1
|
Gong Y, Hu H, Zhao X, Wei W, Zhang M, Tran NT, Ma H, Zhang Y, Chan KG, Li S. Exosome-mediated viral nucleic acid presentation in a crustacean expounds innate immunity from a novel perspective. J Virol 2024; 98:e0151924. [PMID: 39545727 DOI: 10.1128/jvi.01519-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
As an enduring hot topic in the field of innate immunity, apoptosis is widely considered an effective approach to eliminate pathogenic microbes and plays a crucial role during host-pathogen interactions. Recently, researchers have found that the virus-containing host cells could transmit apoptotic signals to the surrounding uninfected cells during infection, but the mechanism remains unclear. Here, we found that exosomes secreted by WSSV-infected mud crab hemocytes contain viral nucleic acid wsv277, which could be transported to the recipient cells and further expressed viral protein with phosphokinase activity. Besides, by using transcriptome, proteome, ChIP-seq, and coIP techniques, the results revealed that wsv277 could activate the transcription and translation of apoptotic genes via interacting with CBF and EF-1α so as to suppress the spread of virus infection by inducing apoptosis of the surrounding cells. Therefore, for the first time, our study proved that the components of DNA virus could be encapsulated into exosomes and elucidated the mechanism of apoptotic signal transduction between cells from the perspective of exosomes. IMPORTANCE Our study revealed that the components of DNA virus could be packaged and transmitted through the exosomes of lower invertebrates, which strongly demonstrated the diversity of exosome-mediated viral immunity and its universality in animals. Furthermore, we elucidated the mechanism of apoptotic signal transduction between cells from the perspective of exosomes and revealed a novel strategy for the host to cope with viral infection.
Collapse
Affiliation(s)
- Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Hang Hu
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Xinshan Zhao
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Weiqian Wei
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Kok-Gan Chan
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
2
|
Ma Y, Zhou Z, Luo T, Meng Q, Wang H, Li X, Gu W, Zhou J, Meng Q. Rab7 GTPase, a direct target of miR-131-3p, limits intracellular Spiroplasma eriocheiris infection by modulating phagocytosis. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109879. [PMID: 39244074 DOI: 10.1016/j.fsi.2024.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Spiroplasma eriocheiris is a kind of intracellular pathogen without cell wall and the causative agent of Chinese mitten crab Eriocheir sinensis "tremor disease", which causes significant economic losses in the crustacean aquaculture. However, little is known about the intracellular transport of this pathogen and host innate immune response to this pathogen. Rab GTPases are key regulators for endocytosis and intracellular pathogen trafficking. In this study, we showed that S. eriocheiris infection upregulated the transcription of Rab7 through the downregulation of miR-131-3p. Subsequently, both hemocytes transfected with miR-131-3p mimics and hemocytes derived from Rab7 knockdown crabs exhibited reduced phagocytic activities and increased susceptibility to S. eriocheiris infection. Additionally, Rab7 could interact with the cell shape-determining protein MreB3 of S. eriocheiris, and its overexpression promoted S. eriocheiris internalization and fusion with lysosomes, thereby limiting S. eriocheiris replication in Drosophila S2 cells. Overall, these results demonstrated that Rab7 facilitated host cell phagocytosis and interacted with MreB3 of S. eriocheiris to prevent S. eriocheiris infection. Moreover, miR-131-3p was identified as a negative regulator of this process through its targeting of Rab7. Therefore, targeting miR-131-3p might be an effective strategy for controlling S. eriocheiris in crab aquaculture.
Collapse
Affiliation(s)
- Yubo Ma
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Zijie Zhou
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Tingyi Luo
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Qian Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Hui Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
3
|
Liu L, Gao L, Zhou K, Li Q, Xu H, Feng X, Wang L, Song L. The expression patterns of exosomal miRNAs in the Pacific oyster after high-temperature stress or Vibrio stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105174. [PMID: 38548001 DOI: 10.1016/j.dci.2024.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
The exosomal miRNA plays a crucial role in the intercellular communication response to environmental stress and pathogenic stimulation. In the present study, the expression of exosomal miRNAs in the Pacific oyster Crassostrea gigas after high-temperature stress or Vibrio splendidus stimulation was investigated through high-throughput sequencing. The exosomes were identified to be teardrop-like vesicles with the average size of 81.7 nm by transmission electron microscopy. There were 66 known miRNAs and 33 novel miRNAs identified, of which 10 miRNAs were differentially expressed after both high-temperature stress and Vibrio stimulation compared to the control group. A total of 1868 genes were predicted as the putative targets of miRNAs, of which threonine aspartase 1-like was targeted by the highest number of related miRNAs. The robustness and reliability of miRNA expression from the sRNA sequencing data were verified by employing eight miRNAs for qPCR. GO and KEGG clustering analyses revealed that apoptosis was significantly enriched by the target genes of differentially expressed exosomal miRNAs after high-temperature stress, and autophagy and cytokine activity were significantly enriched after Vibrio stimulation. Energy metabolism was found to be significantly shared in the target gene enrichments after both high-temperature stress and Vibrio stimulation. These findings would improve our understanding of the regulatory mechanisms of exosomal miRNAs in C. gigas after high-temperature stress or Vibrio stimulation.
Collapse
Affiliation(s)
- Lu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Keli Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qingsong Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Hairu Xu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xingyi Feng
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|
4
|
Jafari N, Afshar A, Zare A, Salehpour A, Hashemi A, Zendehboudi F, Farrar Z, Mahdipour M, Khoradmehr A, Jahanfar F, Mussin NM, Kaliyev AA, Kameli A, Azari H, Nabipour I, Zhilisbayeva KR, Tamadon A. Proliferating and migrating effects of regenerating sea anemone Aulactinia stella cells-derived exosomes on human skin fibroblasts. Nat Prod Res 2024:1-8. [PMID: 38824422 DOI: 10.1080/14786419.2024.2352144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Regenerative effects of sea anemone-derived exosomes on human foreskin fibroblasts (HFFs) were investigated. Water-based extracts from regenerating Aulactinia stella tissue were collected at various time points, and exosomes were extracted after inducing wounds. Both the extract and exosomes were tested on HFF for proliferation and in vitro wound healing. In silico analysis explored protein-protein docking between regenerative exosome proteins and HFF receptors. The MTT (3-(4,5-dimethylthiazol-2yl)-2,5 diphenyltetrazolium bromide proliferation assay and in vitro wound healing test of aquatic extract showed proliferative effects on HFF cell lines, with the 60 μg/mL concentration significantly enhancing cell migration. Exosomes were characterised. Exosomes showed a significantly positive effect on cell proliferation and migration at the 50 µg/mL concentration 48 h post-wound induction. In silico analysis revealed potential binding affinities between exosome proteins and HFF receptors. In conclusion, optimised concentrations of A. stella-derived exosomes exhibited positive effects on HFF regeneration and migration, suggesting their potential in accelerating wound healing.
Collapse
Affiliation(s)
| | - Alireza Afshar
- Department of Research and Development, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Aria Salehpour
- Department of Research and Development, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Fatemeh Zendehboudi
- Department of Research and Development, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zohreh Farrar
- Department of Research and Development, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Firouzeh Jahanfar
- Department of Research and Development, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Nadiar M Mussin
- Department of Surgery and Urology No. 2, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Asset A Kaliyev
- Department of Surgery and Urology No. 2, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Ali Kameli
- Department of Research and Development, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Azari
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Kulyash R Zhilisbayeva
- Department of Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- PerciaVista R&D Co, Shiraz, Iran
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
5
|
Cheng W, Ren Y, Yu C, Zhou T, Zhang Y, Lu L, Liu Y, Xu D. CyHV-2 infection triggers mitochondrial-mediated apoptosis in GiCF cells by upregulating the pro-apoptotic gene ccBAX. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109400. [PMID: 38253137 DOI: 10.1016/j.fsi.2024.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Apoptosis is a physiological cell death phenomenon, representing one of the fundamental physiological mechanisms for maintaining homeostasis in living organisms. Previous studies have observed typical apoptotic features in Carassius auratus gibelio caudal fin cell (GiCF) infected with Cyprinid herpesvirus 2 (CyHV-2), and found a significant up-regulation of ccBAX expression in these infected cells. However, the specific apoptotic mechanism involved remains unclear. In this study, we utilized the GiCF cell line to investigate the apoptotic mechanism during CyHV-2 infection. Immunofluorescence staining revealed translocation of ccBAX into mitochondria upon CyHV-2 infection. Flow cytometry analysis demonstrated that overexpression of ccBAX expedited virus-induced apoptosis, characterized by heightened mitochondrial depolarization, increased transcriptional levels of Cytochrome c (Cyto c) in both the cytoplasm and mitochondria, and augmented Caspase 3/7 enzyme activity. Bax inhibitor peptide V5 (BIP-V5), an inhibitor interfering with the function of Bax proteins, inhibited Bax-mediated apoptotic events through the mitochondrial pathway and attenuated apoptosis induced by CyHV-2. In this study, it was identified for the first time that CyHV-2 induces apoptosis via the mitochondrial pathway in GiCF cells, bridging an important gap in our understanding regarding cell death mechanisms induced by herpesvirus infections in fish species. These findings provide a theoretical basis for comprehending viral apoptotic regulation mechanisms and the prevention and control of cellular pathologies caused by CyHV-2 infection.
Collapse
Affiliation(s)
- Wenjie Cheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yilin Ren
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Tianqi Zhou
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq revealed heterogeneous responses and functional differentiation of hemocytes against white spot syndrome virus infection in Litopenaeus vannamei. J Virol 2024; 98:e0180523. [PMID: 38323810 PMCID: PMC10949519 DOI: 10.1128/jvi.01805-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Xiong M, Chen Z, Tian J, Peng Y, Song D, Zhang L, Jin Y. Exosomes derived from programmed cell death: mechanism and biological significance. Cell Commun Signal 2024; 22:156. [PMID: 38424607 PMCID: PMC10905887 DOI: 10.1186/s12964-024-01521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes are nanoscale extracellular vesicles present in bodily fluids that mediate intercellular communication by transferring bioactive molecules, thereby regulating a range of physiological and pathological processes. Exosomes can be secreted from nearly all cell types, and the biological function of exosomes is heterogeneous and depends on the donor cell type and state. Recent research has revealed that the levels of exosomes released from the endosomal system increase in cells undergoing programmed cell death. These exosomes play crucial roles in diseases, such as inflammation, tumors, and autoimmune diseases. However, there is currently a lack of systematic research on the differences in the biogenesis, secretion mechanisms, and composition of exosomes under different programmed cell death modalities. This review underscores the potential of exosomes as vital mediators of programmed cell death processes, highlighting the interconnection between exosome biosynthesis and the regulatory mechanisms governing cell death processes. Furthermore, we accentuate the prospect of leveraging exosomes for the development of innovative biomarkers and therapeutic strategies across various diseases.
Collapse
Affiliation(s)
- Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Zhen Chen
- School of Public Health, Weifang Medical University, Weifang, 261000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Yanjie Peng
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China.
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
- Hebei Key Laboratory of Coal Health and Safety, Tangshan, 063000, China.
| |
Collapse
|
8
|
Ma Y, Yao Y, Meng X, Fu H, Li J, Luan X, Liu M, Liu H, Gu W, Hou L, Meng Q. Hemolymph exosomes inhibit Spiroplasma eriocheiris infection by promoting Tetraspanin-mediated hemocyte phagocytosis in crab. FASEB J 2024; 38:e23433. [PMID: 38226893 DOI: 10.1096/fj.202302182r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Exosomes released from infected cells are thought to play an important role in the dissemination of pathogens, as well as in host-derived immune molecules during infection. As an intracellular pathogen, Spiroplasma eriocheiris is harmful to multiple crustaceans. However, the immune mechanism of exosomes during Spiroplasma infection has not been investigated. Here, we found exosomes derived from S. eriocheiris-infected crabs could facilitate phagocytosis and apoptosis of hemocytes, resulting in increased crab survival and suppression of Spiroplasma intracellular replication. Proteomic analysis revealed the altered abundance of EsTetraspanin may confer resistance to S. eriocheiris, possibly by mediating hemocyte phagocytosis in Eriocheir sinensis. Specifically, knockdown of EsTetraspanin in E. sinensis increased susceptibility to S. eriocheiris infection and displayed compromised phagocytic ability, whereas overexpression of EsTetraspanin in Drosophila S2 cells inhibited S. eriocheiris infection. Further, it was confirmed that intramuscular injection of recombinant LEL domain of EsTetraspanin reduced the mortality of S. eriocheiris-infected crabs. Blockade with anti-EsTetraspanin serum could exacerbate S. eriocheiris invasion of hemocytes and impair hemocyte phagocytic activity. Taken together, our findings prove for the first time that exosomes modulate phagocytosis to resist pathogenic infection in invertebrates, which is proposed to be mediated by exosomal Tetraspanin, supporting the development of preventative strategies against Spiroplasma infection.
Collapse
Affiliation(s)
- Yubo Ma
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Yu Yao
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Xiang Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Hui Fu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Jiaying Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoqi Luan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Min Liu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Hongli Liu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, PR China
| | - Libo Hou
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, PR China
| |
Collapse
|
9
|
Sun Q, Yang J, Zhang M, Zhang Y, Ma H, Tran NT, Chen X, Zhang Y, Chan KG, Li S. Exosomes drive ferroptosis by stimulating iron accumulation to inhibit bacterial infection in crustaceans. J Biol Chem 2023; 299:105463. [PMID: 37977221 PMCID: PMC10704439 DOI: 10.1016/j.jbc.2023.105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Ferroptosis, characterized by iron-dependent cell death, has recently emerged as a critical defense mechanism against microbial infections. The present study aims to investigate the involvement of exosomes in the induction of ferroptosis and the inhibition of bacterial infection in crustaceans. Our findings provide compelling evidence for the pivotal role of exosomes in the immune response of crustaceans, wherein they facilitate intracellular iron accumulation and activate the ferroptotic pathways. Using RNA-seq and bioinformatic analysis, we demonstrate that cytochrome P450 (CYP) can effectively trigger ferroptosis. Moreover, by conducting an analysis of exosome cargo proteins, we have identified the participation of six-transmembrane epithelial antigen of prostate 4 in the regulation of hemocyte ferroptotic sensitivity. Subsequent functional investigations unveil that six-transmembrane epithelial antigen of prostate 4 enhances cellular Fe2+ levels, thereby triggering Fenton reactions and accelerating CYP-mediated lipid peroxidation, ultimately culminating in ferroptotic cell death. Additionally, the Fe2+-dependent CYP catalyzes the conversion of arachidonic acid into 20-hydroxyeicosatetraenoic acid, which activates the peroxisome proliferator-activated receptor. Consequently, the downstream target of peroxisome proliferator-activated receptor, cluster of differentiation 36, promotes intracellular fatty acid accumulation, lipid peroxidation, and ferroptosis. These significant findings shed light on the immune defense mechanisms employed by crustaceans and provide potential strategies for combating bacterial infections in this species.
Collapse
Affiliation(s)
- Qian Sun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Jiawen Yang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yongsheng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Nanning, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Kok-Gan Chan
- Institute of Marine Sciences, Shantou University, Shantou, China; Faculty of Science, Division of Genetics and Molecular Biology, Institute of Biological Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; Institute of Marine Sciences, Shantou University, Shantou, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China.
| |
Collapse
|
10
|
Kong T, Fang Y, Fan X, Li S. KCMF1-like suppresses white spot syndrome virus infection by promoting apoptosis in mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109158. [PMID: 37832749 DOI: 10.1016/j.fsi.2023.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Potassium channel modulatory factor 1 (KCMF1), an E3 ubiquitin ligase, plays a vital role in renal tubulogenesis, preeclampsia, and tumor development in mammals. Nevertheless, the function of KCMF1 in invertebrates remains to be investigated. Here, we identified KCMF1-like from Scylla paramamosian, encoding 242 amino acids with two zinc finger domains at the N-terminal. Real-time quantitative PCR analysis revealed that KCMF1-like was expressed in all tested tissues, including hemocytes, brain, mid-intestine, subcuticular epidermis, gills, muscle, heart, and stomach, with higher levels in muscle and mid-intestine. KCMF1-like was up-regulated in the hemocytes of mud crabs challenged with white spot syndrome virus (WSSV). RNA interference (RNAi) was performed to investigate the impact of KCMF1-like on the proliferation of WSSV in mud crabs. Knock-down of KCMF1-like resulted in an increase of the WSSV copy number and an impairment of the hemocytes apoptosis rate in vivo. In addition, KCMF1-like could also affect the mitochondrial membrane potential. Collectively, these results revealed that KCMF1-like might play a crucial role in the defense against virus infection in mud crab. This study contributes a novel insight into the role of KCMF1-like in the antiviral immune defense mechanism in crustaceans.
Collapse
Affiliation(s)
- Tongtong Kong
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| | - Yameng Fang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xinyue Fan
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China
| |
Collapse
|
11
|
Jemec Kokalj A, Leonardi A, Perc V, Dolar A, Drobne D, Križaj I. Proteomics of the haemolymph of the terrestrial crustacean Porcellio scaber reveals components of its innate immunity under baseline conditions. Biochimie 2023; 213:12-21. [PMID: 37187404 DOI: 10.1016/j.biochi.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
The terrestrial crustacean Porcellio scaber is an established test organism in environmental research. We analysed the haemolymph proteome of P. scaber using a classical proteomic approach based on one-dimensional gel electrophoresis and tandem mass spectrometry. Using a publicly available protein database and our P. scaber transcriptome data, we have identified 76 proteins involved in cytoskeleton formation, protein degradation, vesicular transport, genetic information processing, detoxification, carbohydrate and lipid metabolism reflecting haemocyte metabolic activity, active intracellular transport, and intercellular communication. Compared with the data reported for other crustaceans, 28 of these P. scaber proteins have been linked to its immunity, among them hemocyanin, α-2-macroglobulin, phenoloxidase 3, superoxide dismutase, glutathione S-transferase, haemolymph clottable protein, and histones H4 and H2B. Our results thus provide a firm base for studying the innate immune response of P. scaber at the level of the haemolymph proteome. This knowledge is of particular importance in ecotoxicity studies with various environmental stressors where understanding physiological changes is important to reveal possible modes of action.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia.
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Valentina Perc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia
| | - Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
12
|
Tran NT, Liang H, Li J, Deng T, Bakky MAH, Zhang M, Li S. Cellular responses in crustaceans under white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108984. [PMID: 37549875 DOI: 10.1016/j.fsi.2023.108984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Innate immunity plays the most important system responsible for protecting crustaceans against invading pathogens. White spot syndrome virus (WSSV) is considered a serious pathogen in crustaceans with high cumulative mortality and morbidity in infected animals. Understanding the mechanism of the response of hosts to WSSV infection is necessary, which is useful for effective prevention in controlling infection. In this review, we summarize the participation of signaling pathways (toll, immune deficiency, JAK/STAT, endocytosis, mitogen-activated protein kinase, PI3K/Akt/mTOR, cGAS-STING, Wingless/Integrated signal transduction, and prophenoloxidase (proPO) cascade) and the activity of cells (apoptosis, autophagy, as well as, reactive oxygen species and antioxidant enzymes) in the cellular-mediated immune response of crustaceans during WSSV infection. The information presented in this current review is important for a better understanding of the mechanism of the response of hosts to pathogens. Additionally, this provides a piece of basic knowledge for discovering approaches to strengthen the immune system and resistance of cultured animals against viral infections.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jinkun Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Md Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
13
|
Tran NT, Chen L, Zhou Y, Zhang M, Wang Y, Li S. SpTNF regulates apoptosis and antimicrobial peptide synthesis in mud crab (Scylla paramamosain) during white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2023:108881. [PMID: 37279830 DOI: 10.1016/j.fsi.2023.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023]
Abstract
Tumor necrosis factor (TNF) is an inflammatory cytokine that is important in cell survival, proliferation, differentiation, and death. However, the functions of TNF in the immune responses of invertebrates have been less studied. In this study, SpTNF was cloned and characterized from mud crab (Scylla paramamosain) for the first time. SpTNF contains an open reading frame of 354 bp encoding 117 deduced amino acids, with a conserved C-terminal TNF homology domain (THD) domain. RNAi knockdown of SpTNF reduced hemocyte apoptosis and antimicrobial peptide (AMP) synthesis. Expression of SpTNF was initially down-regulated but subsequently up-regulated after 48 h in hemocytes of mud crabs after WSSV infection. Results of RNAi knockdown and overexpression showed that SpTNF inhibits the WSSV infection through activating apoptosis, NF-κB pathway, and AMP synthesis. Furthermore, the lipopolysaccharide-induced TNF-α factor (SpLITAF) can regulate the expression of SpTNF, induction of apoptosis, and activation of the NF-κB pathway and AMP synthesis. The expression and nuclear translocation of SpLITAF were regulated by WSSV infection. SpLITAF knockdown increased the WSSV copy number and VP28 gene expression. Taken together, these results proved the protective function of SpTNF, which is regulated by SpLITAF, in the immune response of mud crabs against WSSV through the regulation of apoptosis and activation of AMP synthesis.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Lianjie Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yanlian Zhou
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
14
|
Yang L, Wang ZA, Geng R, Deng H, Niu S, Zuo H, Weng S, He J, Xu X. White Spot Syndrome Virus (WSSV) Inhibits Hippo Signaling and Activates Yki To Promote Its Infection in Penaeus vannamei. Microbiol Spectr 2023; 11:e0236322. [PMID: 36475933 PMCID: PMC9927087 DOI: 10.1128/spectrum.02363-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
White spot syndrome virus (WSSV) is a serious threat to shrimp aquaculture, especially Pacific white shrimp, Penaeus vannamei, the most farmed shrimp in the world. Activation of the Hippo-Yki signaling pathway, characterized by the intracellular Hippo-Wts kinase cascade reactions and the phosphorylation and cytoplasmic retention of Yki, is widely involved in various life activities. The current work established the fundamental structure and signal transduction profile of the Hippo-Yki pathway in P. vannamei and further investigated its role in viral infection. We demonstrated that WSSV promoted the dephosphorylation and nuclear translocation of Yki, suggesting that Hippo signaling is impaired and Yki is activated after WSSV infection in shrimp. In vivo, Yki gene silencing suppressed WSSV infection, while Hippo and Wts silencing promoted it, indicating a positive role of Hippo signaling in antiviral response. Further analyses showed that Yki suppressed Dorsal pathway activation and inhibited hemocyte apoptosis in WSSV-infected shrimp, while Hippo and Wts showed opposite effects, which contributed to the role of Hippo signaling in WSSV infection. Therefore, the current study suggests that WSSV annexes Yki to favor its infection in shrimp by inhibiting Hippo signaling. IMPORTANCE White spot syndrome virus (WSSV) is one of the most harmful viral pathogens to shrimp. The pathological mechanism of WSSV infection remains unclear to date. The Hippo-Yki signaling pathway is important for various biological processes and is extensively involved in mammalian immunity, but little is known about its role in infectious diseases in invertebrates. Based on revealing the fundamental structure of the shrimp Hippo pathway, this study investigated its implication in the pathogenesis of WSSV disease. We demonstrated that WSSV enhanced Yki activation by inhibiting Hippo signaling in shrimp. The activated Yki promoted WSSV infection by inhibiting hemocyte apoptosis and suppressing the activation of Dorsal, an NF-κB family member in shrimp that is critical for regulating antiviral response. Therefore, this study suggests that WSSV can hijack the Hippo-Yki signaling pathway to favor its infection in shrimp.
Collapse
Affiliation(s)
- Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zi-Ang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hengwei Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shengwen Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Huo D, Su F, Yang H, Sun L. Exosomal microRNAs regulate the heat stress response in sea cucumber Apostichopus japonicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114419. [PMID: 36527848 DOI: 10.1016/j.ecoenv.2022.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Exosomes are small extracellular vesicles that contain nucleic acids such as microRNAs and may participate in important biological processes. We made the initial report of exosomes from sea cucumber Apostichopus japonicus, that were classically cup-shaped and had an average size of 74.65 nm, and identified specific exosome biomarkers (HSP70, TSG101, and CD9). We explored changes in the global expression of microRNAs in exosomes from the commercially important A. japonicus under normal conditions and heat-stressed conditions for 3 and 7 d. We found that heat stress increased exosome production and modified the expression profiles of the microRNAs that they contained. Novel_mir31, novel_mir132, novel_mir26, miR-92_1, and novel_mir27 were commonly found to be differentially expressed in three comparison groups, indicating their importance in the heat stress response. The microRNA expression levels were validated by qPCR. Function analysis of the target genes of these microRNAs indicated they were involved mainly in replication and repair in the initial response of A. japonicus to heat stress exposure. Conversely, during acclimation to the high temperature conditions, the target genes of the differentially expressed microRNAs were primarily involved in metabolism adjustments. Our results will contribute to a better understanding of the regulatory roles of exosomes in sea cucumber, and provide insights into the functions of sea cucumber exosome-shuttled microRNAs against environmental stresses exacerbated by global warming.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
16
|
Gong J, Pan X, Zhou X, Zhu F. Dietary glycerol monolaurate protects Cherax quadricarinatus against white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1085-1091. [PMID: 36400368 DOI: 10.1016/j.fsi.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Glycerol monolaurate (GML), one of the medium-chain fatty acid esters, is often used as an emulsifier or preservative. Its biological functions include antibacterial and antiviral activities. In this study, we examined the effects of dietary GML on the resistance of the red claw crayfish to WSSV infection. Crayfish fed with 4 g/kg GML showed higher survival rate and lower WSSV copy numbers than the control after WSSV infection. A RT-qPCR analysis showed that GML supplementation enhanced the expression of immune-related genes, especially JAK and caspase. Our data indicate that GML affects the immune parameters of crayfish, including the total hemocyte counts and phenoloxidase, acid phosphatase, superoxide dismutase, lysozyme, and peroxidase activities. After treatment with GML, the apoptosis of hemocytes increased significantly in both WSSV-infected and uninfected crayfish. In summary, GML reduced the mortality of WSSV-infected crayfish, perhaps by modulating the innate immunity of the crayfish. Our study shows that GML can be used to induce the innate immunity and enhance the immune protection of the red claw crayfish against WSSV infection, either therapeutically or as a preventive measure.
Collapse
Affiliation(s)
- Jing Gong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Xiaoyi Pan
- Key Laboratory of Healthy Freshwater Aquaculture Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
17
|
Wang L, Zhao D, Han R, Wang Y, Hu J, Bao Z, Wang M. A preliminary report of exploration of the exosomal shuttle protein in marine invertebrate Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2022; 131:498-504. [PMID: 36280128 DOI: 10.1016/j.fsi.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Exosomes are extracellular vesicles secreted by diverse cell under normal or abnormal physiological conditions, which could carry a range of bioactive molecules and play significant roles in biological processes, such as intercellular communication and immune response. In the current study, a preliminary study was performed to investigate the exosomal shuttle protein in Chlamys farreri (designated as CfesPro) and to predict the potential function of exosomes in scallop innate immunity. The serum derived exosomes (designated as CfEVs) were obtained from lipopolysaccharide (LPS)-stimulated C. farreri and untreated ones. After confirmation and characterization by transmission electron microscopy (TEM), nano-HPLC-MS/MS spectrometry was performed on CfEVs using a label-free quantitative method. Totally 2481 exosomal shuttle proteins were identified in CfEVs proteomic data, which included many innate immune related proteins. GO and KOG functional annotation showed that CfesPro participated in cellular processes, metabolism reactions, signaling transductions, immune responses and so on. Moreover, 1421 proteins in CfesPro were enriched to 324 pathways by KEGG analysis, including several immune-related pathways, such as autophagy, apoptosis and lysosome pathway. Meanwhile, eight autophagy-related proteins were initially identified in CfesPro, indicating that CfEVs had a potential role with autophagy. All these findings showed that CfEVs were involved in C. farreri innate immune defenses. This research would enrich the protein database of marine exosomes and provide a basis for the exploration of immune defense systems in marine invertebrates.
Collapse
Affiliation(s)
- Lihan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China.
| | - Dianli Zhao
- Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Renmin Han
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
18
|
Sun Q, Lin S, Zhang M, Gong Y, Ma H, Tran NT, Zhang Y, Li S. SpRab11a-Regulated Exosomes Inhibit Bacterial Infection through the Activation of Antilipopolysaccharide Factors in Crustaceans. THE JOURNAL OF IMMUNOLOGY 2022; 209:710-722. [DOI: 10.4049/jimmunol.2200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Exosomes, secreted by most cells, are critical antimicrobial immune factors in animals. Recent studies of certain key regulators of vesicular transport, the Rab GTPases, have linked Rab dysfunction to regulation of innate immune signaling. However, the relationship between exosomes and Rab GTPases, resulting in antimicrobial activity in vertebrates and invertebrates during pathogenic infection, has not been addressed. In this study, SpRab11a was reported to have a protective effect on the survival rate of mud crabs Scylla paramamosain after Vibrio parahaemolyticus challenge through the stimulation of exosome secretion and modulation of anti-LPS factor (ALF) expression. Furthermore, Sp14-3-3 was confirmed to be densely packaged in exosomes after V. parahaemolyticus infection, which could recruit the MyD88 and TLR by binding the Toll/IL-1R domain to the plasma membrane, promoting the translocation of Dorsal from the cytoplasm into the nucleus, and thereby regulating ALFs expression in the hemocytes of mud crab in response to the bacterial infection. The findings therefore provide, to our knowledge, a novel mechanism that underlies the cross-talk between SpRab11a-regulated exosome formation and ALFs expression in innate immune response in invertebrates, with a crustacean species, mud crab S. paramamosain, as a model study.
Collapse
Affiliation(s)
- Qian Sun
- *Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- †Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; and
- ‡Marine Biology Institute, Shantou University, Shantou, China
| | - Shanmeng Lin
- †Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; and
- ‡Marine Biology Institute, Shantou University, Shantou, China
| | - Ming Zhang
- †Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; and
- ‡Marine Biology Institute, Shantou University, Shantou, China
| | - Yi Gong
- *Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- †Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; and
- ‡Marine Biology Institute, Shantou University, Shantou, China
| | - Hongyu Ma
- *Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- †Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; and
- ‡Marine Biology Institute, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- *Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- †Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; and
- ‡Marine Biology Institute, Shantou University, Shantou, China
| | - Yueling Zhang
- *Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- †Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; and
- ‡Marine Biology Institute, Shantou University, Shantou, China
| | - Shengkang Li
- *Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- †Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China; and
- ‡Marine Biology Institute, Shantou University, Shantou, China
| |
Collapse
|
19
|
Sun X, Zhang S. Exosomes from WSSV-infected shrimp contain viral components that mediate virus infection. J Gen Virol 2022; 103. [PMID: 36018853 DOI: 10.1099/jgv.0.001776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exosomes have been described as vesicles that mediate intercellular communication and thus affect normal and pathological processes. Furthermore, many viruses have been reported to deliver viral components to host cells through exosomes. However, the roles of exosomes in invertebrates response to virus infection are poorly understood. In this study, we found that exosomes purified from white spot syndrome virus (WSSV)-infected hemocytes of shrimp could promote viral replication. These exosomes contained WSSV genomic DNA and nucleocapsid protein VP15, suggesting that exosomes can transfer viral genetic materials between cells, although the exosomes did not have similar infection ability to viruses. Remarkably, in exosomes WSSV DNA was bound to VP15 protein, and moreover VP15 silencing significantly suppressed WSSV infection and reduced the WSSV genome fragments in exosomes, indicating that the presence of VP15 is required for the packing of WSSV DNA inside the exosomes and thereby assists virus to complete immune escape. The above results not only contribute to elucidation of the infection and transmission mechanisms of WSSV, but are also of great significance for further study of virus-host interaction and reasonable prevention measures. Taken together, our findings provide a novel insight into the regulation of virus transmission via exosomes and highlight potential therapeutic strategies.
Collapse
Affiliation(s)
- Xumei Sun
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Siyuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
20
|
Huang S, Nishiumi S, Asaduzzaman M, Pan Y, Liu G, Yoshitake K, Maeyama K, Kinoshita S, Nagai K, Watabe S, Yoshida T, Asakawa S. Exosome-derived small non-coding RNAs reveal immune response upon grafting transplantation in Pinctada fucata (Mollusca). Open Biol 2022; 12:210317. [PMID: 35506205 PMCID: PMC9065966 DOI: 10.1098/rsob.210317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exosomes, a subset of small extracellular vesicles, carry various nucleic acids, proteins, lipids, amino acids and metabolites. They function as a mode of intercellular communication and molecular transfer. Exosome cargo molecules, including small non-coding RNAs (sncRNAs), are involved in the immune response in various organisms. However, the role of exosome-derived sncRNAs in immune responses in molluscs remains unclear. Here, we aimed to reveal the sncRNAs involved in the immune response during grafting transplantation by the pearl oyster Pinctada fucata. Exosomes were successfully extracted from the P. fucata haemolymph during graft transplantation. Abundant microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) were simultaneously discovered in P. fucata exosomes by small RNA sequencing. The expression patterns of the miRNAs and piRNAs at the grafting and initial stages were not substantially different, but varied significantly between the initial and later stages. Target prediction and functional analysis indicate that these miRNAs and piRNAs are related to immune response upon grafting transplantation, whereas piRNAs may also be associated with transposon silencing by targeting with genome transposon elements. This work provides the basis for a functional understanding of exosome-derived sncRNAs and helps to gain further insight into the PIWI/piRNA pathway function outside of germline cells in molluscs.
Collapse
Affiliation(s)
- Songqian Huang
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shinya Nishiumi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Md Asaduzzaman
- Department of Marine Bioresources Science, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi 4225, Chittagong, Bangladesh
| | - Yida Pan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Guanting Liu
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical Co., Ltd., Kurose 1425, Ise, Mie 516-8581, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. Mikimoto & Co., Ltd., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0313, Japan
| | - Tetsuhiko Yoshida
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
21
|
Tran NT, Liang H, Zhang M, Bakky MAH, Zhang Y, Li S. Role of Cellular Receptors in the Innate Immune System of Crustaceans in Response to White Spot Syndrome Virus. Viruses 2022; 14:v14040743. [PMID: 35458473 PMCID: PMC9028835 DOI: 10.3390/v14040743] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
Innate immunity is the only defense system for resistance against infections in crustaceans. In crustaceans, white spot diseases caused by white spot syndrome virus (WSSV) are a serious viral disease with high accumulative mortality after infection. Attachment and entry into cells have been known to be two initial and important steps in viral infection. However, systematic information about the mechanisms related to WSSV infection in crustaceans is still limited. Previous studies have reported that cellular receptors are important in the innate immune system and are responsible for the recognition of foreign microorganisms and in the stimulation of the immune responses during infections. In this review, we summarize the current understanding of the functions of cellular receptors, including Toll, C-type lectin, scavenger receptor, β-integrin, polymeric immunoglobulin receptor, laminin receptor, globular C1q receptor, lipopolysaccharide-and β-1,3-glucan-binding protein, chitin-binding protein, Ras-associated binding, and Down syndrome cell adhesion molecule in the innate immune defense of crustaceans, especially shrimp and crabs, in response to WSSV infection. The results of this study provide information on the interaction between viruses and hosts during infections, which is important in the development of preventative strategies and antiviral targets in cultured aquatic animals.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Md. Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Correspondence: ; Tel.: +86-754-86502485; Fax: +86-754-86503473
| |
Collapse
|
22
|
Li X, Chen T, Wu X, Jiang X, Luo P, E Z, Hu C, Ren C. Apoptosis-Inducing Factor 2 (AIF-2) Mediates a Caspase-Independent Apoptotic Pathway in the Tropical Sea Cucumber ( Holothuria leucospilota). Int J Mol Sci 2022; 23:ijms23063008. [PMID: 35328428 PMCID: PMC8954137 DOI: 10.3390/ijms23063008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptosis, also known as programmed cell death, is a biological process that is critical for embryonic development, organic differentiation, and tissue homeostasis of organisms. As an essential mitochondrial flavoprotein, the apoptosis-inducing factor (AIF) can directly mediate the caspase-independent mitochondrial apoptotic pathway. In this study, we identified and characterized a novel AIF-2 (HlAIF-2) from the tropical sea cucumber Holothuria leucospilota. HlAIF-2 contains a conserved Pyr_redox_2 domain and a putative C-terminal nuclear localization sequence (NLS) but lacks an N-terminal mitochondrial localization sequence (MLS). In addition, both NADH- and FAD-binding domains for oxidoreductase function are conserved in HlAIF-2. HlAIF-2 mRNA was ubiquitously detected in all tissues and increased significantly during larval development. The transcript expression of HlAIF-2 was significantly upregulated after treatment with CdCl2, but not the pathogen-associated molecular patterns (PAMPs) in primary coelomocytes. In HEK293T cells, HlAIF-2 protein was located in the cytoplasm and nucleus, and tended to transfer into the nucleus by CdCl2 incubation. Moreover, there was an overexpression of HlAIF-2-induced apoptosis in HEK293T cells. As a whole, this study provides the first evidence for heavy metal-induced apoptosis mediated by AIF-2 in sea cucumbers, and it may contribute to increasing the basic knowledge of the caspase-independent apoptotic pathway in ancient echinoderm species.
Collapse
Affiliation(s)
- Xiaomin Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Xiaofen Wu
- Institute for Integrative Biology of the Cell, University of Paris-Saclay, 91198 Paris, France;
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Zixuan E
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
- Correspondence:
| |
Collapse
|
23
|
Abstract
p53, the guardian of the genome, is a short-lived protein that is tightly controlled at low levels by constant ubiquitination and proteasomal degradation in higher organisms. p53 stabilization and activation are early crucial events to cope with external stimuli in cells. However, the role of p53 ubiquitination and its relevant molecular mechanisms have not been addressed in invertebrates. In this study, our findings revealed that both HUWE1 (HECT, UBA, and WWE domain-containing E3 ubiquitin-protein ligase 1) and TRAF6 (tumor necrosis factor receptor-associated factor 6) could serve as E3 ubiquitin ligases for p53 in mud crabs (Scylla paramamosain). Moreover, the expression of HUWE1 and TRAF6 was significantly downregulated during white spot syndrome virus (WSSV) infection, and therefore the ubiquitination of p53 was interrupted, leading to the activation of apoptosis and reactive oxygen species (ROS) signals through p53 accumulation, which eventually suppressed viral invasion in the mud crabs. To the best of our knowledge, this is the first study to reveal the p53 ubiquitination simultaneously induced by two E3 ligases in arthropods, which provides a novel molecular mechanism of invertebrates for resistance to viral infection. IMPORTANCE p53, which is a well-known tumor suppressor that has been widely studied in higher animals, has been reported to be tightly controlled at low levels by ubiquitin-dependent proteasomal degradation. However, recent p53 ubiquitination-relevant research mainly involved an individual E3 ubiquitin ligase, but not whether there exist other mechanisms that need to be explored. The results of this study show that HUWE1 and TRAF6 could serve as p53 E3 ubiquitin ligases and synchronously mediate p53 ubiquitination in mud crabs (Scylla paramamosain), which confirmed the diversity of the p53 ubiquitination regulatory pathway. In addition, the effects of p53 ubiquitination are mainly focused on tumorigenesis, but a few are focused on the host immune defense in invertebrates. Our findings reveal that p53 ubiquitination could affect ROS and apoptosis signals to cope with WSSV infection in mud crabs, which is the first clarification of the immunologic functions and mechanisms of p53 ubiquitination in invertebrates.
Collapse
|
24
|
Isolation and Characterization of Plasma-Derived Exosomes from the Marine Fish Rock Bream (Oplegnathus fasciatus) by Two Isolation Techniques. FISHES 2022. [DOI: 10.3390/fishes7010036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are important mediators of intercellular communication and modulate many physiological and pathological processes. Knowledge of secretion, content, and biological functions of fish exosomes during pathological infection is still scarce due to lack of suitable standardized isolation techniques. In this study, we aimed to isolate exosomes from the plasma of marine fish, rock bream (Oplegnathus fasciatus), by two isolation methods: differential ultracentrifugation (UC) and a commercial membrane affinity spin column technique (kit). Morphological and physicochemical characteristics of the isolated exosomes were determined by these two methods, and the efficiencies of the two methods were compared. Exosomes isolated by both methods were in the expected size range (30–200 nm) and had a characteristic cup-shape in transmission electron microscopy observation. Moreover, more intact exosomes were identified using the kit-based method than UC. Nanoparticle tracking analysis demonstrated a heterogeneous population of exosomes with a mean particle diameter of 114.6 ± 4.6 and 111.2 ± 2.2 nm by UC and a kit-based method, respectively. The particle concentration obtained by the kit method (1.05 × 1011 ± 1.23 × 1010 particles/mL) was 10-fold higher than that obtained by UC (4.90 × 1010 ± 2.91 × 109 particles/mL). The kit method had a comparatively higher total protein yield (1.86 mg) and exosome protein recovery (0.55 mg/mL plasma). Immunoblotting analysis showed the presence of exosome marker proteins (CD81, CD63, and HSP90) in the exosomes isolated by both methods and suggests the existence of exosomes. However, the absence of cytotoxicity or adverse immune responses to fish and mammalian cells by the exosomes isolated by the UC procedure indicates its suitability for functional studies in vitro. Overall, our basic characterization results indicate that the kit-based method is more suitable for isolating high-purity exosomes from fish plasma, whereas UC has higher safety in terms of yielding exosomes with low toxicity. This study provides evidence for the existence of typical exosomes in rock beam plasma and facilitates the selection of an efficient exosome isolation procedure for future applications in disease diagnosis and exosome therapy as fish medicine.
Collapse
|
25
|
Circulating Phylotypes of White Spot Syndrome Virus in Bangladesh and Their Virulence. Microorganisms 2022; 10:microorganisms10010191. [PMID: 35056639 PMCID: PMC8780693 DOI: 10.3390/microorganisms10010191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
White Spot Syndrome Virus (WSSV) has emerged as one of the most prevalent and lethal viruses globally and infects both shrimps and crabs in the aquatic environment. This study aimed to investigate the occurrence of WSSV in different ghers of Bangladesh and the virulence of the circulating phylotypes. We collected 360 shrimp (Penaeus monodon) and 120 crab (Scylla sp.) samples from the south-east (Cox’s Bazar) and south-west (Satkhira) coastal regions of Bangladesh. The VP28 gene-specific PCR assays and sequencing revealed statistically significant (p < 0.05, Kruskal–Wallis test) differences in the prevalence of WSSV in shrimps and crabs between the study areas (Cox’s Bazar and Satkhira) and over the study periods (2017–2019). The mean Log load of WSSV varied from 8.40 (Cox’s Bazar) to 10.48 (Satkhira) per gram of tissue. The mean values for salinity, dissolved oxygen, temperature and pH were 14.71 ± 0.76 ppt, 3.7 ± 0.1 ppm, 34.11 ± 0.38 °C and 8.23 ± 0.38, respectively, in the WSSV-positive ghers. The VP28 gene-based phylogenetic analysis showed an amino-acid substitution (E→G) at the 167th position in the isolates from Cox’s Bazar (referred to as phylotype BD2) compared to the globally circulating one (BD1). Shrimp PL artificially challenged with BD1 and BD2 phylotypes with filtrates of tissue containing 0.423 × 109 copies of WSSV per mL resulted in a median LT50 value of 73 h and 75 h, respectively. The in vivo trial showed higher mean Log WSSV copies (6.47 ± 2.07 per mg tissue) in BD1-challenged shrimp PL compared to BD2 (4.75 ± 0.35 per mg tissue). Crabs infected with BD1 and BD2 showed 100% mortality within 48 h and 62 h of challenge, respectively, with mean Log WSSV copies of 12.06 ± 0.48 and 9.95 ± 0.37 per gram tissue, respectively. Moreover, shrimp antimicrobial peptides (AMPs), penaeidin and lysozyme expression were lower in the BD1-challenged group compared to BD2 challenged shrimps. These results collectively demonstrated that relative virulence properties of WSSV based on mortality rate, viral load and expression of host immune genes in artificially infected shrimp PL could be affected by single aa substitution in VP28.
Collapse
|
26
|
Wang Y, Zhang B, Zhao S, Wang Y, Chu X, Li XC. SpgC1qR interacts with WSSV VP28 exhibiting antiviral activity. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100052. [DOI: 10.1016/j.fsirep.2022.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/31/2021] [Accepted: 01/23/2022] [Indexed: 10/19/2022] Open
|
27
|
Gong Y, Chen J, Cui Y, Li S. miR-2 contributes to WSSV infection by targeting Caspase 2 in mud crab (Scylla paramamosain). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104217. [PMID: 34358576 DOI: 10.1016/j.dci.2021.104217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Caspase 2 is widely studied for its function in the regulation of apoptosis in mammals. Despite the fundamental role of apoptosis during the anti-viral immune response, the relationship between Caspase 2 and virus infection has not been extensively explored in invertebrates. Also, whether or not miRNAs involve this process remains unclear. To address this issue, the miRNA-mediated regulation of Caspase 2 in mud crab (Scylla paramamosain) (Sp-Caspase 2) was characterized in this study. Sp-Caspase 2 contains an open reading frame (ORF) of 969 bp encoding 322 deduced amino acids and possesses a conserved CASc domain. The results suggested that Sp-Caspase 2 could suppress white spot syndrome virus infection via apoptosis induction. The further data showed that Sp-Caspase 2 was directly targeted by miR-2 in mud crab. Silencing or overexpression of miR-2 could affect apoptosis and WSSV replication through the regulation of Sp-Caspase 2 expression. Taken together, these results demonstrated the crucial role of the miR-2-Caspase 2 pathway in the innate immunity of mud crabs and revealed a novel mechanism in the anti-viral immune response in marine invertebrates.
Collapse
Affiliation(s)
- Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jiao Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
28
|
Qiao X, Hou L, Wang J, Jin Y, Kong N, Li J, Wang S, Wang L, Song L. Identification and characterization of an apoptosis-inducing factor 1 involved in apoptosis and immune defense of oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2021; 119:173-181. [PMID: 34610453 DOI: 10.1016/j.fsi.2021.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The apoptosis-inducing factor (AIF) is a phylogenetically old protein with classic function of inducing caspase-independent apoptosis, which extensively present in all primary kingdoms. In the present study, an AIF homologue (designated as CgAIF1) was identified from oyster Crassostrea gigas. The open reading frame of CgAIF1 cDNA was of 1836 bp encoding a peptide of 611 amino acid residues. There are a Pyr_redox_2 domain and an AIF_C domain in the predicted CgAIF1 protein. The deduced amino acid sequence of CgAIF1 shared 35.44%-79.22% similarity with AIF1s from other species. In the phylogenetic tree, CgAIF1 firstly clustered with mollusc AIF1s, and then with insect AIF1s, displaying separation from vertebrate AIF1s. The mRNA transcripts of CgAIF1 were constitutively distributed in all the tested oyster tissues, with the highest level in gills (12.98-fold of that in haemocytes, p < 0.05). After LPS and Poly (I:C) stimulation, the mRNA transcripts of CgAIF1 in gills were significantly increased at 6 h and 24 h (5.79-fold, p < 0.001, and 21.96-fold compared to the control group, p < 0.05), respectively. In immunocytochemical assay, the CgAIF1 positive signals were mainly distributed in the cytoplasm of haemocytes, while after Poly (I:C) stimulation, the increased CgAIF1 positive signals were observed in the nucleus. Moreover, in the HEK293T cells transfected with pcDNA3.1-CgAIF1 recombinant plasmid, green signal of CgAIF1 were observed in both the cytoplasm and nucleus. The cell mortality rate, cell shrinking and the phosphatidylserine (PS) ectropion (Annexin V+/PI- cells and Annexin V+/PI+ cells) of CgAIF1 transfected HEK293T cells were significantly increased, compared to the groups with or without pcDNA3.1 transfection. These results collectively suggested that CgAIF1 was a conserved AIF1 member in oysters, and participated in immune response by inducing cell apoptosis.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lilin Hou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jihan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jialuo Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
29
|
Zhou J, Zhou JF, Wang Y, Feng GP, Fang WH, Kang W, Ma LB, Li XC. SpSR-B2 functions as a potential pattern recognition receptor involved in antiviral and antibacterial immune responses of mud crab Scylla paramamosain. Int J Biol Macromol 2021; 193:2173-2182. [PMID: 34780895 DOI: 10.1016/j.ijbiomac.2021.11.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Although class B scavenger receptors (SR-Bs) in mammals are multifunctional molecules, the functions of SR-Bs in invertebrates remain largely unknown. In this study, we characterized an SR-B homolog, namely SpSR-B2, from Scylla paramamosain. SpSR-B2 shared high similarity with mammalian SR-Bs, and exhibited specific binding activity to ac-LDL, indicating that it may be a new member of SR-B class in invertebrates. SpSR-B2 was upregulated after challenge with white spot syndrome virus (WSSV) or bacteria. Binding assays showed that SpSR-B2 specifically interacted with WSSV envelope protein VP24. Besides, SpSR-B2 could bind to all tested bacterial cells and agglutinate these bacteria. SpSR-B2 also exhibited a strong binding activity to LPS but weak binding activities to other tested polysaccharides. These findings indicated that SpSR-B2 was a potential recognition molecule for viral protein VP24 and bacterial LPS. Knockdown of SpSR-B2 resulted in dramatically decreased expressions of certain antimicrobial peptides (AMPs), and overexpression of SpSR-B2 led to the increased expression of the AMP of SpALF2, suggesting that SpSR-B2 could regulate the expression of AMPs. Taken together, this study revealed that SpSR-B2 functioned as a potential pattern recognition receptor participating in antiviral and antibacterial immunity, and provided new insights into the immune functions of invertebrate SR-Bs.
Collapse
Affiliation(s)
- Jian Zhou
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jun-Fang Zhou
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yue Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Guang-Peng Feng
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Wen-Hong Fang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Wei Kang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Ling-Bo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Xin-Cang Li
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| |
Collapse
|
30
|
Gong Y, Wei X, Sun W, Ren X, Chen J, Aweya JJ, Ma H, Chan KG, Zhang Y, Li S. Exosomal miR-224 contributes to hemolymph microbiota homeostasis during bacterial infection in crustacean. PLoS Pathog 2021; 17:e1009837. [PMID: 34379706 PMCID: PMC8382196 DOI: 10.1371/journal.ppat.1009837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/23/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022] Open
Abstract
It is well known that exosomes could serve as anti-microbial immune factors in animals. However, despite growing evidences have shown that the homeostasis of the hemolymph microbiota was vital for immune regulation in crustaceans, the relationship between exosomes and hemolymph microbiota homeostasis during pathogenic bacteria infection has not been addressed. Here, we reported that exosomes released from Vibrio parahaemolyticus-infected mud crabs (Scylla paramamosain) could help to maintain the homeostasis of hemolymph microbiota and have a protective effect on the mortality of the host during the infection process. We further confirmed that miR-224 was densely packaged in these exosomes, resulting in the suppression of HSP70 and disruption of the HSP70-TRAF6 complex, then the released TRAF6 further interacted with Ecsit to regulate the production of mitochondrial ROS (mROS) and the expression of Anti-lipopolysaccharide factors (ALFs) in recipient hemocytes, which eventually affected hemolymph microbiota homeostasis in response to the pathogenic bacteria infection in mud crab. To the best of our knowledge, this is the first document that reports the role of exosome in the hemolymph microbiota homeostasis modulation during pathogen infection, which reveals the crosstalk between exosomal miRNAs and innate immune response in crustaceans. Exosomes are small membrane vesicles of endocytic origin which are widely involved in the regulation of a variety of pathological processes in mammals. Yet, although the antibacterial function of exosomes has been discovered for many years, the relationship between exosomes and hemolymph microbiota homeostasis remains unknown. In the present study, we identified the miRNAs packaged by exosomes that were possibly involved in Vibrio parahaemolyticus infection by modulating hemolymph microbiota homeostasis in crustacean mud crab Scylla paramamosain. Moreover, it was found that miR-224 was densely packaged in exosomes after Vibrio parahaemolyticus challenge, resulting in the suppression of HSP70 and disruption of the HSP70-TRAF6 complex in recipient hemocytes, then the released TRAF6 was further interacted with Ecsit to regulate ROS and ALFs levels, which eventually affected hemolymph microbiota homeostasis to cope with pathogenic bacteria infection. Our finding is the first to reveal the relationship between exosomes and hemolymph microbiota homeostasis in animals, which shows a novel molecular mechanism of invertebrate resistance to pathogenic microbial infection.
Collapse
Affiliation(s)
- Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xiaoyuan Wei
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Wanwei Sun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xin Ren
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jiao Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Kok-Gan Chan
- Institute of Marine Sciences, Shantou University, Shantou, China
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
- * E-mail: (YZ); (SL)
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
- * E-mail: (YZ); (SL)
| |
Collapse
|
31
|
Li W, Wang Q. Recent progress in the research of exosomes and Dscam regulated crab antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103925. [PMID: 33217412 DOI: 10.1016/j.dci.2020.103925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Crustaceans, including crab and shrimp, generally lack lymphocytes or adaptive immunity, and they rely solely on innate immunity for pathogen defense. The white spot syndrome virus (WSSV) causes the most prevalent viral disease in penaeid shrimps, which are widely cultured species in coastal waters worldwide. Numerous studies have elucidated the role of the immune system in protecting shrimps from WSSV infection for the development of safe and effective defensive strategies against WSSV. Although WSSV has a wide host range, it appears to exhibit high pathogenicity and virulence in only penaeid shrimps. Crabs are interesting models for studying immune responses after WSSV infection. Therefore, we reviewed recent information on the innate immune responses of crabs to WSSV and mainly focused on the antiviral functions of exosome-mediated apoptosis and alternatively spliced Down syndrome cell adhesion molecule. Our review may provide novel insights into antiviral management for crustaceans, especially penaeid shrimps.
Collapse
Affiliation(s)
- Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
32
|
Auguste M, Balbi T, Ciacci C, Canesi L. Conservation of Cell Communication Systems in Invertebrate Host-Defence Mechanisms: Possible Role in Immunity and Disease. BIOLOGY 2020; 9:E234. [PMID: 32824821 PMCID: PMC7464772 DOI: 10.3390/biology9080234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Innate immunity is continuously revealing multiple and highly conserved host-defence mechanisms. Studies on mammalian immunocytes are showing different communication systems that may play a role in coordinating innate immune responses also in invertebrates. Extracellular traps (ETs) are an immune response by which cells release net-like material, including DNA, histones and proteins. ETs are thought to immobilise and kill microorganisms, but are also involved in inflammation and autoimmune disease. Immune cells are also known to communicate through extracellular vesicles secreted in the extracellular environment or exosomes, which can carry a variety of different signalling molecules. Tunnelling nanotubes (TNTs) represent a direct cell-to-cell communication over a long distance, that allow for bi- or uni-directional transfer of cellular components between cells. Their functional role in a number of physio-pathological processes, including immune responses and pathogen transfer, has been underlined. Although ETs, exosomes, and TNTs have been described in invertebrate species, their possible role in immune responses is not fully understood. In this work, available data on these communication systems are summarised, in an attempt to provide basic information for further studies on their relevance in invertebrate immunity and disease.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (M.A.); (T.B.)
| | - Teresa Balbi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (M.A.); (T.B.)
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DIBS), University “Carlo Bo” of Urbino, 61029 Urbino, Italy;
| | - Laura Canesi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (M.A.); (T.B.)
| |
Collapse
|