1
|
Naveed A, Eertink LG, Wang D, Li F. Lessons Learned from West Nile Virus Infection:Vaccinations in Equines and Their Implications for One Health Approaches. Viruses 2024; 16:781. [PMID: 38793662 PMCID: PMC11125849 DOI: 10.3390/v16050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.
Collapse
Affiliation(s)
| | | | | | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA; (A.N.); (L.G.E.); (D.W.)
| |
Collapse
|
2
|
Benzarti E, Murray KO, Ronca SE. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses 2023; 15:v15030806. [PMID: 36992514 PMCID: PMC10053297 DOI: 10.3390/v15030806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can lead to encephalitis and death in susceptible hosts. Cytokines play a critical role in inflammation and immunity in response to WNV infection. Murine models provide evidence that some cytokines offer protection against acute WNV infection and assist with viral clearance, while others play a multifaceted role WNV neuropathogenesis and immune-mediated tissue damage. This article aims to provide an up-to-date review of cytokine expression patterns in human and experimental animal models of WNV infections. Here, we outline the interleukins, chemokines, and tumor necrosis factor superfamily ligands associated with WNV infection and pathogenesis and describe the complex roles they play in mediating both protection and pathology of the central nervous system during or after virus clearance. By understanding of the role of these cytokines during WNV neuroinvasive infection, we can develop treatment options aimed at modulating these immune molecules in order to reduce neuroinflammation and improve patient outcomes.
Collapse
Affiliation(s)
- Emna Benzarti
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy O Murray
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shannon E Ronca
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Giordano D, Kuley R, Draves KE, Elkon KB, Giltiay NV, Clark EA. B cell-activating factor (BAFF) from dendritic cells, monocytes and neutrophils is required for B cell maturation and autoantibody production in SLE-like autoimmune disease. Front Immunol 2023; 14:1050528. [PMID: 36923413 PMCID: PMC10009188 DOI: 10.3389/fimmu.2023.1050528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Purpose and methods B cell-activating factor (BAFF) contributes to the pathogenesis of autoimmune diseases including systemic lupus erythematosus (SLE). Although several anti-BAFF Abs and derivatives have been developed for the treatment of SLE, the specific sources of BAFF that sustain autoantibody (auto-Ab) producing cells have not been definitively identified. Using BAFF-RFP reporter mice, we identified major changes in BAFF-producing cells in two mouse spontaneous lupus models (Tlr7 Tg mice and Sle1), and in a pristane-induced lupus (PIL) model. Results First, we confirmed that similar to their wildtype Tlr7 Tg and Sle1 mice counterparts, BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice had increased BAFF serum levels, which correlated with increases in plasma cells and auto-Ab production. Next, using the RFP reporter, we defined which cells had dysregulated BAFF production. BAFF-producing neutrophils (Nphs), monocytes (MOs), cDCs, T cells and B cells were all expanded in the spleens of BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice compared to controls. Furthermore, Ly6Chi inflammatory MOs and T cells had significantly increased BAFF expression per cell in both spontaneous lupus models, while CD8- DCs up-regulated BAFF expression only in the Tlr7 Tg mice. Similarly, pristane injection of BAFF-RFP mice induced increases in serum BAFF levels, auto-Abs, and the expansion of BAFF-producing Nphs, MOs, and DCs in both the spleen and peritoneal cavity. BAFF expression in MOs and DCs, in contrast to BAFF from Nphs, was required to maintain homeostatic and pristane-induced systemic BAFF levels and to sustain mature B cell pools in spleens and BMs. Although acting through different mechanisms, Nph, MO and DC sources of BAFF were each required for the development of auto-Abs in PIL mice. Conclusions Our findings underscore the importance of considering the relative roles of specific myeloid BAFF sources and B cell niches when developing treatments for SLE and other BAFF-associated autoimmune diseases.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- *Correspondence: Daniela Giordano,
| | - Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Kevin E. Draves
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Keith B. Elkon
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Natalia V. Giltiay
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Edward A. Clark
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Biswas M, Yamazaki T, Tomono S, Karnan S, Takagi H, Ichimonji I, Inui M, Nagaoka F, Hosokawa Y, Akashi-Takamura S. Cell surface expression of human RP105 depends on N-glycosylation of MD-1. FEBS Lett 2022; 596:3211-3231. [PMID: 35849076 DOI: 10.1002/1873-3468.14452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023]
Abstract
For its cell surface expression, radioprotective 105 (RP105) - an orphan Toll-like receptor - must form a complex with a soluble glycoprotein called myeloid differentiation 1 (MD-1). The number of RP105-negative cells is significantly increased in patients with systemic lupus erythematosus (SLE); however, to elucidate the mechanism underlying this increase, how RP105 is expressed on the cell surface depending on MD-1 should be investigated. We demonstrated that RP105 exhibits two forms depending on MD-1 and its two N-glycosylation sites, N96 and N156. Cell surface expression of RP105 decreased in the presence of mutant MD-1 (N96Q/N156Q). Nonglycosylated MD-1 decreased the de novo cell surface expression of RP105 but not pre-expressed RP105. Thus, the N-glycans of MD-1 may represent targets for SLE therapy.
Collapse
Affiliation(s)
- Mrityunjoy Biswas
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Tatsuya Yamazaki
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Japan
| | - Hidekazu Takagi
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Isao Ichimonji
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Masanori Inui
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Fumiaki Nagaoka
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Japan
| |
Collapse
|
5
|
Kuley R, Draves KE, Fuller DH, Giltiay NV, Clark EA, Giordano D. B cell activating factor (BAFF) from neutrophils and dendritic cells is required for protective B cell responses against Salmonella typhimurium infection. PLoS One 2021; 16:e0259158. [PMID: 34705890 PMCID: PMC8550399 DOI: 10.1371/journal.pone.0259158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
Abstract
Mice lacking B cells are more susceptible to S. typhimurium infection. How B cells contribute to protective immunity against Salmonella and what signals drive their activation are still unclear. Neutrophils (Nphs), monocytes (MOs), and dendritic cells (DCs) are involved in early immune responses to control the initial replication of S. typhimurium. These cells can produce B cell activating factor (BAFF) required for mature B cell survival and may help regulate B cell responses during Salmonella infection. Using BAFF reporter mice (BAFF-RFP+/-), we discovered that an i.p. infection with a virulent strain of S. typhimurium increased BAFF expression in splenic conventional DCs (cDC) and inflammatory Ly6Chi MOs/DCs four days post-infection. S. typhimurium infection induced the release of BAFF from Nphs, a decrease of BAFF-RFP expression and expansion of BAFF-RFP+ Nphs in the spleen and peritoneal cavity. After S. typhimurium infection, serum BAFF levels and immature and mature B cell subsets and plasma cells increased substantially. Conditional knockout (cKO) mice lacking BAFF in either Nphs or cDCs compared to control Bafffl/fl mice had reduced up-regulation of systemic BAFF levels and reduced expansion of mature and germinal center B cell subsets after infection. Importantly, the cKO mice lacking BAFF from either Nphs or cDCs had impaired induction of Salmonella-specific IgM Abs, and were more susceptible to S. typhimurium infection. Thus, Nphs and cDCs are major cellular sources of BAFF driving B cell responses, required for mounting optimal protective immunity against lethal Salmonella infection.
Collapse
Affiliation(s)
- Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (RK); (DG)
| | - Kevin E. Draves
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Natalia V. Giltiay
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
| | - Edward A. Clark
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (RK); (DG)
| |
Collapse
|
6
|
Adam A, Cuellar S, Wang T. Memory B cell and antibody responses to flavivirus infection and vaccination. Fac Rev 2021; 10:5. [PMID: 33659923 PMCID: PMC7894259 DOI: 10.12703/r/10-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Flaviviruses are a group of mosquito- or tick-borne single-stranded RNA viruses that can cause a wide range of clinical manifestations in humans and animals, including asymptomatic, flu-like febrile illness, hemorrhagic fever, encephalitis, birth defects, and death. Many of them have no licensed vaccines available for human use. Memory B cell development and induction of neutralizing antibody responses, which are important for the control of flavivirus infection and dissemination, have been used as biomarkers for vaccine efficacy. In this review, we will discuss recent findings on memory B cells and antibody responses from studies in clinical specimen and animal models of flavivirus infection and vaccination with a focus on several clinically important flaviviruses, including dengue, West Nile, yellow fever, and Zika viruses.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Servando Cuellar
- School of Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
7
|
Yamazaki T, Biswas M, Kosugi K, Nagashima M, Inui M, Tomono S, Takagi H, Ichimonji I, Nagaoka F, Ainai A, Hasegawa H, Chiba J, Akashi-Takamura S. A Novel Gene Delivery Vector of Agonistic Anti-Radioprotective 105 Expressed on Cell Membranes Shows Adjuvant Effect for DNA Immunization Against Influenza. Front Immunol 2020; 11:606518. [PMID: 33414788 PMCID: PMC7783388 DOI: 10.3389/fimmu.2020.606518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Radioprotective 105 (RP105) (also termed CD180) is an orphan and unconventional Toll-like receptor (TLR) that lacks an intracellular signaling domain. The agonistic anti-RP105 monoclonal antibody (mAb) can cross-link RP105 on B cells, resulting in the proliferation and activation of B cells. Anti-RP105 mAb also has a potent adjuvant effect, providing higher levels of antigen-specific antibodies compared to alum. However, adjuvanticity is required for the covalent link between anti-RP105 mAb and the antigen. This is a possible obstacle to immunization due to the link between anti-RP105 mAb and some antigens, especially multi-transmembrane proteins. We have previously succeeded in inducing rapid and potent recombinant mAbs in mice using antibody gene-based delivery. To simplify the covalent link between anti-RP105 mAb and antigens, we generated genetic constructs of recombinant anti-RP105 mAb (αRP105) bound to the transmembrane domain of the IgG-B cell receptor (TM) (αRP105-TM), which could enable the anti-RP105 mAb to link the antigen via the cell membrane. We confirmed the expression of αRP105-TM and the antigen hemagglutinin, which is a membrane protein of the influenza virus, on the same cell. We also found that αRP105-TM could activate splenic B cells, including both mature and immature cells, depending on the cell surface RP105 in vitro. To evaluate the adjuvanticity of αRP105-TM, we conducted DNA immunization in mice with the plasmids encoding αRP105-TM and hemagglutinin, followed by challenge with an infection of a lethal dose of an influenza virus. We then obtained partially but significantly hemagglutinin-specific antibodies and observed protective effects against a lethal dose of influenza virus infection. The current αRP105-TM might provide adjuvanticity for a vaccine via a simple preparation of the expression plasmids encoding αRP105-TM and of that encoding the target antigen.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Membrane/drug effects
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Proliferation/drug effects
- Coculture Techniques
- Gene Transfer Techniques
- Genetic Vectors
- HEK293 Cells
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/pharmacology
- Humans
- Hybridomas
- Immunization
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/pharmacology
- Lymphocyte Activation/drug effects
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, Inbred BALB C
- Mice, Knockout
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Rats
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- Vaccines, DNA/pharmacology
Collapse
Affiliation(s)
- Tatsuya Yamazaki
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Mrityunjoy Biswas
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Kouyu Kosugi
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Maria Nagashima
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masanori Inui
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Hidekazu Takagi
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Isao Ichimonji
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Fumiaki Nagaoka
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Joe Chiba
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| |
Collapse
|
8
|
Giltiay NV, Giordano D, Clark EA. The Plasticity of Newly Formed B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 203:3095-3104. [PMID: 31818922 DOI: 10.4049/jimmunol.1900928] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
Newly formed B cells (NF-B cells) that emerge from the bone marrow to the periphery have often been referred to as immature or transitional B cells. However, NF-B cells have several striking characteristics, including a distinct BCR repertoire, high expression of AID, high sensitivity to PAMPs, and the ability to produce cytokines. A number of findings do not support their designation as immature because NF-B cells have the potential to become Ab-producing cells and to undergo class-switch recombination. In this review, we provide a fresh perspective on NF-B cell functions and describe some of the signals driving their activation. We summarize growing evidence supporting a role for NF-B cells in protection against infections and as a potential source of autoantibody-producing cells in autoimmune diseases such as systemic lupus erythematosus.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109; and
| | - Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
9
|
Martin MF, Nisole S. West Nile Virus Restriction in Mosquito and Human Cells: A Virus under Confinement. Vaccines (Basel) 2020; 8:E256. [PMID: 32485916 PMCID: PMC7350012 DOI: 10.3390/vaccines8020256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic flavivirus that naturally circulates between mosquitoes and birds. However, WNV has a broad host range and can be transmitted from mosquitoes to several mammalian species, including humans, through infected saliva during a blood meal. Although WNV infections are mostly asymptomatic, 20% to 30% of cases are symptomatic and can occasionally lead to severe symptoms, including fatal meningitis or encephalitis. Over the past decades, WNV-carrying mosquitoes have become increasingly widespread across new regions, including North America and Europe, which constitutes a public health concern. Nevertheless, mosquito and human innate immune defenses can detect WNV infection and induce the expression of antiviral effectors, so-called viral restriction factors, to control viral propagation. Conversely, WNV has developed countermeasures to escape these host defenses, thus establishing a constant arms race between the virus and its hosts. Our review intends to cover most of the current knowledge on viral restriction factors as well as WNV evasion strategies in mosquito and human cells in order to bring an updated overview on WNV-host interactions.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling Team, Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34090 Montpellier, France;
| |
Collapse
|
10
|
Giordano D, Kuley R, Draves KE, Roe K, Holder U, Giltiay NV, Clark EA. BAFF Produced by Neutrophils and Dendritic Cells Is Regulated Differently and Has Distinct Roles in Antibody Responses and Protective Immunity against West Nile Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1508-1520. [PMID: 32034064 PMCID: PMC7357242 DOI: 10.4049/jimmunol.1901120] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
B cell activating factor (BAFF) is essential for B cells to develop and respond to Ags. Dysregulation of BAFF contributes to the development of some autoimmune diseases and malignancies. Little is known about when, where, and how BAFF is produced in vivo and about which BAFF-producing cells contribute to B cell responses. To better understand BAFF functions, we created BAFF reporter (BAFF-RFP) mice and Baff floxed (Bafffl/fl ) mice. Splenic and bone marrow neutrophils (Nphs) from BAFF-RFP mice expressed the highest constitutive levels of BAFF; other myeloid subsets, including conventional dendritic cells (cDCs) and monocyte (MO) subsets, expressed lower levels. Treatment of BAFF-RFP mice with polyinosinic:polycytidylic acid increased BAFF expression in splenic Ly6Chi inflammatory MOs, CD11bhi activated NK subset, and in bone marrow myeloid precursors. Postinfection with West Nile virus (WNV), BAFF increased in CD8- cDCs and Nphs, and BAFF+ CD11bhi NK cells expanded in draining lymph nodes. The cell- and tissue-specific increases in BAFF expression were dependent on type I IFN signaling. MAVS also was required or contributed to BAFF expression in dendritic cell and MO subsets, respectively. Mice with deletion of Baff in either cDCs or Nphs had reduced Ab responses after NP-Ficoll immunization; thus, BAFF produced by both cDCs and Nphs contributes to T cell-independent Ab responses. Conversely, mice with a cDC Baff deficiency had increased mortality after WNV infection and decreased WNV-specific IgG and neutralizing Ab responses. BAFF produced by Nphs and cDCs is regulated differently and has key roles in Ab responses and protective immunity.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Runa Kuley
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Kevin E Draves
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Kelsey Roe
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Ursula Holder
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109; and
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109
| |
Collapse
|
11
|
Bai F, Thompson EA, Vig PJS, Leis AA. Current Understanding of West Nile Virus Clinical Manifestations, Immune Responses, Neuroinvasion, and Immunotherapeutic Implications. Pathogens 2019; 8:pathogens8040193. [PMID: 31623175 PMCID: PMC6963678 DOI: 10.3390/pathogens8040193] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) is the most common mosquito-borne virus in North America. WNV-associated neuroinvasive disease affects all ages, although elderly and immunocompromised individuals are particularly at risk. WNV neuroinvasive disease has killed over 2300 Americans since WNV entered into the United States in the New York City outbreak of 1999. Despite 20 years of intensive laboratory and clinical research, there are still no approved vaccines or antivirals available for human use. However, rapid progress has been made in both understanding the pathogenesis of WNV and treatment in clinical practices. This review summarizes our current understanding of WNV infection in terms of human clinical manifestations, host immune responses, neuroinvasion, and therapeutic interventions.
Collapse
Affiliation(s)
- Fengwei Bai
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - E Ashley Thompson
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Parminder J S Vig
- Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - A Arturo Leis
- Methodist Rehabilitation Center, Jackson, MS 39216, USA.
| |
Collapse
|
12
|
Roe K, Shu GL, Draves KE, Giordano D, Pepper M, Clark EA. Targeting Antigens to CD180 but Not CD40 Programs Immature and Mature B Cell Subsets to Become Efficient APCs. THE JOURNAL OF IMMUNOLOGY 2019; 203:1715-1729. [PMID: 31484732 DOI: 10.4049/jimmunol.1900549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Abstract
Targeting Ags to the CD180 receptor activates both B cells and dendritic cells (DCs) to become potent APCs. After inoculating mice with Ag conjugated to an anti-CD180 Ab, B cell receptors were rapidly internalized. Remarkably, all B cell subsets, including even transitional 1 B cells, were programed to process, present Ag, and stimulate Ag-specific CD4+ T cells. Within 24-48 hours, Ag-specific B cells were detectable at T-B borders in the spleen; there, they proliferated in a T cell-dependent manner and induced the maturation of T follicular helper (TFH) cells. Remarkably, immature B cells were sufficient for the maturation of TFH cells after CD180 targeting: TFH cells were induced in BAFFR-/- mice (with only transitional 1 B cells) and not in μMT mice (lacking all B cells) following CD180 targeting. Unlike CD180 targeting, CD40 targeting only induced DCs but not B cells to become APCs and thus failed to efficiently induce TFH cell maturation, resulting in slower and lower-affinity IgG Ab responses. CD180 targeting induces a unique program in Ag-specific B cells and to our knowledge, is a novel strategy to induce Ag presentation in both DCs and B cells, especially immature B cells and thus has the potential to produce a broad range of Ab specificities. This study highlights the ability of immature B cells to present Ag to and induce the maturation of cognate TFH cells, providing insights toward vaccination of mature B cell-deficient individuals and implications in treating autoimmune disorders.
Collapse
Affiliation(s)
- Kelsey Roe
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Geraldine L Shu
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Kevin E Draves
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
13
|
Dendritic cell-associated MAVS is required to control West Nile virus replication and ensuing humoral immune responses. PLoS One 2019; 14:e0218928. [PMID: 31242236 PMCID: PMC6594639 DOI: 10.1371/journal.pone.0218928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial antiviral signaling protein (MAVS) is a critical innate immune signaling protein that directs the actions of the RIG-I-like receptor (RLR) signaling pathway of RNA virus recognition and initiation of anti-viral immunity against West Nile virus (WNV). In the absence of MAVS, mice die more rapidly after infection with the pathogenic WNV-Texas (TX) strain, but also produce elevated WNV-specific IgG concomitant with increased viral burden. Here we investigated whether there was a B cell intrinsic role for MAVS during the development of protective humoral immunity following WNV infection. MAVS-/- mice survived infection from the non-pathogenic WNV-Madagascar (MAD) strain, with limited signs of disease. Compared to wildtype (WT) controls, WNV-MAD-infected MAVS-/- mice had elevated serum neutralizing antibodies, splenic germinal center B cells, plasma cells and effector T cells. We found that when rechallenged with the normally lethal WNV-TX, MAVS-/- mice previously infected with WNV-MAD were protected from disease. Thus, protective humoral and cellular immune responses can be generated in absence of MAVS. Mice with a conditional deletion of MAVS only in CD11c+ dendritic cells phenocopied MAVS whole body knockout mice in their humoral responses to WNV-MAD, displaying elevated virus titers and neutralizing antibodies. Conversely, a B cell-specific deletion of MAVS had no effect on immune responses to WNV-MAD compared to WT controls. Thus, MAVS in dendritic cells is required to control WNV replication and thereby regulate downstream humoral immune responses.
Collapse
|
14
|
Ahlers LRH, Goodman AG. The Immune Responses of the Animal Hosts of West Nile Virus: A Comparison of Insects, Birds, and Mammals. Front Cell Infect Microbiol 2018; 8:96. [PMID: 29666784 PMCID: PMC5891621 DOI: 10.3389/fcimb.2018.00096] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022] Open
Abstract
Vector-borne diseases, including arboviruses, pose a serious threat to public health worldwide. Arboviruses of the flavivirus genus, such as Zika virus (ZIKV), dengue virus, yellow fever virus (YFV), and West Nile virus (WNV), are transmitted to humans from insect vectors and can cause serious disease. In 2017, over 2,000 reported cases of WNV virus infection occurred in the United States, with two-thirds of cases classified as neuroinvasive. WNV transmission cycles through two different animal populations: birds and mosquitoes. Mammals, particularly humans and horses, can become infected through mosquito bites and represent dead-end hosts of WNV infection. Because WNV can infect diverse species, research on this arbovirus has investigated the host response in mosquitoes, birds, humans, and horses. With the growing geographical range of the WNV mosquito vector and increased human exposure, improved surveillance and treatment of the infection will enhance public health in areas where WNV is endemic. In this review, we survey the bionomics of mosquito species involved in Nearctic WNV transmission. Subsequently, we describe the known immune response pathways that counter WNV infection in insects, birds, and mammals, as well as the mechanisms known to curb viral infection. Moreover, we discuss the bacterium Wolbachia and its involvement in reducing flavivirus titer in insects. Finally, we highlight the similarities of the known immune pathways and identify potential targets for future studies aimed at improving antiviral therapeutic and vaccination design.
Collapse
Affiliation(s)
- Laura R H Ahlers
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| | - Alan G Goodman
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States.,Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
15
|
Abstract
West Nile virus (WNV), a mosquito-borne flavivirus, has been a significant public health concern in the United States for nearly two decades. The virus has been linked to acute viral encephalitis, neurological sequelae, and chronic kidney diseases. Neither antiviral drugs nor vaccines are currently available for humans. In vitro cell culture and experimental animal models have been used to study WNV infection in humans. In this review, we will focus on recent findings and provide new insights into WNV host immunity and viral pathogenesis.
Collapse
Affiliation(s)
- Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, USA.,Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|