1
|
Kesharwani S, Eeba, Tandi M, Agarwal N, Sundriyal S. Design and synthesis of non-hydroxamate lipophilic inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR): in silico, in vitro and antibacterial studies. RSC Adv 2024; 14:27530-27554. [PMID: 39221132 PMCID: PMC11362829 DOI: 10.1039/d4ra05083e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is a key enzyme of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway operating in several pathogens, including Mycobacterium and Plasmodium. Since a DXR homologue is not present in humans, it is an important antimicrobial target. Fosmidomycin (FSM) and its analogues inhibit DXR function by chelating the divalent metal (Mn2+ or Mg2+) in its active site via a hydroxamate metal binding group (MBG). The latter, however, enhances the polarity of molecules and is known to display metabolic instability and toxicity issues. While attempts have been made to increase the lipophilicity of FSM by substituting the linker chain and prodrug approach, very few efforts have been made to replace the hydroxamate group with other lipophilic MBGs. We report a systematic in silico and experimental investigation to identify novel MBGs for designing non-hydroxamate lipophilic DXR inhibitors. The SAR studies with selected MBG fragments identified novel inhibitors of E. Coli DXR with IC50 values ranging from 0.29 to 106 μM. The promising inhibitors were also screened against ESKAPE pathogens and M. tuberculosis.
Collapse
Affiliation(s)
- Sharyu Kesharwani
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| | - Eeba
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Mile Stone, Gurugram-Faridabad Expressway Faridabad 121001 Haryana India
| | - Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Mile Stone, Gurugram-Faridabad Expressway Faridabad 121001 Haryana India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| |
Collapse
|
2
|
Stefanetti V, Passamonti F, Rampacci E. Antimicrobial Strategies Proposed for the Treatment of S. pseudintermedius and Other Dermato-Pathogenic Staphylococcus spp. in Companion Animals: A Narrative Review. Vet Sci 2024; 11:311. [PMID: 39057995 PMCID: PMC11281426 DOI: 10.3390/vetsci11070311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The treatment of dermato-pathogenic Staphylococcus spp., particularly Staphylococcus pseudintermedius, in companion animals presents significant challenges due to rising antimicrobial resistance. This review explores innovative strategies to combat these infections. We examined novel antimicrobials and the repurposing of existing drugs to enhance their efficacy against resistant strains. Additionally, we evaluate the potential of natural products, nanomaterials, and skin antiseptics as alternative treatments. The review also investigates the use of antimicrobial peptides and bacteriophages, highlighting their targeted action against staphylococcal pathogens. Furthermore, the role of adjuvants in antibiotic treatments, such as antimicrobial resistance breakers, is discussed, emphasizing their ability to enhance therapeutic outcomes. Our analysis underscores the importance of a multifaceted approach in developing effective antimicrobial strategies for companion animals, aiming to mitigate resistance and improve clinical management of staphylococcal skin infections.
Collapse
Affiliation(s)
- Valentina Stefanetti
- Department of Human Science and Promotion of Quality Life, San Raffaele Telematic University, 00166 Rome, Italy;
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Fabrizio Passamonti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| |
Collapse
|
3
|
van Charante F, Martínez-Pérez D, Guarch-Pérez C, Courtens C, Sass A, Choińska E, Idaszek J, Van Calenbergh S, Riool M, Zaat SA, Święszkowski W, Coenye T. 3D-printed wound dressings containing a fosmidomycin-derivative prevent Acinetobacter baumannii biofilm formation. iScience 2023; 26:107557. [PMID: 37680458 PMCID: PMC10480667 DOI: 10.1016/j.isci.2023.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/24/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Abstract
Acinetobacter baumannii causes a wide range of infections, including wound infections. Multidrug-resistant A. baumannii is a major healthcare concern and the development of novel treatments against these infections is needed. Fosmidomycin is a repurposed antimalarial drug targeting the non-mevalonate pathway, and several derivatives show activity toward A. baumannii. We evaluated the antimicrobial activity of CC366, a fosmidomycin prodrug, against a collection of A. baumannii strains, using various in vitro and in vivo models; emphasis was placed on the evaluation of its anti-biofilm activity. We also developed a 3D-printed wound dressing containing CC366, using melt electrowriting technology. Minimal inhibitory concentrations of CC366 ranged from 1 to 64 μg/mL, and CC366 showed good biofilm inhibitory and moderate biofilm eradicating activity in vitro. CC366 successfully eluted from a 3D-printed dressing, the dressings prevented the formation of A. baumannnii wound biofilms in vitro and reduced A. baumannii infection in an in vivo mouse model.
Collapse
Affiliation(s)
- Frits van Charante
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - David Martínez-Pérez
- Biomaterials, Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Clara Guarch-Pérez
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Charlotte Courtens
- Laboratory of Medicinal Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Emilia Choińska
- Biomaterials, Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Joanna Idaszek
- Biomaterials, Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | | | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wojciech Święszkowski
- Biomaterials, Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Over 40 Years of Fosmidomycin Drug Research: A Comprehensive Review and Future Opportunities. Pharmaceuticals (Basel) 2022; 15:ph15121553. [PMID: 36559004 PMCID: PMC9782300 DOI: 10.3390/ph15121553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
To address the continued rise of multi-drug-resistant microorganisms, the development of novel drugs with new modes of action is urgently required. While humans biosynthesize the essential isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) via the established mevalonate pathway, pathogenic protozoa and certain pathogenic eubacteria use the less well-known methylerythritol phosphate pathway for this purpose. Important pathogens using the MEP pathway are, for example, Plasmodium falciparum, Mycobacterium tuberculosis, Pseudomonas aeruginosa and Escherichia coli. The enzymes of that pathway are targets for antiinfective drugs that are exempt from target-related toxicity. 2C-Methyl-D-erythritol 4-phosphate (MEP), the second enzyme of the non-mevalonate pathway, has been established as the molecular target of fosmidomycin, an antibiotic that has so far failed to be approved as an anti-infective drug. This review describes the development and anti-infective properties of a wide range of fosmidomycin derivatives synthesized over the last four decades. Here we discuss the DXR inhibitor pharmacophore, which comprises a metal-binding group, a phosphate or phosphonate moiety and a connecting linker. Furthermore, non-fosmidomycin-based DXRi, bisubstrate inhibitors and several prodrug concepts are described. A comprehensive structure-activity relationship (SAR) of nearly all inhibitor types is presented and some novel opportunities for further drug development of DXR inhibitors are discussed.
Collapse
|
5
|
Design of organyl phosphate-based pro-drugs: comparative analysis of the antibiotic action of alkyl protecting groups with different degree of fluorination. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background. Molecular structures combining a phosphorus-containing counterpart and non-polar radicals are employed in design of pro-drugs as structural and functional groups necessary for transportation of drugs through cellular barriers. It is assumed that the carrier itself does not exhibit biological activity. However, the “organic phosphate – alkyl radical” complex may possess its own metabolic and pharmacological properties even in the absence of a drug moiety.The aim. To study the effect of fluorinated alkyl phosphates on the growth of bacterial test cultures in an agar medium and to identify conjugated metabolic markers using UV/visible spectroscopy.Materials and methods. The effect of six organyl phosphates on the growth of five types of bacteria under aerobic conditions was evaluated by the method of wells in an agar medium. For solutions containing cell metabolites of Pseudomonas aeruginosa, the absorption spectra were recorded at 250–280 nm. The principal component analysis (PCA) was used for multivariate comparative analysis of the spectra. Results. The studied organyl phosphates bearing the ethyl and propyl radicals are potential temporary carriers of the drug moiety, since they are capable of penetrating through cellular barriers. However, the fluorinated compounds exhibit bactericidal properties, the degree of which depends on the arrangement of fluorine atoms in the radical. The most active compounds are those exhaustively halogenated at the terminal carbon atom of the ethyl radical (-СН2-СF3), while non-fluorinated organyl phosphate is the least active. UV/visible spectra of P. aeruginosa cultivation products, according to PCA data, contain patterns reflecting the metabolic effects mediated by these structural features of the radicals.Conclusion. In terms of practical application of the studied compounds, the activity of a proantibiotic based on organyl phosphate with a non-fluorinated ethyl(propyl) radical will be determined only by the specificity of the drug moiety. Exactly the same molecule, but exhaustively fluorinated at the terminal carbon atom of the alkyl radical, is likely to be characterized by lower specificity and higher activity under the additive (or synergistic) action of metabolically active groups.
Collapse
|
6
|
|
7
|
Miller JJ, Shah IT, Hatten J, Barekatain Y, Mueller EA, Moustafa AM, Edwards RL, Dowd CS, Planet PJ, Muller FL, Jez JM, Odom John AR. Structure-guided microbial targeting of antistaphylococcal prodrugs. eLife 2021; 10:66657. [PMID: 34279224 PMCID: PMC8318587 DOI: 10.7554/elife.66657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023] Open
Abstract
Carboxy ester prodrugs are widely employed to increase oral absorption and potency of phosphonate antibiotics. Prodrugging can mask problematic chemical features that prevent cellular uptake and may enable tissue-specific compound delivery. However, many carboxy ester promoieties are rapidly hydrolyzed by serum esterases, limiting their therapeutic potential. While carboxy ester-based prodrug targeting is feasible, it has seen limited use in microbes as microbial esterase-specific promoieties have not been described. Here we identify the bacterial esterases, GloB and FrmB, that activate carboxy ester prodrugs in Staphylococcus aureus. Additionally, we determine the substrate specificities for FrmB and GloB and demonstrate the structural basis of these preferences. Finally, we establish the carboxy ester substrate specificities of human and mouse sera, ultimately identifying several promoieties likely to be serum esterase-resistant and microbially labile. These studies will enable structure-guided design of antistaphylococcal promoieties and expand the range of molecules to target staphylococcal pathogens.
Collapse
Affiliation(s)
- Justin J Miller
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States.,Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Ishaan T Shah
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Jayda Hatten
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Yasaman Barekatain
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Elizabeth A Mueller
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Ahmed M Moustafa
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Rachel L Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Cynthia S Dowd
- Department of Chemistry, The George Washington University, Washington, United States
| | - Paul J Planet
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Florian L Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
8
|
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol 2020; 51:95-121. [PMID: 33347832 DOI: 10.1016/j.ijpara.2020.11.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.
Collapse
Affiliation(s)
- Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | - Cibelly Goulart
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
9
|
Non-hydroxamate inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR): A critical review and future perspective. Eur J Med Chem 2020; 213:113055. [PMID: 33303239 DOI: 10.1016/j.ejmech.2020.113055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022]
Abstract
1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the second step of the non-mevalonate (or MEP) pathway that functions in several organisms and plants for the synthesis of isoprenoids. DXR is essential for the survival of multiple pathogenic bacteria/parasites, including those that cause tuberculosis and malaria in humans. DXR function is inhibited by fosmidomycin (1), a natural product, which forms a chelate with the active site divalent metal (Mg2+/Mn2+) through its hydroxamate metal-binding group (MBG). Most of the potent DXR inhibitors are structurally similar to 1 and retain hydroxamate despite the unfavourable pharmacokinetic and toxicity profile of the latter. We provide our perspective on the lack of non-hydroxamate DXR inhibitors. We also highlight the fundamental flaws in the design of MBG in these molecules, primarily responsible for their failure to inhibit DXR. We also suggest that for designing next-generation non-hydroxamate DXR inhibitors, approaches followed for other metalloenzymes targets may be exploited.
Collapse
|
10
|
Mikati MO, Miller JJ, Osbourn DM, Barekatain Y, Ghebremichael N, Shah IT, Burnham CAD, Heidel KM, Yan VC, Muller FL, Dowd CS, Edwards RL, Odom John AR. Antimicrobial Prodrug Activation by the Staphylococcal Glyoxalase GloB. ACS Infect Dis 2020; 6:3064-3075. [PMID: 33118347 PMCID: PMC8543975 DOI: 10.1021/acsinfecdis.0c00582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the rising prevalence of multidrug resistance, there is an urgent need to develop novel antibiotics. Many putative antibiotics demonstrate promising in vitro potency but fail in vivo due to poor drug-like qualities (e.g., serum half-life, oral absorption, solubility, and toxicity). These drug-like properties can be modified through the addition of chemical protecting groups, creating "prodrugs" that are activated prior to target inhibition. Lipophilic prodrugging techniques, including the attachment of a pivaloyloxymethyl group, have garnered attention for their ability to increase cellular permeability by masking charged residues and the relative ease of the chemical prodrugging process. Unfortunately, pivaloyloxymethyl prodrugs are rapidly activated by human sera, rendering any membrane permeability qualities absent during clinical treatment. Identification of the bacterial prodrug activation pathway(s) will allow for the development of host-stable and microbe-targeted prodrug therapies. Here, we use two zoonotic staphylococcal species, Staphylococcus schleiferi and S. pseudintermedius, to establish the mechanism of carboxy ester prodrug activation. Using a forward genetic screen, we identify a conserved locus in both species encoding the enzyme hydroxyacylglutathione hydrolase (GloB), whose loss-of-function confers resistance to carboxy ester prodrugs. We enzymatically characterize GloB and demonstrate that it is a functional glyoxalase II enzyme, which has the capacity to activate carboxy ester prodrugs. As GloB homologues are both widespread and diverse in sequence, our findings suggest that GloB may be a useful mechanism for developing species- or genus-level prodrug targeting strategies.
Collapse
Affiliation(s)
- Marwa O Mikati
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Justin J Miller
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Damon M Osbourn
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Yasaman Barekatain
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Naomi Ghebremichael
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Ishaan T Shah
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Carey-Ann D Burnham
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Kenneth M Heidel
- Department of Chemistry, The George Washington University, Washington, DC 20052, United States
| | - Victoria C Yan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Florian L Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Cynthia S Dowd
- Department of Chemistry, The George Washington University, Washington, DC 20052, United States
| | - Rachel L Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|