1
|
da Silveira BP, Cohen ND, Lawhon SD, Watson RO, Bordin AI. Protective immune response against Rhodococcus equi: An innate immunity-focused review. Equine Vet J 2024. [PMID: 39258739 DOI: 10.1111/evj.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Rhodococcus equi causes pyogranulomatous pneumonia in foals and immunocompromised people. Despite decades of research efforts, no vaccine is available against this common cause of disease and death in foals. The purpose of this narrative review is to summarise the current understanding of interactions between R. equi and the host innate immune system, to describe features of the immune response that are associated with resistance or susceptibility to R. equi infection, and help guide strategies for developing novel approaches for preventing R. equi infections. Virulence of R. equi in foals has been attributed to the virulence associated protein A which allows intracellular survival in macrophages by preventing acidification of R. equi-containing vacuole. Additionally, foal susceptibility to R. equi infection is associated with immaturity and naivety of innate and adaptive immune systems, while adult horses with fully functional immune system are resistant to pneumonia. Specific interaction between R. equi and innate immune cells can result in bacterial survival or death; learning how to manipulate these responses to control infection is critical to prevent pneumonia in foals. Administration of live vaccines and stimulation of innate immune responses appears to improve foals' immune response and has the potential to overcome the challenges of foal active vaccination and elicit protection against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, School of Medicine, College Station, Texas, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| |
Collapse
|
2
|
Kabir A, Lamichhane B, Habib T, Adams A, El-Sheikh Ali H, Slovis NM, Troedsson MHT, Helmy YA. Antimicrobial Resistance in Equines: A Growing Threat to Horse Health and Beyond-A Comprehensive Review. Antibiotics (Basel) 2024; 13:713. [PMID: 39200013 PMCID: PMC11350719 DOI: 10.3390/antibiotics13080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The equine industry holds substantial economic importance not only in the USA but worldwide. The occurrence of various infectious bacterial diseases in horses can lead to severe health issues, economic losses, and restrictions on horse movement and trade. Effective management and control of these diseases are therefore crucial for the growth and sustainability of the equine industry. While antibiotics constitute the primary treatment strategy for any bacterial infections in horses, developing resistance to clinically important antibiotics poses significant challenges to equine health and welfare. The adverse effects of antimicrobial overuse and the escalating threat of resistance underscore the critical importance of antimicrobial stewardship within the equine industry. There is limited information on the epidemiology of antimicrobial-resistant bacterial infections in horses. In this comprehensive review, we focus on the history and types of antimicrobials used in horses and provide recommendations for combating drug-resistant bacterial infections in horses. This review also highlights the epidemiology of antimicrobial resistance (AMR) in horses, emphasizing the public health significance and transmission dynamics between horses and other animals within a One Health framework. By fostering responsible practices and innovative control measures, we can better help the equine industry combat the pressing threat of AMR and thus safeguard equine as well as public health.
Collapse
Affiliation(s)
- Ajran Kabir
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Bibek Lamichhane
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Tasmia Habib
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Alexis Adams
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Nathan M. Slovis
- McGee Medical Center, Hagyard Equine Medical Institute, 4250 Iron Works Pike, Lexington, KY 40511, USA;
| | - Mats H. T. Troedsson
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Yosra A. Helmy
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| |
Collapse
|
3
|
Tan Z, Yang W, O'Brien NA, Pan X, Ramadan S, Marsh T, Hammer N, Cywes-Bentley C, Vinacur M, Pier GB, Gildersleeve JC, Huang X. A comprehensive synthetic library of poly-N-acetyl glucosamines enabled vaccine against lethal challenges of Staphylococcus aureus. Nat Commun 2024; 15:3420. [PMID: 38658531 PMCID: PMC11043332 DOI: 10.1038/s41467-024-47457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Poly-β-(1-6)-N-acetylglucosamine (PNAG) is an important vaccine target, expressed on many pathogens. A critical hurdle in developing PNAG based vaccine is that the impacts of the number and the position of free amine vs N-acetylation on its antigenicity are not well understood. In this work, a divergent strategy is developed to synthesize a comprehensive library of 32 PNAG pentasaccharides. This library enables the identification of PNAG sequences with specific patterns of free amines as epitopes for vaccines against Staphylococcus aureus (S. aureus), an important human pathogen. Active vaccination with the conjugate of discovered PNAG epitope with mutant bacteriophage Qβ as a vaccine carrier as well as passive vaccination with diluted rabbit antisera provides mice with near complete protection against infections by S. aureus including methicillin-resistant S. aureus (MRSA). Thus, the comprehensive PNAG pentasaccharide library is an exciting tool to empower the design of next generation vaccines.
Collapse
Affiliation(s)
- Zibin Tan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, 518000, China
| | - Weizhun Yang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Nicholas A O'Brien
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xingling Pan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya, 13518, Egypt
| | - Terence Marsh
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, 48824, USA
| | - Neal Hammer
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, 48824, USA
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mariana Vinacur
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
da Silveira BP, Barhoumi R, Bray JM, Cole-Pfeiffer HM, Mabry CJ, Burghardt RC, Cohen ND, Bordin AI. Impact of surface receptors TLR2, CR3, and FcγRIII on Rhodococcus equi phagocytosis and intracellular survival in macrophages. Infect Immun 2024; 92:e0038323. [PMID: 38018994 PMCID: PMC10790823 DOI: 10.1128/iai.00383-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023] Open
Abstract
The virulence-associated protein A (VapA) produced by virulent Rhodococcus equi allows it to replicate in macrophages and cause pneumonia in foals. It is unknown how VapA interacts with mammalian cell receptors, but intracellular replication of avirulent R. equi lacking vapA can be restored by supplementation with recombinant VapA (rVapA). Our objectives were to determine whether the absence of the surface receptors Toll-like receptor 2 (TLR2), complement receptor 3 (CR3), or Fc gamma receptor III (FcγRIII) impacts R. equi phagocytosis and intracellular replication in macrophages, and whether rVapA restoration of virulence in R. equi is dependent upon these receptors. Wild-type (WT) murine macrophages with TLR2, CR3, or FcγRIII blocked or knocked out (KO) were infected with virulent or avirulent R. equi, with or without rVapA supplementation. Quantitative bacterial culture and immunofluorescence imaging were performed. Phagocytosis of R. equi was not affected by blockade or KO of TLR2 or CR3. Intracellular replication of virulent R. equi was not affected by TLR2, CR3, or FcγRIII blockade or KO; however, avirulent R. equi replicated in TLR2-/- and CR3-/- macrophages but not in WT and FcγRIII-/-. rVapA supplementation did not affect avirulent R. equi phagocytosis but promoted intracellular replication in WT and all KO cells. By demonstrating that TLR2 and CR3 limit replication of avirulent but not virulent R. equi and that VapA-mediated virulence is independent of TLR2, CR3, or FcγRIII, our study provides novel insights into the role of these specific surface receptors in determining the entry and intracellular fate of R. equi.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Jocelyne M. Bray
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Hannah M. Cole-Pfeiffer
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Cory J. Mabry
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Robert C. Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Angela I. Bordin
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| |
Collapse
|
5
|
Rule EK, Boyle AG, Stefanovski D, Anis E, Linton J, Lorello O. Transfer of naturally acquired specific passive immunity against Anaplasma phagocytophilum in foals in Southeastern Pennsylvania and Northern Maryland. J Vet Intern Med 2023; 37:1889-1892. [PMID: 37515307 PMCID: PMC10472987 DOI: 10.1111/jvim.16812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Equine granulocytic anaplasmosis (EGA) is a common disease in adult horses, but clinical disease in foals is rarely reported. The relationship between equine maternal and neonatal antibodies to Anaplasma phagocytophilum is unclear. HYPOTHESIS/OBJECTIVES That mares in an endemic region would be seropositive for A. phagocytophilum and that mare and foal serum IgG concentrations for A. phagocytophilum would correlate. Additionally, we hypothesized that foal IgG concentrations for A. phagocytophilum acquired by passive immunity would decline by 6 months of age. ANIMALS Twenty-two healthy mare-foal pairs. METHODS This prospective observational study investigated serum IgG concentrations specific for A. phagocytophilum in mares and foals using an immunofluorescent antibody test (IFA). The association between foal titer (as a binary variable) and age in months was assessed using a mixed-effects logistic regression. RESULTS A positive correlation between newborn foal antibody titers and mare titers was identified at both the pre-foaling (τa = 0.38, τb = 0.50, P = .009) and foaling timepoints (τa = 0.36, τb = 0.47, P = .01). In A. phagocytophilum seropositive neonates, it was unlikely that a positive titer would be detected by 3 months of age (OR = 0.002, P = .02, 95% CI: 0.00001-0.38). Three out of 20 foals seroconverted between 3 and 6 months of age. CONCLUSIONS AND CLINICAL IMPORTANCE Transfer of specific passive immunity to A. phagocytophilum occurred in 80% of foals born to seropositive mares and declined by 3 months of age. A. phagocytophilum infection should be considered in foals displaying clinical signs consistent with EGA.
Collapse
Affiliation(s)
- Emily K. Rule
- Department of Clinical Studies, New Bolton CenterUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Ashley G. Boyle
- Department of Clinical Studies, New Bolton CenterUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Darko Stefanovski
- Department of Clinical Studies, New Bolton CenterUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Eman Anis
- Department of Pathobiology, New Bolton CenterUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | | | - Olivia Lorello
- Department of Clinical Studies, New Bolton CenterUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| |
Collapse
|
6
|
Friedrich B, Tietze R, Dümig M, Sover A, Boca MA, Schreiber E, Band J, Janko C, Krappmann S, Alexiou C, Lyer S. Magnetic Removal of Candida albicans Using Salivary Peptide-Functionalized SPIONs. Int J Nanomedicine 2023; 18:3231-3246. [PMID: 37337577 PMCID: PMC10276999 DOI: 10.2147/ijn.s409559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/07/2023] [Indexed: 06/21/2023] Open
Abstract
Purpose Magnetic separation of microbes can be an effective tool for pathogen identification and diagnostic applications to reduce the time needed for sample preparation. After peptide functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with an appropriate interface, they can be used for the separation of sepsis-associated yeasts like Candida albicans. Due to their magnetic properties, the magnetic extraction of the particles in the presence of an external magnetic field ensures the accumulation of the targeted yeast. Materials and Methods In this study, we used SPIONs coated with 3-aminopropyltriethoxysilane (APTES) and functionalized with a peptide originating from GP340 (SPION-APTES-Pep). For the first time, we investigate whether this system is suitable for the separation and enrichment of Candida albicans, we investigated its physicochemical properties and by thermogravimetric analysis we determined the amount of peptide on the SPIONs. Further, the toxicological profile was evaluated by recording cell cycle and DNA degradation. The separation efficiency was investigated using Candida albicans in different experimental settings, and regrowth experiments were carried out to show the use of SPION-APTES-Pep as a sample preparation method for the identification of fungal infections. Conclusion SPION-APTES-Pep can magnetically remove more than 80% of the microorganism and with a high selective host-pathogen distinction Candida albicans from water-based media and about 55% in blood after 8 minutes processing without compromising effects on the cell cycle of human blood cells. Moreover, the separated fungal cells could be regrown without any restrictions.
Collapse
Affiliation(s)
- Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michaela Dümig
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandru Sover
- Faculty of Engineering, Ansbach University of Applied Sciences, Ansbach, Germany
| | - Marius-Andrei Boca
- Faculty of Engineering, Ansbach University of Applied Sciences, Ansbach, Germany
| | - Eveline Schreiber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sven Krappmann
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
7
|
Higgins C, Huber L. Rhodococcus equi: challenges to treat infections and to mitigate antimicrobial resistance. J Equine Vet Sci 2023:104845. [PMID: 37295760 DOI: 10.1016/j.jevs.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Rhodococcus equi, a gram-positive facultative intracellular pathogen and a soil saprophyte, is one of the most common causes of pneumonia in young foals. It poses a threat to the economy in endemic horse-breeding farms and to animal welfare annually. Many farms use thoracic ultrasonographic screening and antimicrobial treatment of subclinically affected foals as a preventive measure against severe R. equi infections. The wide use antimicrobials to treat subclinically affected foals has contributed to the emergence of multidrug resistant (MDR)-R. equi in both clinical isolates from sick foals and in the environment of horse-breeding farms. Alternatives to treat foals infected with MDR-R. equi are scarce and the impact of the emergence of MDR-R. equi in the environment of farms is still unknown. The aim of this review is to discuss the emergence of MDR-R. equi in the United States and the challenges faced to guide antimicrobial use practices. Reduction of antimicrobial use at horse-breeding farms is essential for the preservation of antimicrobial efficacy and, ultimately, human, animal, and environmental health.
Collapse
Affiliation(s)
- Courtney Higgins
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, Alabama, USA 36832.
| | - Laura Huber
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, Alabama, USA 36832.
| |
Collapse
|
8
|
Sanz MG. Rhodococcus equi-What is New This Decade? Vet Clin North Am Equine Pract 2023; 39:1-14. [PMID: 36898784 DOI: 10.1016/j.cveq.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Foals become infected shortly after birth; most develop subclinical pneumonia and 20% to 30% develop clinical pneumonia that requires treatment. It is now well established that the combination of screening programs based on thoracic ultrasonography and treatment of subclinical foals with antimicrobials has led to the development of resistant Rhodococcus equi strains. Thus, targeted treatment programs are needed. Administration of R equi-specific hyperimmune plasma shortly after birth is beneficial as foals develop less severe pneumonia but does not seem to prevent infection. This article provides a summary of clinically relevant research published during this past decade.
Collapse
|
9
|
Pons S, Frapy E, Sereme Y, Gaultier C, Lebreton F, Kropec A, Danilchanka O, Schlemmer L, Schrimpf C, Allain M, Angoulvant F, Lecuyer H, Bonacorsi S, Aschard H, Sokol H, Cywes-Bentley C, Mekalanos JJ, Guillard T, Pier GB, Roux D, Skurnik D. A high-throughput sequencing approach identifies immunotherapeutic targets for bacterial meningitis in neonates. EBioMedicine 2023; 88:104439. [PMID: 36709579 PMCID: PMC9900374 DOI: 10.1016/j.ebiom.2023.104439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Worldwide, Escherichia coli is the leading cause of neonatal Gram-negative bacterial meningitis, but full understanding of the pathogenesis of this disease is not yet achieved. Moreover, to date, no vaccine is available against bacterial neonatal meningitis. METHODS Here, we used Transposon Sequencing of saturated banks of mutants (TnSeq) to evaluate E. coli K1 genetic fitness in murine neonatal meningitis. We identified E. coli K1 genes encoding for factors important for systemic dissemination and brain infection, and focused on products with a likely outer-membrane or extra-cellular localization, as these are potential vaccine candidates. We used in vitro and in vivo models to study the efficacy of active and passive immunization. RESULTS We selected for further study the conserved surface polysaccharide Poly-β-(1-6)-N-Acetyl Glucosamine (PNAG), as a strong candidate for vaccine development. We found that PNAG was a virulence factor in our animal model. We showed that both passive and active immunization successfully prevented and/or treated meningitis caused by E. coli K1 in neonatal mice. We found an excellent opsonophagocytic killing activity of the antibodies to PNAG and in vitro these antibodies were also able to decrease binding, invasion and crossing of E. coli K1 through two blood brain barrier cell lines. Finally, to reinforce the potential of PNAG as a vaccine candidate in bacterial neonatal meningitis, we demonstrated that Group B Streptococcus, the main cause of neonatal meningitis in developed countries, also produced PNAG and that antibodies to PNAG could protect in vitro and in vivo against this major neonatal pathogen. INTERPRETATION Altogether, these results indicate the utility of a high-throughput DNA sequencing method to identify potential immunotherapy targets for a pathogen, including in this study a potential broad-spectrum target for prevention of neonatal bacterial infections. FUNDINGS ANR Seq-N-Vaq, Charles Hood Foundation, Hearst Foundation, and Groupe Pasteur Mutualité.
Collapse
Affiliation(s)
- Stéphanie Pons
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesiology and Critical Care, Sorbonne University, GRC 29, AP-HP, DMU DREAM, Pitié-Salpêtrière, Paris, France
| | - Eric Frapy
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France
| | - Youssouf Sereme
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France
| | - Charlotte Gaultier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - François Lebreton
- Department of Ophthalmology and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02114, USA
| | - Andrea Kropec
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Danilchanka
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura Schlemmer
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Cécile Schrimpf
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Margaux Allain
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - François Angoulvant
- Assistance Publique - Hôpitaux de Paris, Pediatric Emergency Department, Necker-Enfants Malades University Hospital, University of Paris City, Paris, France; INSERM, Centre de Recherche des Cordeliers, UMRS 1138, Sorbonne Université, Université de Paris, Paris, France
| | - Hervé Lecuyer
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France; Department of Clinical Microbiology, Fédération Hospitalo-Universitaire Prématurité (FHU PREMA), Necker-Enfants Malades University Hospital, University of Paris City, Paris, France
| | - Stéphane Bonacorsi
- E IAME, UMR 1137, INSERM, Université de Paris, AP-HP, Paris, France; Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP, Paris, France
| | - Hugues Aschard
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Harry Sokol
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, F-75012 Paris, France; INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France; Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Guillard
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Université de Reims Champagne-Ardenne, SFR CAP-Santé, Inserm UMR-S 1250 P3Cell, Reims, France; Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, CHU, Reims, France
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Université de Paris, INSERM, UMR 1137 IAME, F-75018 Paris, France; AP-HP, Médecine Intensive Réanimation, Hôpital Louis Mourier, F-92700 Colombes, France
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France; Department of Clinical Microbiology, Fédération Hospitalo-Universitaire Prématurité (FHU PREMA), Necker-Enfants Malades University Hospital, University of Paris City, Paris, France.
| |
Collapse
|
10
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
11
|
Kahn SK, Cohen ND, Bordin AI, Coleman MC, Heird JC, Welsh TH. Transfusion of hyperimmune plasma for protecting foals against Rhodococcus equi pneumonia. Equine Vet J 2022; 55:376-388. [PMID: 35834170 DOI: 10.1111/evj.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
The bacterium Rhodococcus equi causes pneumonia in foals that is prevalent at breeding farms worldwide. In the absence of an effective vaccine, transfusion of commercial plasma from donor horses hyperimmunised against R. equi is used by many farms to reduce the incidence of pneumonia among foals at farms where the disease is endemic. The effectiveness of hyperimmune plasma for controlling R. equi pneumonia in foals has varied considerably among reports. The purposes of this narrative review are: 1) to review early studies that provided a foundational basis for the practice of transfusion of hyperimmune plasma that is widespread in the US and in many other countries; 2) to summarise current knowledge of hyperimmune plasma for preventing R. equi pneumonia; 3) to provide an interpretive summary of probable explanations for the variable results among studies evaluating the effectiveness of transfusion of hyperimmune plasma for reducing the incidence of R. equi pneumonia; 4) to review mechanisms by which hyperimmune plasma might mediate protection; and 5) to consider risks of transfusing foals with hyperimmune plasma. Although the weight of evidence supports the practice of transfusing foals with hyperimmune plasma to prevent R. equi pneumonia, many important gaps in our knowledge of this topic remain including the volume/dose of hyperimmune plasma to be transfused, the timing(s) of transfusion, and the mechanism(s) by which hyperimmune plasma mediates protection. Transfusing foals with hyperimmune plasma is expensive, labour-intensive, and carries risks for foals; therefore, alternative approaches for passive and active immunisation to prevent R. equi pneumonia are greatly needed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Susanne K Kahn
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Michelle C Coleman
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - James C Heird
- Department of Animal Science, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Thomas H Welsh
- Department of Animal Science, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
12
|
Cohen ND, Kahn SK, Bordin AI, Gonzales GM, da Silveira BP, Bray JM, Legere RM, Ramirez-Cortez SC. Association of pneumonia with concentrations of virulent Rhodococcus equi in fecal swabs of foals before and after intrabronchial infection with virulent R. equi. J Vet Intern Med 2022; 36:1139-1145. [PMID: 35322902 PMCID: PMC9151490 DOI: 10.1111/jvim.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Background Intragastric administration of virulent Rhodococcus equi protects foals against subsequent experimental intrabronchial (IB) infection, but it is unknown whether R. equi naturally ingested by foals contributes to their susceptibility to pneumonia. Hypothesis Fecal concentration of virulent R. equi before IB infection with R. equi is positively associated with protection from pneumonia in foals. Animals Twenty‐one university‐owned foals. Methods Samples were collected from experimental studies. Five foals were gavaged with live, virulent R. equi (LVRE) at age 2 and 4 days; the remaining 16 foals were not gavaged with LVRE (controls). Fecal swabs were collected from foals at ages 28 days, immediately before IB infection. Foals were monitored for clinical signs of pneumonia, and fecal swabs were collected approximately 2 weeks after IB infection. Swabs were tested by quantitative PCR for concentration of virulent R. equi (ie, copy numbers of the virulence‐associated protein A gene [vapA] per 100 ng fecal DNA). Results Fecal concentrations of virulent R. equi (vapA) before IB infection were significantly (P < .05) lower in control foals (25 copies/100 ng DNA [95% CI, 5 to 118 copies/100 ng DNA) that developed pneumonia (n = 8) than in healthy control foals (n = 8; 280 copies/100 ng DNA; 95% CI, 30 to 2552 copies/100 ng DNA) or those gavaged with LVRE (707 copies/100 ng DNA, 95% CI, 54 to 9207 copies/100 ng DNA). Conclusions and Clinical Importance Greater natural ingestion of LVRE might contribute to protection against pneumonia among foals.
Collapse
Affiliation(s)
- Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Susanne K Kahn
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Giana M Gonzales
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jocelyne M Bray
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Rebecca M Legere
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Sophia C Ramirez-Cortez
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Friedrich B, Lyer S, Janko C, Unterweger H, Brox R, Cunningham S, Dutz S, Taccardi N, Bikker FJ, Hurle K, Sebald H, Lenz M, Spiecker E, Fester L, Hackstein H, Strauß R, Boccaccini AR, Bogdan C, Alexiou C, Tietze R. Scavenging of bacteria or bacterial products by magnetic particles functionalized with a broad-spectrum pathogen recognition receptor motif offers diagnostic and therapeutic applications. Acta Biomater 2022; 141:418-428. [PMID: 34999260 DOI: 10.1016/j.actbio.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
Sepsis is a dysregulated host response of severe bloodstream infections, and given its frequency of occurrence and high mortality rate, therapeutic improvements are imperative. A reliable biomimetic strategy for the targeting and separation of bacterial pathogens in bloodstream infections involves the use of the broad-spectrum binding motif of human GP-340, a pattern-recognition receptor of the scavenger receptor cysteine rich (SRCR) superfamily that is expressed on epithelial surfaces but not found in blood. Here we show that these peptides, when conjugated to superparamagnetic iron oxide nanoparticles (SPIONs), can separate various bacterial endotoxins and intact microbes (E. coli, S. aureus, P. aeruginosa and S. marcescens) with high efficiency, especially at low and thus clinically relevant concentrations. This is accompanied by a subsequent strong depletion in cytokine release (TNF, IL-6, IL-1β, Il-10 and IFN-γ), which could have a direct therapeutic impact since escalating immune responses complicates severe bloodstream infections and sepsis courses. SPIONs are coated with aminoalkylsilane and capture peptides are orthogonally ligated to this surface. The particles behave fully cyto- and hemocompatible and do not interfere with host structures. Thus, this approach additionally aims to dramatically reduce diagnostic times for patients with suspected bloodstream infections and accelerate targeted antibiotic therapy. STATEMENT OF SIGNIFICANCE: Sepsis is often associated with excessive release of cytokines. This aspect and slow diagnostic procedures are the major therapeutic obstacles. The use of magnetic particles conjugated with small peptides derived from the binding motif of a broad-spectrum mucosal pathogen recognition protein GP-340 provides a highly efficient scavenging platform. These peptides are not found in blood and therefore are not subject to inhibitory mechanisms like in other concepts (mannose binding lectine, aptamers, antibodies). In this work, data are shown on the broad bacterial binding spectrum, highly efficient toxin depletion, which directly reduces the release of cytokines. Host cells are not affected and antibiotics not adsorbed. The particle bound microbes can be recultured without restriction and thus be used directly for diagnostics.
Collapse
Affiliation(s)
- Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Regine Brox
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Germany
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), the Netherlands
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Heidi Sebald
- Immunologie und Hygiene, Mikrobiologisches Institut - Klinische Mikrobiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Malte Lenz
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Interdisciplinary Center for Nanostructure Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Interdisciplinary Center for Nanostructure Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lars Fester
- Institute of Anatomy and Cell Biology Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Richard Strauß
- Department of Medicine 1, Universitätsklinikum Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Christian Bogdan
- Immunologie und Hygiene, Mikrobiologisches Institut - Klinische Mikrobiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany.
| |
Collapse
|
14
|
Bordin AI, Huber L, Sanz M, Cohen N. Rhodococcus equi Foal Pneumonia: Update on Epidemiology, Immunity, Treatment, and Prevention. Equine Vet J 2022; 54:481-494. [PMID: 35188690 DOI: 10.1111/evj.13567] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Pneumonia in foals caused by the bacterium Rhodococcus equi has a worldwide distribution and is a common cause of disease and death for foals. The purpose of this narrative review is to summarise recent developments pertaining to the epidemiology, immune responses, treatment, and prevention of rhodococcal pneumonia of foals. Screening tests have been used to implement earlier detection and treatment of foals with presumed subclinical R. equi pneumonia to reduce mortality and severity of disease. Unfortunately, this practice has been linked to the emergence of antimicrobial resistant R. equi in North America. Correlates of protective immunity for R. equi infections of foals remain elusive, but recent evidence indicates that innate immune responses are important both for mediating killing and orchestrating adaptive immune responses. A macrolide antimicrobial in combination with rifampin remains the recommended treatment for foals with R. equi pneumonia. Great need exists to identify which antimicrobial combination is most effective for treating foals with R. equi pneumonia and to limit emergence of antimicrobial-resistant strains. In the absence of an effective vaccine against R. equi, passive immunisation remains the only commercially-available method for effectively reducing the incidence of R. equi pneumonia. Because passive immunisation is expensive, labour-intensive, and carries risks for foals, great need exists to develop alternative approaches for passive and active immunisation.
Collapse
Affiliation(s)
- Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4475, USA
| | - Laura Huber
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, 36849, USA
| | - Macarena Sanz
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-6610, USA
| | - Noah Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4475, USA
| |
Collapse
|
15
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Baldinelli F, Broglia A, Kohnle L, Alvarez J. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial-resistant Rhodococcus equi in horses. EFSA J 2022; 20:e07081. [PMID: 35136423 PMCID: PMC8808660 DOI: 10.2903/j.efsa.2022.7081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rhodococcus equi (R. equi) was identified among the most relevant antimicrobial-resistant (AMR) bacteria in the EU for horses in a previous scientific opinion. Thus, it has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9 and Article 8 for listing animal species related to the bacterium. The assessment has been performed following a methodology previously published. The outcome is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with uncertain outcome. According to the assessment here performed, it is uncertain whether AMR R. equi can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (10-66% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that the bacterium does not meet the criteria in Sections 1 and 2 (Categories A and B; 5-10% and 10-33% probability of meeting the criteria, respectively), and the AHAW Panel is uncertain whether it meets the criteria in Sections 3, 4 and 5 (Categories C, D and E; 10-66% probability of meeting the criteria in all three categories). The animal species to be listed for AMR R. equi according to Article 8 criteria are mainly horses and other species belonging to the Perissodactyla and Artiodactyla orders.
Collapse
|
16
|
Precise protein conjugation technology for the construction of homogenous glycovaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:69-75. [PMID: 34895642 DOI: 10.1016/j.ddtec.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
The introduction of vaccines for the treatment and prevention of bacterial or viral diseases in the early 19th century marked a crucial turning point in medical history. Since then, extensive immunization campaigns have eradicated smallpox and drastically reduced the number of diphtheria, tetanus, pertussis and measles cases worldwide. Although a broad selection of vaccines is available, there remains a need to develop additional vaccine candidates against a range of dangerous infectious diseases, preferably based on precise syntheses that lead to homogenous formulations. Different strategies for the construction of this type of vaccine candidates are being pursued. Glycoconjugate vaccines are successful in the fight against bacterial and viral infectious diseases. However, their exact mechanism of action remains largely unknown and the large-scale production of chemically defined constructs is challenging. In particular, the conjugation of the carbohydrate antigen to the protein carrier has proved to be crucial for the properties of these vaccines. This review highlights some of the latest findings and developments in the construction of glycoconjugate vaccines by means of site-specific chemical reactions.
Collapse
|
17
|
Taus NS, Cywes-Bentley C, Johnson WC, Pier GB, Fry LM, Mousel MR, Ueti MW. Immunization against a Conserved Surface Polysaccharide Stimulates Bovine Antibodies with Opsonic Killing Activity but Does Not Protect against Babesia bovis Challenge. Pathogens 2021; 10:pathogens10121598. [PMID: 34959553 PMCID: PMC8709247 DOI: 10.3390/pathogens10121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Arthropod-borne apicomplexan pathogens remain a great concern and challenge for disease control in animals and humans. In order to prevent Babesia infection, the discovery of antigens that elicit protective immunity is essential to establish approaches to stop disease dissemination. In this study, we determined that poly-N-acetylglucosamine (PNAG) is conserved among tick-borne pathogens including B. bovis, B. bigemina, B. divergens, B. microti, and Babesia WA1. Calves immunized with synthetic ß-(1→6)-linked glucosamine oligosaccharides conjugated to tetanus toxoid (5GlcNH2-TT) developed antibodies with in vitro opsonophagocytic activity against Staphylococcus aureus. Sera from immunized calves reacted to B. bovis. These results suggest strong immune responses against PNAG. However, 5GlcNH2-TT-immunized bovines challenged with B. bovis developed acute babesiosis with the cytoadhesion of infected erythrocytes to brain capillary vessels. While this antigen elicited antibodies that did not prevent disease, we are continuing to explore other antigens that may mitigate these vector-borne diseases for the cattle industry.
Collapse
Affiliation(s)
- Naomi S. Taus
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164, USA; (W.C.J.); (L.M.F.); (M.R.M.); (M.W.U.)
- Correspondence: ; Tel.: +(509)-335-6318; Fax: +(509)-335-8328
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.C.-B.); (G.B.P.)
| | - Wendell C. Johnson
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164, USA; (W.C.J.); (L.M.F.); (M.R.M.); (M.W.U.)
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.C.-B.); (G.B.P.)
| | - Lindsay M. Fry
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164, USA; (W.C.J.); (L.M.F.); (M.R.M.); (M.W.U.)
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Pullman, WA 99164, USA
| | - Michelle R. Mousel
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164, USA; (W.C.J.); (L.M.F.); (M.R.M.); (M.W.U.)
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Massaro W. Ueti
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164, USA; (W.C.J.); (L.M.F.); (M.R.M.); (M.W.U.)
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Pullman, WA 99164, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
18
|
Kahn SK, Cywes-Bentley C, Blodgett GP, Canaday NM, Turner-Garcia CE, Flores-Ahlschwede P, Metcalfe LL, Nevill M, Vinacur M, Sutter PJ, Meyer SC, Bordin AI, Pier GB, Cohen ND. Randomized, controlled trial comparing Rhodococcus equi and poly-N-acetyl glucosamine hyperimmune plasma to prevent R equi pneumonia in foals. J Vet Intern Med 2021; 35:2912-2919. [PMID: 34738651 PMCID: PMC8692225 DOI: 10.1111/jvim.16294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/16/2023] Open
Abstract
Background Hyperimmune plasma raised against β‐1→6‐poly‐N‐acetyl glucosamine (PNAG HIP) mediates more opsonophagocytic killing of Rhodococcus equi (R equi) than does R equi hyperimmune plasma (RE HIP) in vitro. The relative efficacy of PNAG HIP and RE HIP to protect foals against R equi pneumonia, however, has not been evaluated. Hypothesis Transfusion with PNAG HIP will be superior to RE HIP in foals for protection against R equi pneumonia in a randomized, controlled, blinded clinical trial. Animals Four hundred sixty Quarter Horse and Thoroughbred foals at 5 large breeding farms in the United States. Methods A randomized, controlled, blinded clinical trial was conducted in which foals were transfused within 24 hours after birth with 2 L of either RE HIP or PNAG HIP. Study foals were monitored through weaning for clinical signs of pneumonia by farm veterinarians. The primary outcome was the proportion of foals that developed pneumonia after receiving each type of plasma. Results The proportion of foals that developed pneumonia was the same between foals transfused with RE HIP (14%; 32/228) and PNAG HIP (14%; 30/215). Conclusions and Clinical Importance Results indicate that PNAG HIP was not superior to a commercially available, United States Department of Agriculture‐licensed RE HIP product for protecting foals against R equi pneumonia under field conditions.
Collapse
Affiliation(s)
- Susanne K Kahn
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Colette Cywes-Bentley
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | - Mariana Vinacur
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Gerald B Pier
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
19
|
Cohen ND, Kahn SK, Cywes-Bentley C, Ramirez-Cortez S, Schuckert AE, Vinacur M, Bordin AI, Pier GB. Serum Antibody Activity against Poly- N-Acetyl Glucosamine (PNAG), but Not PNAG Vaccination Status, Is Associated with Protecting Newborn Foals against Intrabronchial Infection with Rhodococcus equi. Microbiol Spectr 2021; 9:e0063821. [PMID: 34319137 PMCID: PMC8552712 DOI: 10.1128/spectrum.00638-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Rhodococcus equi is a prevalent cause of pneumonia in foals worldwide. Our laboratory has demonstrated that vaccination against the surface polysaccharide β-1→6-poly-N-acetylglucosamine (PNAG) protects foals against intrabronchial infection with R. equi when challenged at age 28 days. However, it is important that the efficacy of this vaccine be evaluated in foals when they are infected at an earlier age, because foals are naturally exposed to virulent R. equi in their environment from birth and because susceptibility is inversely related to age in foals. Using a randomized, blind experimental design, we evaluated whether maternal vaccination against PNAG protected foals against intrabronchial infection with R. equi 6 days after birth. Vaccination of mares per se did not significantly reduce the incidence of pneumonia in foals; however, activities of antibody against PNAG or for deposition of complement component 1q onto PNAG was significantly (P < 0.05) higher among foals that did not develop pneumonia than among foals that developed pneumonia. Results differed between years, with evidence of protection during 2018 but not 2020. In the absence of a licensed vaccine, further evaluation of the PNAG vaccine is warranted, including efforts to optimize the formulation and dose of this vaccine. IMPORTANCE Pneumonia caused by R. equi is an important cause of disease and death in foals worldwide for which a licensed vaccine is lacking. Foals are exposed to R. equi in their environment from birth, and they appear to be infected soon after parturition at an age when innate and adaptive immune responses are diminished. Results of this study indicate that higher activity of antibodies recognizing PNAG was associated with protection against R. equi pneumonia, indicating the need for further optimization of maternal vaccination against PNAG to protect foals against R. equi pneumonia.
Collapse
Affiliation(s)
- Noah D. Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Susanne K. Kahn
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Colette Cywes-Bentley
- Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sophia Ramirez-Cortez
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Amanda E. Schuckert
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mariana Vinacur
- Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Angela I. Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Gerald B. Pier
- Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Vail KJ, da Silveira BP, Bell SL, Cohen ND, Bordin AI, Patrick KL, Watson RO. The opportunistic intracellular bacterial pathogen Rhodococcus equi elicits type I interferon by engaging cytosolic DNA sensing in macrophages. PLoS Pathog 2021; 17:e1009888. [PMID: 34473814 PMCID: PMC8443056 DOI: 10.1371/journal.ppat.1009888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/15/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Rhodococcus equi is a major cause of foal pneumonia and an opportunistic pathogen in immunocompromised humans. While alveolar macrophages constitute the primary replicative niche for R. equi, little is known about how intracellular R. equi is sensed by macrophages. Here, we discovered that in addition to previously characterized pro-inflammatory cytokines (e.g., Tnfa, Il6, Il1b), macrophages infected with R. equi induce a robust type I IFN response, including Ifnb and interferon-stimulated genes (ISGs), similar to the evolutionarily related pathogen, Mycobacterium tuberculosis. Follow up studies using a combination of mammalian and bacterial genetics demonstrated that induction of this type I IFN expression program is largely dependent on the cGAS/STING/TBK1 axis of the cytosolic DNA sensing pathway, suggesting that R. equi perturbs the phagosomal membrane and causes DNA release into the cytosol following phagocytosis. Consistent with this, we found that a population of ~12% of R. equi phagosomes recruits the galectin-3,-8 and -9 danger receptors. Interestingly, neither phagosomal damage nor induction of type I IFN require the R. equi’s virulence-associated plasmid. Importantly, R. equi infection of both mice and foals stimulates ISG expression, in organs (mice) and circulating monocytes (foals). By demonstrating that R. equi activates cytosolic DNA sensing in macrophages and elicits type I IFN responses in animal models, our work provides novel insights into how R. equi engages the innate immune system and furthers our understanding how this zoonotic pathogen causes inflammation and disease. Rhodococcus equi is a facultative intracellular bacterial pathogen of horses and other domestic animals, as well as an opportunistic pathogen of humans. In human patients, Rhodococcus pneumonia bears some pathological similarities to pulmonary tuberculosis, and poses a risk for misdiagnosis. In horses, R. equi infection has a major detrimental impact on the equine breeding industry due to a lack of an efficacious vaccine and its ubiquitous distribution in soil. Given the prevalence of subclinical infection and high false positive rate in current screening methods, there exists a critical need to identify factors contributing to host susceptibility. Here, we use a combination of bacterial genetics and animal models to investigate innate immune responses during R. equi infection. We found that R. equi modulates host immune sensing to elicit a type I interferon response in a manner resembling that of M. tuberculosis. We also found that the danger sensors galectin-3, -8, and -9 are recruited to a population of R. equi-containing vacuoles, independent of expression of VapA. Our research identifies innate immune sensing events and immune transcriptional signatures that may lead to biomarkers for clinical disease, more accurate screening methods, and insight into susceptibility to infection.
Collapse
Affiliation(s)
- Krystal J. Vail
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathology, Texas A&M University, College Station, Texas, United States of America
| | - Bibiana Petri da Silveira
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Samantha L. Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Angela I. Bordin
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kristin L. Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Robert O. Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kahn SK, Cywes-Bentley C, Blodgett GP, Canaday NM, Turner-Garcia CE, Vinacur M, Cortez-Ramirez SC, Sutter PJ, Meyer SC, Bordin AI, Vlock DR, Pier GB, Cohen ND. Antibody activities in hyperimmune plasma against the Rhodococcus equi virulence -associated protein A or poly-N-acetyl glucosamine are associated with protection of foals against rhodococcal pneumonia. PLoS One 2021; 16:e0250133. [PMID: 34437551 PMCID: PMC8389416 DOI: 10.1371/journal.pone.0250133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
The efficacy of transfusion with hyperimmune plasma (HIP) for preventing pneumonia caused by Rhodococcus equi remains ill-defined. Quarter Horse foals at 2 large breeding farms were randomly assigned to be transfused with 2 L of HIP from adult donors hyperimmunized either with R. equi (RE HIP) or a conjugate vaccine eliciting antibody to the surface polysaccharide β-1→6-poly-N-acetyl glucosamine (PNAG HIP) within 24 hours of birth. Antibody activities against PNAG and the rhodococcal virulence-associated protein A (VapA), and to deposition of complement component 1q (C՛1q) onto PNAG were determined by ELISA, and then associated with either clinical pneumonia at Farm A (n = 119) or subclinical pneumonia at Farm B (n = 114). Data were analyzed using multivariable logistic regression. Among RE HIP-transfused foals, the odds of pneumonia were approximately 6-fold higher (P = 0.0005) among foals with VapA antibody activity ≤ the population median. Among PNAG HIP-transfused foals, the odds of pneumonia were approximately 3-fold (P = 0.0347) and 11-fold (P = 0.0034) higher for foals with antibody activities ≤ the population median for PNAG or C՛1q deposition, respectively. Results indicated that levels of activity of antibodies against R. equi antigens are correlates of protection against both subclinical and clinical R. equi pneumonia in field settings. Among PNAG HIP-transfused foals, activity of antibodies with C՛1q deposition (an indicator of functional antibodies) were a stronger predictor of protection than was PNAG antibody activity alone. Collectively, these findings suggest that the amount and activity of antibodies in HIP (i.e., plasma volume and/or antibody activity) is positively associated with protection against R. equi pneumonia in foals.
Collapse
MESH Headings
- Acetylglucosamine/immunology
- Actinomycetales Infections/immunology
- Actinomycetales Infections/microbiology
- Actinomycetales Infections/prevention & control
- Actinomycetales Infections/veterinary
- Animals
- Animals, Newborn/immunology
- Animals, Newborn/microbiology
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/therapeutic use
- Bacterial Proteins/immunology
- Female
- Horse Diseases/immunology
- Horse Diseases/microbiology
- Horse Diseases/prevention & control
- Horses/immunology
- Horses/microbiology
- Immunization, Passive/methods
- Immunization, Passive/veterinary
- Male
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/microbiology
- Pneumonia, Bacterial/prevention & control
- Pneumonia, Bacterial/veterinary
- Rhodococcus equi/immunology
Collapse
Affiliation(s)
- Susanne K. Kahn
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Colette Cywes-Bentley
- Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | | | | | | | - Mariana Vinacur
- Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Sophia C. Cortez-Ramirez
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | | | | | - Angela I. Bordin
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | | | - Gerald B. Pier
- Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
22
|
Host-directed therapy in foals can enhance functional innate immunity and reduce severity of Rhodococcus equi pneumonia. Sci Rep 2021; 11:2483. [PMID: 33510265 PMCID: PMC7844249 DOI: 10.1038/s41598-021-82049-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/13/2021] [Indexed: 11/08/2022] Open
Abstract
Pneumonia caused by the intracellular bacterium Rhodococcus equi is an important cause of disease and death in immunocompromised hosts, especially foals. Antibiotics are the standard of care for treating R. equi pneumonia in foals, and adjunctive therapies are needed. We tested whether nebulization with TLR agonists (PUL-042) in foals would improve innate immunity and reduce the severity and duration of pneumonia following R. equi infection. Neonatal foals (n = 48) were nebulized with either PUL-042 or vehicle, and their lung cells infected ex vivo. PUL-042 increased inflammatory cytokines in BAL fluid and alveolar macrophages after ex vivo infection with R. equi. Then, the in vivo effects of PUL-042 on clinical signs of pneumonia were examined in 22 additional foals after intrabronchial challenge with R. equi. Foals infected and nebulized with PUL-042 or vehicle alone had a shorter duration of clinical signs of pneumonia and smaller pulmonary lesions when compared to non-nebulized foals. Our results demonstrate that host-directed therapy can enhance neonatal immune responses against respiratory pathogens and reduce the duration and severity of R. equi pneumonia.
Collapse
|
23
|
Flores‐Ahlschwede P, Kahn SK, Ahlschwede S, Bordin AI, Cohen ND. Transfusion with 2 litres of hyperimmune plasma is superior to transfusion of 1 litre for protecting foals against pneumonia attributed to
Rhodococcus equi. EQUINE VET EDUC 2021. [DOI: 10.1111/eve.13443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - S. K. Kahn
- Equine Infectious Disease Laboratory Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences Texas A&M University College Station Texas USA
| | - S. Ahlschwede
- Rood & Riddle Equine Hospital in Saratoga Saratoga Springs New YorkUSA
| | - A. I. Bordin
- Equine Infectious Disease Laboratory Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences Texas A&M University College Station Texas USA
| | - N. D. Cohen
- Equine Infectious Disease Laboratory Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences Texas A&M University College Station Texas USA
| |
Collapse
|
24
|
Harvey AB, Bordin AI, Rocha JN, Bray JM, Cohen ND. Opsonization but not pretreatment of equine macrophages with hyperimmune plasma nonspecifically enhances phagocytosis and intracellular killing of Rhodococcus equi. J Vet Intern Med 2020; 35:590-596. [PMID: 33326149 PMCID: PMC7848299 DOI: 10.1111/jvim.16002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/26/2022] Open
Abstract
Background Evidence regarding the efficacy of equine hyperimmune plasma to prevent pneumonia in foals caused by Rhodococcus equi is limited and conflicting. Hypothesis Opsonization with R. equi‐specific hyperimmune plasma (HIP) will significantly increase phagocytosis and decrease intracellular replication of R. equi by alveolar macrophages (AMs) compared to normal plasma (NP). Animals Fifteen adult Quarter Horses were used to collect bronchoalveolar lavage cells. Methods In the first experiment, AMs from 9 horses were pretreated (incubated) with either HIP, NP, or media only (control) and then infected with nonopsonized R. equi. In a second experiment, AMs from 6 horses were infected with R. equi either opsonized with HIP or opsonized with NP. For both experiments, AMs were lysed at 0 and 48 hours and the number of viable R. equi quantified by culture were compared among groups using linear mixed‐effects modeling with significance set at P < .05. Results Opsonization with either HIP or NP increased phagocytosis by AMs (P < .0001) and decreased intracellular survival of organisms in AMs (P < .0001). Pretreating AMs with either HIP or NP without opsonizing R. equi had no effects on phagocytosis or intracellular replication. Conclusions and Clinical Importance Opsonizing R. equi with either NP or HIP decreases intracellular survival of organisms in AMs, but the effect does not appear to be enhanced by using HIP. Mechanisms other than effects on AMs must explain any clinical benefits of using HIP over NP to decrease the incidence of R. equi pneumonia in foals.
Collapse
Affiliation(s)
- Aja B Harvey
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Angela I Bordin
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Joana N Rocha
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jocelyn M Bray
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
25
|
The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J 2020. [PMID: 33240473 DOI: 10.1016/jcsbj202010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Exopolysaccharide is a key part of the extracellular matrix that contributes to important mechanisms of bacterial pathogenicity, most notably biofilm formation and immune evasion. In the human pathogens Staphylococcus aureus and S. epidermidis, as well as in many other staphylococcal species, the only exopolysaccharide is polysaccharide intercellular adhesin (PIA), a cationic, partially deacetylated homopolymer of N-acetylglucosamine, whose biosynthetic machinery is encoded in the ica locus. PIA production is strongly dependent on environmental conditions and controlled by many regulatory systems. PIA contributes significantly to staphylococcal biofilm formation and immune evasion mechanisms, such as resistance to antimicrobial peptides and ingestion and killing by phagocytes, and presence of the ica genes is associated with infectivity. Due to its role in pathogenesis, PIA has raised considerable interest as a potential vaccine component or target.
Collapse
|
26
|
Nguyen HTT, Nguyen TH, Otto M. The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J 2020; 18:3324-3334. [PMID: 33240473 PMCID: PMC7674160 DOI: 10.1016/j.csbj.2020.10.027] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022] Open
Abstract
PIA is a key extracellular matrix component in staphylococci and other bacteria. PIA is a cationic, partially deacetylated N-acetylglucosamine polymer. PIA has a major role in bacterial biofilms and biofilm-associated infection.
Exopolysaccharide is a key part of the extracellular matrix that contributes to important mechanisms of bacterial pathogenicity, most notably biofilm formation and immune evasion. In the human pathogens Staphylococcus aureus and S. epidermidis, as well as in many other staphylococcal species, the only exopolysaccharide is polysaccharide intercellular adhesin (PIA), a cationic, partially deacetylated homopolymer of N-acetylglucosamine, whose biosynthetic machinery is encoded in the ica locus. PIA production is strongly dependent on environmental conditions and controlled by many regulatory systems. PIA contributes significantly to staphylococcal biofilm formation and immune evasion mechanisms, such as resistance to antimicrobial peptides and ingestion and killing by phagocytes, and presence of the ica genes is associated with infectivity. Due to its role in pathogenesis, PIA has raised considerable interest as a potential vaccine component or target.
Collapse
Affiliation(s)
- Hoai T T Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA.,School of Biotechnology, International University, Vietnam National University of Ho Chi Minh City, Khu Pho 6, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Thuan H Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA
| |
Collapse
|
27
|
Gening ML, Pier GB, Nifantiev NE. Broadly protective semi-synthetic glycoconjugate vaccine against pathogens capable of producing poly-β-(1→6)-N-acetyl-d-glucosamine exopolysaccharide. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:13-21. [PMID: 33388124 DOI: 10.1016/j.ddtec.2020.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/15/2022]
Abstract
Poly-β-(1→6)-N-acetylglucosamine (PNAG) was first discovered as a major component of biofilms formed by Staphylococcus aureus and some other staphylococci but later this exopolysaccharide was also found to be produced by pathogens of various nature. This common antigen is considered as a promising target for construction of a broadly protective vaccine. Extensive studies of PNAG, its de-N-acetylated derivative (dPNAG, containing around 15% of residual N-acetates) and their conjugates with Tetanus Toxoid (TT) revealed the crucial role of de-N-acetylated glucosamine units for the induction of protective immunity. Conjugates of synthetic penta- (5GlcNH2) and nona-β-(1→6)-d-glucosamines (9GlcNH2) were tested in vitro and in different animal models and proved to be effective in passive and active protection against different microbial pathogens. Presently conjugate 5GlcNH2-TT is being produced under GMP conditions and undergoes safety and effectiveness evaluation in humans and economically important animals. Current review summarizes all stages of this long-termed study.
Collapse
Affiliation(s)
- Marina L Gening
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA.
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
28
|
Rakowska A, Cywinska A, Witkowski L. Current Trends in Understanding and Managing Equine Rhodococcosis. Animals (Basel) 2020; 10:E1910. [PMID: 33081047 PMCID: PMC7603097 DOI: 10.3390/ani10101910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023] Open
Abstract
The aim of this review was to summarize studies on equine rhodococcosis over the last decade. For many years Rhodococcus equi has remained one of the major health challenges in the equine breeding industry worldwide. Recently, many novel approaches and ideas have been described and some of them were initially implemented into the clinical practice. This study reviews a variety of new information about neonatal susceptibility, clinical appearance, considered and applied diagnostic procedures and treatment alternatives, factors limiting accurate prognosis, ideas regarding environmental management and prophylaxis considerations. Although multiple research were conducted, the main problems such as high morbidity and mortality, a lack of reliable prevention strategies and treatment limitations are still unresolved and require further scientific effort.
Collapse
Affiliation(s)
- Alicja Rakowska
- Department of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-787 Warszawa, Poland;
| | - Anna Cywinska
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 1, 02-787 Warszawa, Poland;
| | - Lucjan Witkowski
- Department of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-787 Warszawa, Poland;
| |
Collapse
|
29
|
Cohen ND, Cywes-Bentley C, Kahn SM, Bordin AI, Bray JM, Wehmeyer SG, Pier GB. Vaccination of yearling horses against poly-N-acetyl glucosamine fails to protect against infection with Streptococcus equi subspecies equi. PLoS One 2020; 15:e0240479. [PMID: 33057397 PMCID: PMC7561144 DOI: 10.1371/journal.pone.0240479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/27/2020] [Indexed: 12/04/2022] Open
Abstract
Strangles is a common disease of horses with worldwide distribution caused by the bacterium Streptococcus equi subspecies equi (SEE). Although vaccines against strangles are available commercially, these products have limitations in safety and efficacy. The microbial surface antigen β 1→6 poly-N-acetylglucosamine (PNAG) is expressed by SEE. Here we show that intramuscular (IM) injection alone or a combination of IM plus intranasal (IN) immunization generated antibodies to PNAG that functioned to deposit complement and mediate opsonophagocytic killing of SEE ex vivo. However, immunization strategies targeting PNAG either by either IM only injection or a combination of IM and IN immunizations failed to protect yearling horses against infection following contact with infected horses in an experimental setting. We speculate that a protective vaccine against strangles will require additional components, such as those targeting SEE enzymes that degrade or inactivate equine IgG.
Collapse
Affiliation(s)
- Noah D. Cohen
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
- * E-mail: (NDC); (GBP)
| | - Colette Cywes-Bentley
- Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, United States of America
| | - Susanne M. Kahn
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Angela I. Bordin
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Jocelyne M. Bray
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - S. Garrett Wehmeyer
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Gerald B. Pier
- Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, United States of America
- * E-mail: (NDC); (GBP)
| |
Collapse
|
30
|
Karagianni AE, Lisowski ZM, Hume DA, Scott Pirie R. The equine mononuclear phagocyte system: The relevance of the horse as a model for understanding human innate immunity. Equine Vet J 2020; 53:231-249. [PMID: 32881079 DOI: 10.1111/evj.13341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/07/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
The mononuclear phagocyte system (MPS) is a family of cells of related function that includes bone marrow progenitors, blood monocytes and resident tissue macrophages. Macrophages are effector cells in both innate and acquired immunity. They are a major resident cell population in every organ and their numbers increase in response to proinflammatory stimuli. Their function is highly regulated by a wide range of agonists, including lymphokines, cytokines and products of microorganisms. Macrophage biology has been studied most extensively in mice, yet direct comparisons of rodent and human macrophages have revealed many functional differences. In this review, we provide an overview of the equine MPS, describing the variation in the function and phenotype of macrophages depending on their location and the similarities and differences between the rodent, human and equine immune response. We discuss the use of the horse as a large animal model in which to study macrophage biology and pathological processes shared with humans. Finally, following the recent update to the horse genome, facilitating further comparative analysis of regulated gene expression between the species, we highlight the importance of future transcriptomic macrophage studies in the horse, the findings of which may also be applicable to human as well as veterinary research.
Collapse
Affiliation(s)
- Anna E Karagianni
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Zofia M Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - David A Hume
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, QLD, Australia
| | - R Scott Pirie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
31
|
Azad AK, Lloyd C, Sadee W, Schlesinger LS. Challenges of Immune Response Diversity in the Human Population Concerning New Tuberculosis Diagnostics, Therapies, and Vaccines. Front Cell Infect Microbiol 2020; 10:139. [PMID: 32322562 PMCID: PMC7156588 DOI: 10.3389/fcimb.2020.00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Universal approaches to the prevention and treatment of human diseases fail to take into account profound immune diversity resulting from genetic variations across populations. Personalized or precision medicine takes into account individual lifestyle, environment, and biology (genetics and immune status) and is being adopted in several disease intervention strategies such as cancer and heart disease. However, its application in infectious diseases, particularly global diseases such as tuberculosis (TB), is far more complex and in a state of infancy. Here, we discuss the impact of human genetic variations on immune responses and how they relate to failures seen in current TB diagnostic, therapy, and vaccine approaches across populations. We offer our perspective on the challenges and potential for more refined approaches going forward.
Collapse
Affiliation(s)
- Abul K Azad
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Christopher Lloyd
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Wolfgang Sadee
- Department of Cancer Biology and Genetics, Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Larry S Schlesinger
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
32
|
Mercer MA, Davis JL. Clinical insights: Antimicrobials in an age of resistance. Equine Vet J 2020; 51:711-713. [PMID: 31584724 DOI: 10.1111/evj.13151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M A Mercer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - J L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
33
|
Kahn SK, Blodgett GP, Canaday NM, Bevevino KE, Rocha JN, Bordin AI, Cohen ND. Transfusion With 2 L of Hyperimmune Plasma is Superior to Transfusion of 1 L or Less for Protecting Foals Against Subclinical Pneumonia Attributed to Rhodococcus equi. J Equine Vet Sci 2019; 79:54-58. [PMID: 31405501 DOI: 10.1016/j.jevs.2019.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023]
Abstract
Transfusing foals with Rhodococcus equi hyperimmune plasma (REHIP) is a standard practice at many horse-breeding farms to help prevent R. equi pneumonia. At many large breeding farms, pneumonia is most commonly recognized as subclinical based on thoracic ultrasonography findings. The efficacy of REHIP transfusion and the impact of the volume of plasma transfused for reducing the cumulative incidence of subclinical R. equi pneumonia are unknown. A retrospective cohort study was conducted among foals born and residing through weaning at a large breeding farm. Foals were transfused with either 0 L (n = 2 foals), 1 L (n = 85 foals), or 2 L (n = 62 foals) of REHIP within 36 hours of birth. Volume transfused was principally based on intended use of the foals. All foals at the ranch were routinely screened using thoracic ultrasonography at 5, 7, and 9 weeks of age to detect subclinical pneumonia attributed to R. equi based on farm history. The proportion of the foals receiving < 1 L REHIP that developed subclinical pneumonia (32%; 26/82) was significantly (P = .0068; chi-squared test) greater than that among foals transfused with 2 L of REHIP (12%; 8/68). Despite the important limitations of this observational study, it provides evidence supporting the need for well-designed clinical trials to evaluate the impact of the use and dose of REHIP for preventing subclinical pneumonia. Reducing the incidence of subclinical pneumonia is important because reducing antibiotic treatment of subclinical cases will decrease selection pressure for antimicrobial resistance in R. equi.
Collapse
Affiliation(s)
- Susanne K Kahn
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | | | | | - Kari E Bevevino
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - Joana N Rocha
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX.
| |
Collapse
|
34
|
Folmar CN, Cywes-Bentley C, Bordin AI, Rocha JN, Bray JM, Kahn SK, Schuckert AE, Pier GB, Cohen ND. In vitro evaluation of complement deposition and opsonophagocytic killing of Rhodococcus equi mediated by poly-N-acetyl glucosamine hyperimmune plasma compared to commercial plasma products. J Vet Intern Med 2019; 33:1493-1499. [PMID: 31034109 PMCID: PMC6524092 DOI: 10.1111/jvim.15511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/17/2019] [Indexed: 11/29/2022] Open
Abstract
Background The bacterium Rhodococcus equi can cause severe pneumonia in foals. The absence of a licensed vaccine and limited effectiveness of commercial R. equi hyperimmune plasma (RE‐HIP) create a great need for improved prevention of this disease. Hypothesis Plasma hyperimmune to the capsular polysaccharide poly‐N‐acetyl glucosamine (PNAG) would be significantly more effective than RE‐HIP at mediating complement deposition and opsonophagocytic killing (OPK) of R. equi. Animals Venipuncture was performed on 9 Quarter Horses. Methods The ability of the following plasma sources to mediate complement component 1 (C1) deposition onto either PNAG or R. equi was determined by ELISA: (1) PNAG hyperimmune plasma (PNAG‐HIP), (2) RE‐HIP, and (3) standard non‐hyperimmune commercial plasma (SP). For OPK, each plasma type was combined with R. equi, equine complement, and neutrophils isolated from horses (n = 9); after 4 hours, the number of R. equi in each well was determined by quantitative culture. Data were analyzed using linear mixed‐effects regression with significance set at P < .05. Results The PNAG‐HIP and RE‐HIP were able to deposit significantly (P < .05) more complement onto their respective targets than the other plasmas. The mean proportional survival of R. equi opsonized with PNAG‐HIP was significantly (P < .05) less (14.7%) than that for SP (51.1%) or RE‐HIP (42.2%). Conclusions and Clinical Importance Plasma hyperimmune to PNAG is superior to RE‐HIP for opsonizing and killing R. equi in vitro. Comparison of these 2 plasmas in field trials is warranted because of the reported incomplete effectiveness of RE‐HIP.
Collapse
Affiliation(s)
- Chelsea N Folmar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Colette Cywes-Bentley
- Department of Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Angela I Bordin
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Joana N Rocha
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jocelyne M Bray
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Susanne K Kahn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Amanda E Schuckert
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Gerald B Pier
- Department of Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
35
|
Rocha JN, Dangott LJ, Mwangi W, Alaniz RC, Bordin AI, Cywes-Bentley C, Lawhon SD, Pillai SD, Bray JM, Pier GB, Cohen ND. PNAG-specific equine IgG 1 mediates significantly greater opsonization and killing of Prescottella equi (formerly Rhodococcus equi) than does IgG 4/7. Vaccine 2019; 37:1142-1150. [PMID: 30691984 PMCID: PMC8314964 DOI: 10.1016/j.vaccine.2019.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/04/2023]
Abstract
Prescottella equi (formerly Rhodococcus equi) is a facultative intracellular bacterial pathogen that causes severe pneumonia in foals 1-6 months of age, whereas adult horses are highly resistant to infection. We have shown that vaccinating pregnant mares against the conserved surface polysaccharide capsule, β-1 → 6-linked poly-N-acetyl glucosamine (PNAG), elicits opsonic killing antibody that transfers via colostrum to foals and protects them against experimental infection with virulent. R. equi. We hypothesized that equine IgG1 might be more important than IgG4/7 for mediating protection against R. equi infection in foals. To test this hypothesis, we compared complement component 1 (C1) deposition and polymorphonuclear cell-mediated opsonophagocytic killing (OPK) mediated by IgG1 or IgG4/7 enriched from either PNAG hyperimmune plasma (HIP) or standard plasma. Subclasses IgG1 and IgG4/7 from PNAG HIP and standard plasma were precipitated onto a diethylaminoethyl ion exchange column, then further enriched using a protein G Sepharose column. We determined C1 deposition by enzyme-linked immunosorbent assay (ELISA) and estimated OPK by quantitative microbiologic culture. Anti-PNAG IgG1 deposited significantly (P < 0.05) more C1 onto PNAG than did IgG4/7 from PNAG HIP or subclasses IgG1 and IgG4/7 from standard plasma. In addition, IgG1 from PNAG HIP mediated significantly (P < 0.05) greater OPK than IgG4/7 from PNAG HIP or IgG1 and IgG4/7 from standard plasma. Our findings indicate that anti-PNAG IgG1 is a correlate of protection against R. equi in foals, which has important implications for understanding the immunopathogenesis of R. equi pneumonia, and as a tool for assessing vaccine efficacy and effectiveness when challenge is not feasible.
Collapse
Affiliation(s)
- Joana N Rocha
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 660 Raymond Stotzer Pkwy, College Station, TX 77843-4475, United States.
| | - Lawrence J Dangott
- Protein Chemistry Laboratory, Texas A&M University, 300 Olsen Blvd, College Station, TX 77843, United States.
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, United States.
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health and Science Center, 206 Olsen Blvd, College Station, TX 77845, United States.
| | - Angela I Bordin
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 660 Raymond Stotzer Pkwy, College Station, TX 77843-4475, United States.
| | - Colette Cywes-Bentley
- Harvard Medical School, Brigham & Women's Hospital, 181 Longwood Ave, Boston, MA 02115, United States.
| | - Sara D Lawhon
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 660 Raymond Stotzer Pkwy, College Station, TX 77843-4475, United States.
| | - Suresh D Pillai
- National Center for Electron Beam Research-IAEA Collaborative Centre for Electron Beam Technology, Texas A&M University, 400 Discovery Dr, College Station, TX 77845, United States.
| | - Jocelyne M Bray
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 660 Raymond Stotzer Pkwy, College Station, TX 77843-4475, United States
| | - Gerald B Pier
- Harvard Medical School, Brigham & Women's Hospital, 181 Longwood Ave, Boston, MA 02115, United States.
| | - Noah D Cohen
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 660 Raymond Stotzer Pkwy, College Station, TX 77843-4475, United States.
| |
Collapse
|
36
|
Current taxonomy of Rhodococcus species and their role in infections. Eur J Clin Microbiol Infect Dis 2018; 37:2045-2062. [PMID: 30159693 DOI: 10.1007/s10096-018-3364-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Rhodococcus is a genus of obligate aerobic, Gram-positive, partially acid-fast, catalase-positive, non-motile, and none-endospore bacteria. The genus Rhodococcus was first introduced by Zopf. This bacterium can be isolated from various sources of the environment and can grow well in non-selective medium. A large number of phenotypic characterizations are used to compare different species of the genus Rhodococcus, and these tests are not suitable for accurate identification at the genus and species level. Among nucleic acid-based methods, the most powerful target gene for revealing reliable phylogenetic relationships is 16S ribosomal RNA gene (16S rRNA gene) sequence analysis, but this gene is unable to differentiation some of Rhodococcus species. To date, whole genome sequencing analysis has solved taxonomic complexities in this genus. Rhodococcus equi is the major cause of foal pneumonia, and its implication in human health is related to cases in immunocompromised patients. Macrolide family together with rifampicin is one of the most effective antibiotic agents for treatment rhodococcal infections.
Collapse
|