRCL, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France, Phone: +33472681970, Fax: +33472681971, and Prof. Thomas F. Baumert, Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 rue Koeberlé, 67000 Strasbourg, France, Phone: +33368853703, Fax: +33368853724,
| |
Collapse
|
17
|
Gao Y, Liu J, Bai Z, Sink S, Zhao C, Lorenzo FR, McClain DA. Iron down-regulates leptin by suppressing protein O-GlcNAc modification in adipocytes, resulting in decreased levels of O-glycosylated CREB. J Biol Chem 2019; 294:5487-5495. [PMID: 30709903 DOI: 10.1074/jbc.ra118.005183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/28/2019] [Indexed: 11/06/2022] Open
Abstract
We previously reported that iron down-regulates transcription of the leptin gene by increasing occupancy of phosphorylated cAMP response element-binding protein (pCREB) at two sites in the leptin gene promoter. Several nutrient-sensing pathways including O-GlcNAcylation also regulate leptin. We therefore investigated whether O-glycosylation plays a role in iron- and CREB-mediated regulation of leptin. We found that high iron decreases protein O-GlcNAcylation both in cultured 3T3-L1 adipocytes and in mice fed high-iron diets and down-regulates leptin mRNA and protein levels. Glucosamine treatment, which bypasses the rate-limiting step in the synthesis of substrate for glycosylation, increased both O-GlcNAc and leptin, whereas inhibition of O-glycosyltransferase (OGT) decreased O-GlcNAc and leptin. The increased leptin levels induced by glucosamine were susceptible to the inhibition by iron, but in the case of OGT inhibition, iron did not further decrease leptin. Mice with deletion of the O-GlcNAcase gene, either via whole-body heterozygous deletion or through adipocyte-targeted homozygous deletion, exhibited increased O-GlcNAc levels in adipose tissue and increased leptin levels that were inhibited by iron. Of note, iron increased the occupancy of pCREB and decreased the occupancy of O-GlcNAcylated CREB on the leptin promoter. These patterns observed in our experimental models suggest that iron exerts its effects on leptin by decreasing O-glycosylation and not by increasing protein deglycosylation and that neither O-GlcNAcase nor OGT mRNA and protein levels are affected by iron. We conclude that iron down-regulates leptin by decreasing CREB glycosylation, resulting in increased CREB phosphorylation and leptin promoter occupancy by pCREB.
Collapse
Affiliation(s)
- Yan Gao
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and
| | - Jingfang Liu
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and
| | - Zhenzhong Bai
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and
| | - Sandy Sink
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and
| | - Chengyu Zhao
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and
| | - Felipe Ramos Lorenzo
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and
| | - Donald A McClain
- From the Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 and .,the W. G. Hefner Veterans Affairs Medical Center, Salisbury, North Carolina 28144
| |
Collapse
|
18
|
Filhoulaud G, Benhamed F, Pagesy P, Bonner C, Fardini Y, Ilias A, Movassat J, Burnol AF, Guilmeau S, Kerr-Conte J, Pattou F, Issad T, Postic C. O-GlcNacylation Links TxNIP to Inflammasome Activation in Pancreatic β Cells. Front Endocrinol (Lausanne) 2019; 10:291. [PMID: 31164864 PMCID: PMC6536593 DOI: 10.3389/fendo.2019.00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 01/30/2023] Open
Abstract
Thioredoxin interacting protein (TxNIP), which strongly responds to glucose, has emerged as a central mediator of glucotoxicity in pancreatic β cells. TxNIP is a scaffold protein interacting with target proteins to inhibit or stimulate their activity. Recent studies reported that high glucose stimulates the interaction of TxNIP with the inflammasome protein NLRP3 (NLR family, pyrin domain containing 3) to increase interleukin-1 β (IL1β) secretion by pancreatic β cells. To better understand the regulation of TxNIP by glucose in pancreatic β cells, we investigated the implication of O-linked β-N-acetylglucosamine (O-GlcNAcylation) in regulating TxNIP at the posttranslational level. O-GlcNAcylation of proteins is controlled by two enzymes: the O-GlcNAc transferase (OGT), which transfers a monosaccharide to serine/threonine residues on target proteins, and the O-GlcNAcase (OGA), which removes it. Our study shows that TxNIP is subjected to O-GlcNAcylation in response to high glucose concentrations in β cell lines. Modification of the O-GlcNAcylation pathway through manipulation of OGT or OGA expression or activity significantly modulates TxNIP O-GlcNAcylation in INS1 832/13 cells. Interestingly, expression and O-GlcNAcylation of TxNIP appeared to be increased in islets of diabetic rodents. At the mechanistic level, the induction of the O-GlcNAcylation pathway in human and rat islets promotes inflammasome activation as evidenced by enhanced cleaved IL1β. Overexpression of OGT in HEK293 or INS1 832/13 cells stimulates TxNIP and NLRP3 interaction, while reducing TxNIP O-GlcNAcylation through OGA overexpression destabilizes this interaction. Altogether, our study reveals that O-GlcNAcylation represents an important regulatory mechanism for TxNIP activity in β cells.
Collapse
Affiliation(s)
- Gaelle Filhoulaud
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Fadila Benhamed
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Patrick Pagesy
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Caroline Bonner
- Pasteur Institute de Lille, Lille, France
- INSERM U1190 - EGID, Lille, France
| | - Yann Fardini
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anissa Ilias
- UMR8251-CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jamileh Movassat
- UMR8251-CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anne-Françoise Burnol
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sandra Guilmeau
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | | | - Tarik Issad
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Catherine Postic
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- *Correspondence: Catherine Postic
| |
Collapse
|
19
|
Zachara NE. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). FEBS Lett 2018; 592:3950-3975. [PMID: 30414174 DOI: 10.1002/1873-3468.13286] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
Almost 100 years after the first descriptions of proteins conjugated to carbohydrates (mucins), several studies suggested that glycoproteins were not restricted to the serum, extracellular matrix, cell surface, or endomembrane system. In the 1980s, key data emerged demonstrating that intracellular proteins were modified by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Subsequently, this modification was identified on thousands of proteins that regulate cellular processes as diverse as protein aggregation, localization, post-translational modifications, activity, and interactions. In this Review, we will highlight critical discoveries that shaped our understanding of the molecular events underpinning the impact of O-GlcNAc on protein function, the role that O-GlcNAc plays in maintaining cellular homeostasis, and our understanding of the mechanisms that regulate O-GlcNAc-cycling.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
The HTLV-1 oncoprotein Tax is modified by the ubiquitin related modifier 1 (Urm1). Retrovirology 2018; 15:33. [PMID: 29665857 PMCID: PMC5904992 DOI: 10.1186/s12977-018-0415-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/10/2018] [Indexed: 12/04/2022] Open
Abstract
Background Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy secondary to chronic human T-cell lymphotropic virus 1 infection, triggered by the virally encoded oncoprotein Tax. The transforming activity and subcellular localization of Tax is strongly influenced by posttranslational modifications, among which ubiquitylation and SUMOylation have been identified as key regulators of the nuclear/cytoplasmic shuttling of Tax, as well as its ability to activate NF-κB signaling. Results Adding to the complex posttranslational modification landscape of Tax, we here demonstrate that Tax also interacts with the ubiquitin-related modifier 1 (Urm1). Conjugation of Urm1 to Tax results in a redistribution of Tax to the cytoplasm and major increase in the transcription of the NF-ĸB targets Rantes and interleukin-6. Utilizing a tax-transgenic Drosophila model, we show that the Urm1-dependent subcellular targeting of Tax is evolutionary conserved, and that the presence of Urm1 is strongly correlated with the transcriptional output of Diptericin, an antimicrobial peptide and established downstream target of NF-κB in flies. Conclusions These data put forward Urm1 as a novel Tax modifier that modulates its oncogenic activity and hence represents a potential novel target for developing new strategies for treating ATL.
Collapse
|
21
|
Pique C, Issad T. [Sweet hijacking by the Tax oncoprotein of the Human T-cell lymphotropic virus type 1]. Med Sci (Paris) 2018; 34:120-122. [PMID: 29451479 DOI: 10.1051/medsci/20183402006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Claudine Pique
- Inserm, U1016, Institut Cochin, 22, rue Méchain, 75014 Paris, France - CNRS, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Tarik Issad
- Inserm, U1016, Institut Cochin, 22, rue Méchain, 75014 Paris, France - CNRS, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|