1
|
Faua C, Fafi-Kremer S, Gantner P. Antigen specificities of HIV-infected cells: A role in infection and persistence? J Virus Erad 2023; 9:100329. [PMID: 37440870 PMCID: PMC10334354 DOI: 10.1016/j.jve.2023.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
Antigen-experienced memory CD4+ T cells are the major target of HIV infection and support both productive and latent infections, thus playing a key role in HIV dissemination and persistence, respectively. Here, we reviewed studies that have shown direct association between HIV infection and antigen specificity. During untreated infection, some HIV-specific cells host productive infection, while other pathogen-specific cells such as cytomegalovirus (CMV) and Mycobacterium tuberculosis also contribute to viral persistence on antiretroviral therapy (ART). These patterns could be explained by phenotypic features differing between these pathogen-specific cells. Mechanisms involved in these preferential infection and selection processes include HIV entry and restriction, cell exhaustion, survival, self-renewal and immune escape. For instance, MIP-1β expressing cells such as CMV-specific memory cells were shown to resist infection by HIV CCR5 coreceptor downregulation/inhibition. Conversely, HIV-infected CMV-specific cells undergo clonal expansion during ART. We have identified several research areas that need further focus such as the role of other pathogens, viral genome intactness, inducibility and phenotypic features. However, given the sheer diversity of both the CD4+ T cell repertoire and antigenic history of each individual, studying HIV-infected, antigen-experienced cells still imposes numerous challenges.
Collapse
Affiliation(s)
- Clayton Faua
- INSERM UMR_S1109, University of Strasbourg, Strasbourg, France
| | - Samira Fafi-Kremer
- INSERM UMR_S1109, University of Strasbourg, Strasbourg, France
- Medical Virology Laboratory, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Gantner
- INSERM UMR_S1109, University of Strasbourg, Strasbourg, France
- Medical Virology Laboratory, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Rose R, Gonzalez-Perez MP, Nolan D, Ganta KK, LaFleur T, Cross S, Brody R, Lamers SL, Luzuriaga K. Distinct HIV-1 Population Structure across Meningeal and Peripheral T Cells and Macrophage Lineage Cells. Microbiol Spectr 2022; 10:e0250822. [PMID: 36173332 PMCID: PMC9602438 DOI: 10.1128/spectrum.02508-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 01/26/2023] Open
Abstract
HIV-1 sequence population structure among brain and nonbrain cellular compartments is incompletely understood. Here, we compared proviral pol and env high-quality consensus single-molecule real-time (SMRT) sequences derived from CD3+ T cells and CD14+ macrophage lineage cells from meningeal or peripheral (spleen, blood) tissues obtained at autopsy from two individuals with viral suppression on antiretroviral therapy (ART). Phylogenetic analyses showed strong evidence of population structure between CD3+ and CD14+ virus populations. Distinct env variable-region characteristics were also found between CD3+ and CD14+ viruses. Furthermore, shared macrophage-tropic amino acid residues (env) and drug resistance mutations (pol) between meningeal and peripheral virus populations were consistent with the meninges playing a role in viral gene flow across the blood-brain barrier. Overall, our results point toward potential functional differences among meningeal and peripheral CD3+ and CD14+ virus populations and a complex evolutionary history driven by distinct selection pressures and/or viral gene flow. IMPORTANCE Different cell types and/or tissues may serve as a reservoir for HIV-1 during ART-induced viral suppression. We compared proviral pol and env sequences from CD3+ T cells and CD14+ macrophage lineage cells from brain and nonbrain tissues from two virally suppressed individuals. We found strong evidence of viral population structure among cells/tissues, which may result from distinct selective pressures across cell types and anatomic sites.
Collapse
Affiliation(s)
| | | | - David Nolan
- BioInfoExperts, LLC, Thibodaux, Louisiana, USA
| | | | | | - Sissy Cross
- BioInfoExperts, LLC, Thibodaux, Louisiana, USA
| | - Robin Brody
- UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
3
|
Renault C, Bolloré K, Pisoni A, Motto-Ros C, Van de Perre P, Reynes J, Tuaillon E. Accuracy of real-time PCR and digital PCR for the monitoring of total HIV DNA under prolonged antiretroviral therapy. Sci Rep 2022; 12:9323. [PMID: 35665775 PMCID: PMC9167282 DOI: 10.1038/s41598-022-13581-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Total HIV DNA is a standard marker to monitor the HIV reservoir in people living with HIV. We investigated HIV DNA quantification accuracy by a real-time PCR kit (qPCR) and digital PCR (dPCR) method within the same set of primers and probes. Among 48 aviremic patients followed for up to 7 years with qPCR, the mean coefficient of variation of total HIV DNA between two successive measurements was 77% (± 0.42log10 HIVDNA copies/106 PBMC). The total HIV DNA quantified by the two PCR methods has a high correlation (0.99 and 0.83, for 8E5 and PLHIV samples, respectively), but we observed better repeatability and reproducibility of the dPCR compared to the qPCR (CV of 11.9% vs. 24.7% for qPCR, p-value = 0.024). Furthermore, we highlighted a decay of the number of HIV copies in the 8E5 cell line qPCR standard over time (from 0.73 to 0.43 copies per cell), contributing to variations of HIV DNA results in patients whose HIV reservoir should be theoretically stabilized. Our study highlighted that absolute quantification of total HIV DNA by dPCR allows more accurate monitoring of the HIV reservoir than qPCR in patients under prolonged antiretroviral therapy.
Collapse
Affiliation(s)
- Constance Renault
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Karine Bolloré
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Amandine Pisoni
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Antilles University, Montpellier, France.,CHU de Montpellier, Montpellier, France
| | - Camille Motto-Ros
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Antilles University, Montpellier, France.,CHU de Montpellier, Montpellier, France
| | - Jacques Reynes
- IRD UMI 233, INSERM U1175, Montpellier University, Montpellier, France.,Infectious Diseases Department, CHU de Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Antilles University, Montpellier, France. .,CHU de Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Renault C, Veyrenche N, Mennechet F, Bedin AS, Routy JP, Van de Perre P, Reynes J, Tuaillon E. Th17 CD4+ T-Cell as a Preferential Target for HIV Reservoirs. Front Immunol 2022; 13:822576. [PMID: 35197986 PMCID: PMC8858966 DOI: 10.3389/fimmu.2022.822576] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Among CD4+ T-cells, T helper 17 (Th17) cells play a sentinel role in the defense against bacterial/fungal pathogens at mucosal barriers. However, Th17 cells are also highly susceptible to HIV-1 infection and are rapidly depleted from gut mucosal sites, causing an imbalance of the Th17/Treg ratio and impairing cytokines production. Consequently, damage to the gut mucosal barrier leads to an enhanced microbial translocation and systemic inflammation, a hallmark of HIV-1 disease progression. Th17 cells’ expression of mucosal homing receptors (CCR6 and α4β7), as well as HIV receptors and co-receptors (CD4, α4β7, CCR5, and CXCR4), contributes to susceptibility to HIV infection. The up-regulation of numerous intracellular factors facilitating HIV production, alongside the downregulation of factors inhibiting HIV, helps to explain the frequency of HIV DNA within Th17 cells. Th17 cells harbor long-lived viral reservoirs in people living with HIV (PLWH) receiving antiretroviral therapy (ART). Moreover, cell longevity and the proliferation of a fraction of Th17 CD4 T cells allow HIV reservoirs to be maintained in ART patients.
Collapse
Affiliation(s)
- Constance Renault
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Nicolas Veyrenche
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
| | - Franck Mennechet
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Anne-Sophie Bedin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Research Institute and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
| | - Jacques Reynes
- Virology Laboratory, CHU de Montpellier, Montpellier, France
- IRD UMI 233, INSERM U1175, University of Montpellier, Montpellier, France
- Infectious Diseases Department, CHU de Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
- *Correspondence: Edouard Tuaillon,
| |
Collapse
|
5
|
Diallo MS, Samri A, Charpentier C, Bertine M, Cheynier R, Thiébaut R, Matheron S, Collin F, Braibant M, Candotti D, Brun-Vézinet F, Autran B, Appay V, Autran B, Brun-Vezinet F, Chaghil N, Descamps D, Hosmalin A, Pancino G, Manel N, Marchand L, Pedroza-Martins L, Sàez-Cirion A, Vieillard V, Agut H, Clauvel JP, Costagliola D, Debré P, Theodorou I, Sicard D, Viard JP, Barin F, Vieillard V, Autran B. A Comparison of Cell Activation, Exhaustion, and Expression of HIV Coreceptors and Restriction Factors in HIV-1- and HIV-2-Infected Nonprogressors. AIDS Res Hum Retroviruses 2021; 37:214-223. [PMID: 33050708 DOI: 10.1089/aid.2020.0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency viruses induce rare attenuated diseases due either to HIV-1 in the exceptional long-term nonprogressors (LTNPs) or to HIV-2 in West Africa. To better understand characteristics of these two disease types we performed a multiplex comparative analysis of cell activation, exhaustion, and expression of coreceptors and restriction factors in CD4 T cells susceptible to harbor those viruses. We analyzed by flow cytometry the expression of HLA-DR, PD1, CCR5, CXCR6, SAMHD1, Blimp-1, and TRIM5α on CD4 T cell subsets from 10 HIV-1+ LTNPs and 14 HIV-2+ (12 nonprogressors and 2 progressors) of the ANRS CO-15 and CO-5 cohorts, respectively, and 12 HIV- healthy donors (HD). The V3 loop of the HIV-1 envelope from 6 HIV-1+ LTNPs was sequenced to determine the CXCR6-binding capacity. Proportions of HLA-DR+ and PD1+ cells were higher in memory CD4 T subsets from HIV-1 LTNPs compared with HIV-2 and HD. Similar findings were observed for CCR5+ cells although limited to central-memory CD4 T cell (TCM) and follicular helper T cell subsets, whereas all major subsets from HIV-1 LTNPs contained less CXCR6+ cells compared with HIV-2. All six V3 loop sequences from HIV-1 LTNPs contained a proline at position 326. Proportions of SAMHD1+ cells were higher in all resting CD4 T subsets from HIV-1 LTNPs compared with the other groups, whereas Blimp-1+ and Trim5α+ cells did not differ. The CD4 T cell subsets from HIV-1 LTNPs differ from those of HIV-2-infected subjects by higher levels of activation, exhaustion, and SAMHD1 expression that can reflect the distinct patterns of host/virus relationships.
Collapse
Affiliation(s)
- Mariama Sadjo Diallo
- Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, Paris, France
| | - Assia Samri
- Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, Paris, France
| | - Charlotte Charpentier
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mélanie Bertine
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rémi Cheynier
- Institut Cochin, Inserm, U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Rodolphe Thiébaut
- Inserm U1219 Bordeaux Population Health, INRIA SISTM, University of Bordeaux, Bordeaux, France
| | - Sophie Matheron
- Inserm, IAME, UMR 1137, University of Paris Diderot, Sorbonne Paris Cité, Assistance Publique -Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Bichat, HUPNVS, Paris, France
| | - Fidéline Collin
- Inserm, IAME, UMR 1137, University of Paris Diderot, Sorbonne Paris Cité, Assistance Publique -Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Bichat, HUPNVS, Paris, France
| | - Martine Braibant
- Université François-Rabelais, Inserm U1259 & CHRU de Tours, Tours, France
| | | | | | - Brigitte Autran
- Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Stem cell-like memory T cells: A perspective from the dark side. Cell Immunol 2021; 361:104273. [PMID: 33422699 DOI: 10.1016/j.cellimm.2020.104273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Much attention has been paid to a newly discovered subset of memory T (TM) cells-stem cell-like memory T (TSCM) cells for their high self-renewal ability, multi-differentiation potential and long-term effector function in adoptive therapy against tumors. Despite their application in cancer therapy, an excess of TSCM cells also contributes to the persistence of autoimmune diseases for their immune memory and HIV infection as a long-lived HIV reservoir. Signaling pathways Wnt, AMPK/mTOR and NF-κB are key determinants for TM cell generation, maintenance and proinflammatory effect. In this review, we focus on the phenotypic and functional characteristics of TSCM cells and discuss their role in autoimmune diseases and HIV-1 chronic infection. Also, we explore the potential mechanism and signaling pathways involved in immune memory and look into the future therapy strategies of targeting long-lived TM cells to suppress pathogenic immune memory.
Collapse
|